Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Experimental Section

Synthesis of Pd metallene

All chemicals were used as received without further purification. Pd metallene were synthesized by a simple wet-chemistry strategy[1]. Briefly, 20 mg of Pd(acac)₂ and 0.25 g of trinoctylphosphine oxide (TOPO) were ultrasonically dissolved in octanoic acid (OA) and maintained at 60 °C in an oil bath. Then, 20 mg of Mo(CO)₆ and 5 mL of DMF were added into the above mixture and maintained for 1h. The black precipitates were collected by centrifugation and washed.

Electrochemical experiments

Electrochemical measurements were performed on a CHI-660 electrochemical workstation (CHI-660E) in a three-electrode configuration, where carbon cloth (CC)loaded catalyst (0.5 mg cm⁻²), Ag/AgCl electrode and graphite rod were used as working, reference and counter electrodes, respectively. All potentials were referenced to reversible hydrogen electrode (RHE) by following equation: $E_{\rm RHE}$ (V)= $E_{Ag/AgCl}$ +0.198+0.059×pH. The electrocatalytic NORR measurements were performed in NO saturated 0.5 M Na₂SO₄ electrolyte using a gas-tight H-cell separated by a Nafion 211 membrane. The Nafion membrane was pretreated by boiling it in 5% H₂O₂ solution for 1 h, 0.5 M H₂SO₄ for 1 h and deionized water for 1 h in turn. Prior to NORR test, all the feeding gases were purified through two glass bubblers containing 4 M KOH solution and the cathodic compartment was purged with Ar for at least 30 min to remove residual oxygen. During each electrolysis, highpurity NO gas (99.9%) was continuously purged into the cathodic chamber at a flow rate of 20 mL min⁻¹. After electrolysis for 1 hour at the specified potential, water and gas products are detected by colorimetry and gas chromatography (GC, Shimadzu GC2010) respectively.

Determination of NH₃

The generated NH_3 was determined by the indophenol blue method[2]. Generally, we took 0.5mL electrolyte from the electrochemical reaction vessel and dilute it 10 times with deionized water. Then we removed 2 mL of diluted solution into a clean

vessel followed by sequentially adding NaOH solution (2 mL, 1 M) containing $C_7H_6O_3$ (5 wt.%) and $C_6H_5Na_3O_7$ (5 wt.%), NaClO (1 mL, 0.05 M), and $C_5FeN_6Na_2O$ (0.2 mL, 1wt.%) aqueous solution. The mixed solution was subjected to UV-vis measurement using the absorbance at 655 nm wavelength, after the incubation for 2 h at room temperature. We calibrated the concentration-absorbance curves by the standard NH₄Cl solution with a series of concentrations, and the NH₃ yield rate and Faradaic efficiency (FE) were calculated by the following equation[3]:

$$NH_3 \text{ yield} = (c \times V) / (17 \times t \times A) \tag{1}$$

Faradaic efficiency was determined by the following equation:

$$FE_{NH3} = (5 \times F \times c \times V) / (17 \times Q) \times 100\%$$
(2)

where c (µg mL⁻¹) is the measured NH₃ concentration, V (mL) is the volume of electrolyte in the cathode chamber, t (s) is the electrolysis time and A is the surface area of CC (1×1 cm²), F (96500 C mol⁻¹) is the Faraday constant, Q (C) is the total quantity of applied electricity.

The detailed procedures for colorimetric determination N₂H₄ are provided in our previous publications[4]

Characterizations

X-ray diffraction (XRD) pattern was gathered on a Rigaku D/max 2400 diffractometer[5]. X-ray photoelectron spectroscopy (XPS) analysis was gathered on a PHI 5702 spectrometer. Atom force microscopy (AFM) was performed on a Nanoscope-IIIa scanning probe microscope. Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) were recorded on a Tecnai G² F20 microscope.

Calculation details

DFT calculations were performed using the Cambridge sequential total energy package (CASTEP) with projector augmented wave pseudopotentials. The Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional was used for the exchange-correlation potential. The van der Waals interaction was described by using the empirical correction in Grimme's scheme, i.e., DFT+D. The electron wave functions were expanded using plane waves with a cutoff energy of 450 eV, and a Monkhorst-Pack grid $3 \times 3 \times 1$ was used for k-point sampling. Besides, the convergence thresholds of energy and forces were set to be 1×10^{-5} eV and 0.02 eV Å⁻¹, respectively. Pd (111) was modeled by a 4×4 supercell, and a vacuum region of 10 Å was used to separate adjacent slabs.

The free energies (ΔG , 298 K) for each reaction were given after correction:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S \tag{3}$$

where ΔE is the adsorption energy, ΔZPE is the zero-point energy difference and $T\Delta S$ is the entropy difference between the gas phase and adsorbed state.

Fig. S1. SAED pattern of Pd metallene.

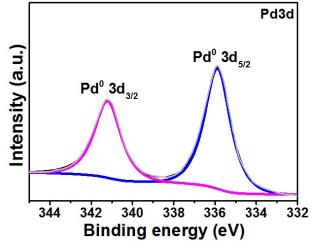


Fig. S2. XPS spectra of Pd3d spectrum.

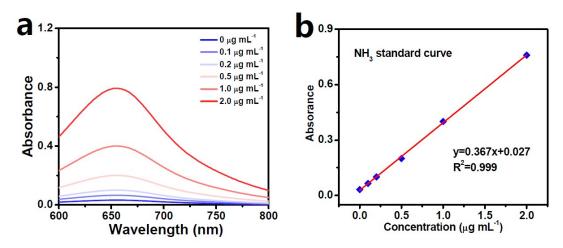


Fig. S3. (a) UV-vis absorption spectra of NH_4^+ assays after incubated for 2 h at ambient conditions. (b) Calibration curve used for the calculation of NH_3 concentrations.

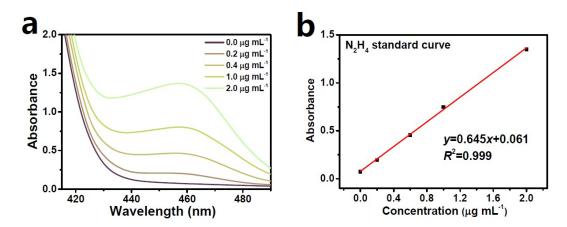


Fig. S4. (a) UV-vis absorption spectra of N_2H_4 assays after incubated for 20 min at ambient conditions. (b) Calibration curve used for calculation of N_2H_4 concentrations.

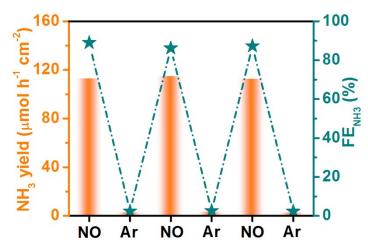


Fig. S5. NO/Ar switching experiment at -0.3 V.

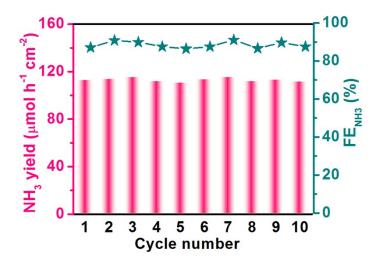


Fig. S6. Cycling test of Pd metallene at -0.3 V.

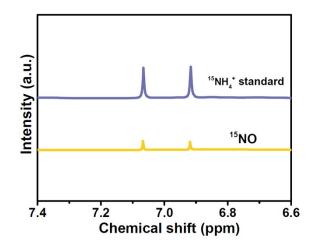


Fig. S7. ¹H NMR spectra of ¹⁵NH₄⁺ standard sample and those fed by ¹⁵NO and Ar after NORR electrolysis on Pd metallene at -0.3 V. The detailed procedure for NMR measurement was provided in our previous publication[6].

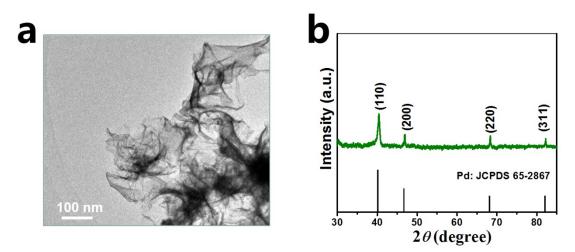


Fig. S8. (a) TEM image and (b) XRD pattern of Pd metallene after stability test.

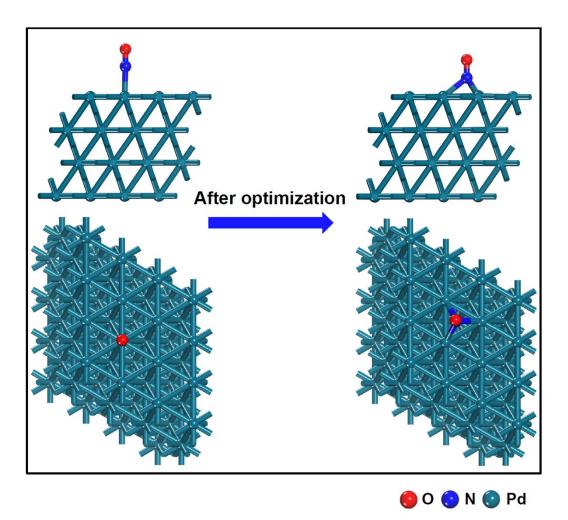


Fig. S9. The configuration of *NO on the top site of Pd before and after geometry optimization.

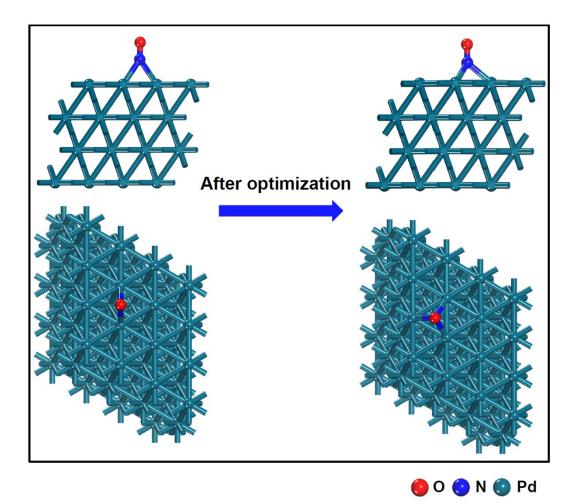


Fig. S10. The configuration of *NO on the bridge site of Pd before and after geometry optimization.

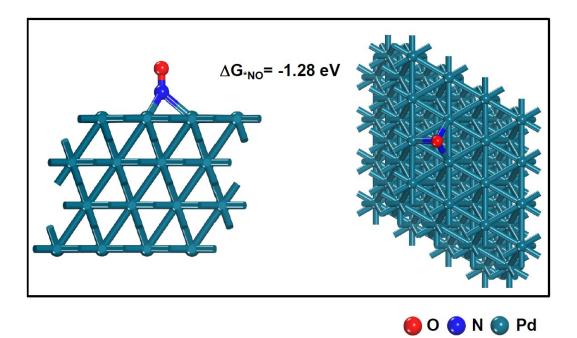


Fig. S11. The configuration of *NO on the fcc site of Pd after geometry optimization.

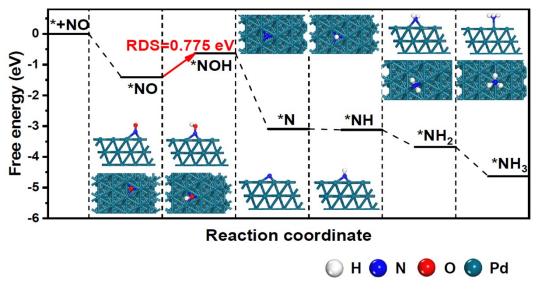


Fig. S12. Free energy diagram of the distal-O reaction pathway on hcp site of Pd and optimized configurations of NORR intermediates.

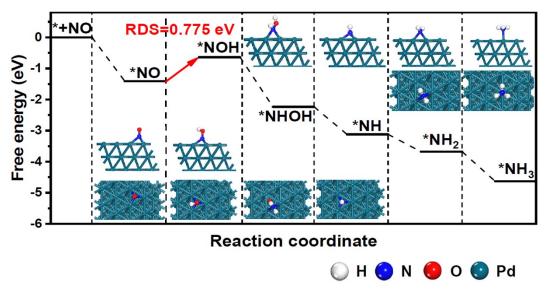


Fig. S13. Free energy diagram of the alternating-O reaction pathway on hcp site of Pd and optimized configurations of NORR intermediates.

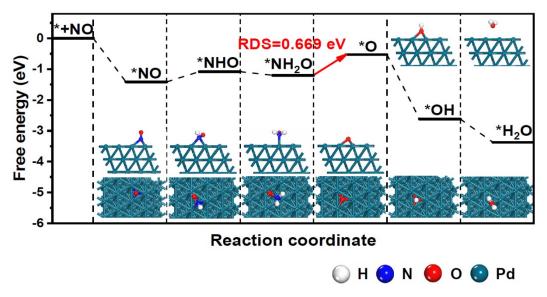


Fig. S14. Free energy diagram of the distal-N reaction pathway on hcp site of Pd and optimized configurations of NORR intermediates.

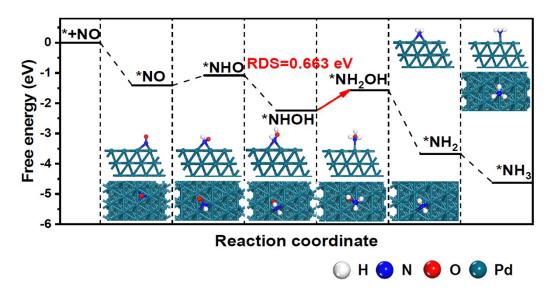


Fig. S15. Free energy diagram of the alternating-N reaction pathway on hcp site of Pd and optimized configurations of NORR intermediates.

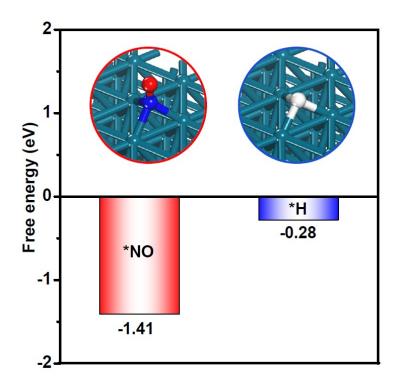


Fig. S16. Binding free energies of *NO and *H on hcp site of Pd.

Catalyst	Electrolyte	NH ₃ yield rate (μmol h ⁻¹ cm ⁻²)	FE (%)	Potential (V vs. RHE)	Ref.
Mo ₂ C	0.5 M Na ₂ SO ₄	122.7	86.3	-0.4	[7]
Ni ₂ P/CP	0.1 M HCl	33.47	76.9	-0.2	[8]
$Ru_{0.05}Cu_{0.95}$	$0.05 \text{ M} \text{ Na}_2 \text{SO}_4$	17.68	64.9	-0.5	[9]
Cu ₂ O@CoMn ₂ O ₄	0.1 M Na ₂ SO ₄	94.18	75.05	-0.9	[10]
NiO/TM	0.1 M Na ₂ SO ₄	125.3	90	-0.6	[11]
a- B _{2.6} C@TiO ₂ /T i	0.1 M Na ₂ SO ₄	216.4	87.6	-0.9	[12]
FeP/CC	0.2 M PBS	85.62	88.49	-0.2	[13]
Bi NDs	0.1 M Na ₂ SO ₄	70.2	89.2	-0.5	[14]
CoP/TM	0.2 M Na ₂ SO ₄	47.22	88.3	-0.2	[15]
Ni@NC	0.1 M HCl	34.6	72.3	0.16	[16]
Pd metallene	0.5 M Na ₂ SO ₄	112.5	89.6	-0.3	This Wor k

Table S1. Comparison of optimum NH₃ yield and Faradic efficiency (FE) for recently reported state-of-the-art NORR electrocatalysts at ambient conditions.

Reference

- X. Li, P. Shen, Y. Luo, Y. Li, Y. Guo, H. Zhang and K. Chu, *Angew. Chem. Int. Edit.*, 2022, 134, e202205923.
- [2]. N. B. Schmidt, J. D. Buckner, A. Pusser, K. Woolaway-Bickel, J. L. Preston and A. Norr, Behavior Therapy, 2012, 43, 518-532.
- [3]. C.-Z. He, Y.-X. Zhang, J. Wang and L. Fu, Rare Metals, 2022, 41, 3456-3465.
- [4]. Y. Luo, K. Chen, P. Shen, X. Li, X. Li, Y. Li and K. Chu, J. Colloid Interf. Sci., 2023, 629, 950-957.
- [5]. J. Wu and Y.-X. Yu, Int. J. Hydrogen Energy, 2022.
- [6]. X. Li, G. Zhang, P. Shen, X. Zhao and K. Chu, Inorg. Chem. Front., 2023, 10, 280-287.
- [7]. K. Chen, P. Shen, N. Zhang, D. Ma and K. Chu, *Inorg. Chem.*, 2023, DOI: 10.1021/acs.inorgchem.2c03714.
- [8]. T. Mou, J. Liang, Z. Ma, L. Zhang, Y. Lin, T. Li, Q. Liu, Y. Luo, Y. Liu, S. Gao, H. Zhao, A. M. Asiri, D. Ma and X. Sun, *J. Mater. Chem. A*, 2021, 9, 24268-24275.
- [9]. J. Shi, C. Wang, R. Yang, F. Chen, N. Meng, Y. Yu and B. Zhang, Sci. China Chem., 2021, 64, 1493-1497.
- [10]. C. Bai, S. Fan, X. Li, Z. Niu, J. Wang, Z. Liu and D. Zhang, Adv. Funct. Mater., 2022, 32, 2205569.
- [11]. P. Liu, J. Liang, J. Wang, L. Zhang, J. Li, L. Yue, Y. Ren, T. Li, Y. Luo, N. Li, B. Tang, Q. Liu, A. M. Asiri, Q. Kong and X. Sun, *Chem. Commun.*, 2021, **57**, 13562-13565.
- J. Liang, P. Liu, Q. Li, T. Li, L. Yue, Y. Luo, Q. Liu, N. Li, B. Tang, A. A. Alshehri, I. Shakir,
 P. O. Agboola, C. Sun and X. Sun, *Angew. Chem. Int. Ed.*, 2022, 61, e202202087.
- [13]. J. Liang, Q. Zhou, T. Mou, H. Chen, L. Yue, Y. Luo, Q. Liu, M. S. Hamdy, A. A. Alshehri, F. Gong and X. Sun, *Nano Res.*, 2022, **15**, 4008-4013.
- [14]. Y. Lin, J. Liang, H. Li, L. Zhang, T. Mou, T. Li, L. Yue, Y. Ji, Q. Liu, Y. Luo, N. Li, B. Tang, Q. Wu, M. S. Hamdy, D. Ma and X. Sun, *Mater. Today Phys.*, 2022, 22.
- [15]. J. Liang, W.-F. Hu, B. Song, T. Mou, L. Zhang, Y. Luo, Q. Liu, A. A. Alshehri, M. S. Hamdy, L.-M. Yang and X. Sun, *Inorg. Chem. Front.*, 2022, 9, 1366-1372.
- [16]. S. Sethuram Markandaraj, T. Muthusamy and S. Shanmugam, J. Adv. Sci, 2022, 9, 2201410.