Supplementary Information

Catalytic [2,3]-sigmatropic rearrangement of sulfonium ylides
derived from azoalkenes: non-carbenoid Doyle-Kirmse reaction
Fu-Yuan Yang, Tian-Jiao Han, Shi-Kun Jia, Min-Can Wang, and Guang-Jian Mei* Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
*E-mail: meigj@zzu.edu.cn
Contents

1. General Methods 2
2. Reaction optimization 3
3. Representative Procedures 4
4. Characterization of Products 7
5. X-ray single crystal data for compound 3a 19
6. NMR Spectra 21
7. References 59

1. General Methods

Unless otherwise specified, all reactions were conducted under an inert atmosphere and anhydrous conditions. All the solvents were purified according to the standard procedures. All chemicals which are commercially available were employed without further purification. Thin - layer chromatography (TLC) was performed on silica gel plates ($60 \mathrm{~F}-254$) using UV - light (254 nm). Flash chromatography was conducted on silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at ambient temperature in CDCl_{3} on a 400 MHz NMR spectrometer. Chemical shifts were reported in parts per million (ppm). The data are reported as follows: for ${ }^{1} \mathrm{H}$ NMR, chemical shift in ppm from tetramethylsilane with the solvent as internal standard $\left(\mathrm{CDCl}_{3} \delta 7.26 \mathrm{ppm}\right)$, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet or overlap of non-equivalent resonances), integration; for ${ }^{13} \mathrm{C}$ NMR, chemical shift in ppm from tetramethylsilane with the solvent as internal indicator $\left(\mathrm{CDCl}_{3} \delta 77.1 \mathrm{ppm}\right)$, multiplicity with respect to protons. All high-resolution mass spectra were obtained on a Q-TOF Micro LC/MS System ESI spectrometer to be given in m / z. Azoalkenes $\mathbf{1}$ were either employed directly from commercial sources or prepared according to the literature ${ }^{1}$; thioethers 2 were synthesized according to modified literature-reported procedures ${ }^{2-3}$.

2. Reaction optimization ${ }^{a}$

$\mathrm{CO}_{2} \mathrm{Bn}$				
			$\xrightarrow[\substack{\text { solvent, r.t. } \\\left(\mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}\right)}]{\substack{\text { Cat. } \\(10 \mathrm{~mol} \%)}}$	 3a
	2a			
Entry	Cat.	Solvent	Additive	Yield (\%) ${ }^{\text {b }}$
1	$\mathrm{Cu}(\mathrm{OTf})_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-	64
2	$\mathrm{Ni}(\mathrm{OTf})_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-	n.r.
3	$\mathrm{Fe}(\mathrm{OTf})_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-	58
4	$\mathrm{In}(\mathrm{OTf})_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-	34
5	$\mathrm{Sc}(\mathrm{OTf})_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-	88
6	MsOH	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-	41
7	HNTf_{2}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-	30
8	PA	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-	Trace
9	$\mathrm{Sc}(\mathrm{OTf})_{3}$	$\mathrm{CH}_{3} \mathrm{CN}$	-	87
10	$\mathrm{Sc}(\mathrm{OTf})_{3}$	toluene	-	51
11	$\mathrm{Sc}(\mathrm{OTf})_{3}$	THF	-	39
12	$\mathrm{Sc}(\mathrm{OTf})_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$3 \AA \mathrm{MS}$	44
13	$\mathrm{Sc}(\mathrm{OTf})_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$4 \AA$ MS	52
14	$\mathrm{Sc}(\mathrm{OTf})_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$5 \AA \mathrm{MS}$	70

${ }^{a}$ Reaction conditions: 1a $(0.12 \mathrm{mmol})$, $\mathbf{2 a}(0.1 \mathrm{mmol})$, and Cat. $(10 \mathrm{~mol} \%)$ in the solvent specified (1 mL) at room temperature (r.t.) for 3d, n.r. $=$ no reaction. ${ }^{b}$ Isolated yields. PA = diphenyl phosphate.

3. Representative Procedures

General Procedures for the synthesis of target products 3

Azoalkenes $1(0.24 \mathrm{mmol})$ and thioethers $2(0.2 \mathrm{mmol})$ (ratio of $\mathbf{1 : 2}=1.2: 1)$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathbf{3 a - 3 y})$ or $\mathrm{CH}_{3} \mathrm{CN}\left(\mathbf{3 z - 3} \mathbf{c}^{\prime}\right)$ and $\mathrm{Sc}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%)$ was added. The reaction mixture was stirred for 3 days at room temperature. After the completion of the reaction which was indicated by TLC, the solvents were removed in vacuo and the crude product was separated by flash column chromatography on silica gel (petroleum ether / ethyl acetate 8:1-4:1) to afford the target products 3.

Procedure for the gram-scale reaction

Azoalkene 1a ($1.04 \mathrm{~g}, 3.6 \mathrm{mmol}$), thioether 2a ($0.45 \mathrm{~g}, 3.0 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Sc}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%)$ was added. The reaction mixture was stirred for 3 days at room temperature. After the completion of the reaction which was indicated by TLC, $\mathrm{H}_{2} \mathrm{O}$ was added followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried on anhydrous sodium sulphate and evaporated under reduced pressure. The crude product was separated by flash column chromatography on silica gel (petroleum ether / ethyl acetate $=8: 1-4: 1$) to afford the target products $\mathbf{3 a}$ ($1.12 \mathrm{~g}, 88 \%$ yield) as a white solid.

Derivatization of 3a and 3y into compounds 4-9

Compound 3a ($85.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) was refluxed in 10 mL of acetone/water ($9: 1$ mixture) in the presence of Amberlyst-15h (100 mg) for 3 days (TLC check). The reaction mixture was filtered off and the solution was concentrated under reduced
pressure and then extracted with ethyl acetate. The organic phase was dried on anhydrous sodium sulphate and evaporated under reduced pressure. The crude reaction mixture was purified by flash chromatography eluting with petroleum ether / ethyl acetate (10:1) mixtures to obtain ketone derivative 4 ($37.8 \mathrm{mg}, 68 \%$ yield) as a yellow oil.

To a stirred suspension of ketone derivative 4 ($55.6 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(11.4 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) was slowly added. The resulting mixture was stirred at room temperature for 30 min . MeOH was removed under reduced pressure, and the residue was purified by flash chromatography (petroleum ether / ethyl acetate $=10: 1)$ to afford alcohol $5(54.3 \mathrm{mg}, 97 \%$ yield, $4: 1 \mathrm{dr})$ as a yellow oil.

Compound 3y ($78.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) was refluxed in 10 mL of acetone/water ($9: 1$ mixture) in the presence of Amberlyst-15h (100 mg) for 7 days (TLC check). The reaction mixture was filtered off and the solution was concentrated under reduced pressure and then extracted with ethyl acetate. The organic phase was dried on anhydrous sodium sulphate and evaporated under reduced pressure. The crude reaction mixture was purified by flash chromatography eluting with petroleum ether / ethyl acetate (10:1) mixtures to obtain ketone derivative $6(29.0 \mathrm{mg}, 60 \%$ yield) as a yellow oil.

Ketone derivative $6(48.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), and Grubbs catalyst II (25.5 $\mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 2 h , which was directly purified by flash column chromatography (petroleum ether / ethyl acetate $=10: 1$) to afford the title product 7 ($39.4 \mathrm{mg}, 92 \%$ yield) as a brown oil.

Compound 3a ($85.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, then m-CPBA ($103.2 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0$ equiv) was added. The reaction mixture was stirred at room temperature for 1 h . After the completion of the reaction which was indicated by TLC, saturated NaHCO_{3} aqueous solution was added followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried on anhydrous sodium sulphate and evaporated under reduced pressure. The crude product was separated by flash column chromatography on silica gel (petroleum ether / ethyl acetate $=2: 1$) to afford the sulfone derivative $\mathbf{8}$ ($74.2 \mathrm{mg}, 81 \%$ yield) as a yellow oil.

Compound 3a ($85.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dissolved in acetic acid (5 mL). The reaction mixture was refluxed at $130^{\circ} \mathrm{C}$ for 2 h . After the completion of the reaction which was indicated by TLC, saturated NaHCO_{3} aqueous solution was added followed by extraction with ethyl acetate. The organic phase was dried on anhydrous sodium sulphate and evaporated under reduced pressure. The crude product was separated by flash column chromatography on silica gel (petroleum ether / ethyl acetate $=2: 1)$ to afford the title product $9(49.4 \mathrm{mg}, 65 \%$ yield $)$ as a red oil.

3. Characterization of Products

Benzyl-2-(3-(ethoxycarbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazine-1-carboxy late 3a:

A white solid; 74.9 mg ; isolated yield $=88 \%$; m.p. $123.2-123.6^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.05(\mathrm{~m}, 10 \mathrm{H}), 6.26-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.31-4.96$ $(\mathrm{m}, 4 \mathrm{H}), 4.16-4.22(\mathrm{~m}, 2 \mathrm{H}), 3.04-2.52(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,153.4,147.7,136.8,135.9,133.4,130.0$, 129.5, 128.7, 128.6, 128.3, 118.5, 68.0, 67.3, 62.2, 38.4, 14.5, 14.2; HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=427.1686$, found $=427.1690$.

Methyl-2-(3-(ethoxycarbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazine-1-carboxy late 3b:

A white solid; 53.2 mg ; isolated yield $=76 \%$; m.p. $121.3-121.8^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.52-6.99(\mathrm{~m}, 5 \mathrm{H}), 5.99-6.05(\mathrm{~m}, 1 \mathrm{H}), 5.20-4.99(\mathrm{~m}$, 2H), $4.18-4.22(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.25(\mathrm{~m}, 3 \mathrm{H}), 1.25$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,154.5,147.7,136.9,133.3$, 130.0, 129.5, 128.7, 118.5, 67.8, 62.1, 52.9, 38.2, 14.5, 14.2; HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=351.1373$, found $=351.1369$.

Ethyl-2-(3-(ethoxycarbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazine-1-carboxyla te 3c:

A yellow solid; 53.8 mg ; isolated yield $=74 \%$; m.p. $119.2-119.9^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.10(\mathrm{~m}, 5 \mathrm{H}), 5.99-6.08(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.01(\mathrm{~m}$, $2 \mathrm{H}), 4.40-4.02(\mathrm{~m}, 4 \mathrm{H}), 2.98-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.25(\mathrm{~m}, 3 \mathrm{H}), 1.23-1.27(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,153.8,147.3,136.8,133.4,130.1,129.5$, 128.7, 118.5, 67.9, 62.1, 61.8, 38.3, 14.5, 14.4, 14.2; HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=365.1530$, found $=365.1529$.

A white solid; 93.5 mg ; isolated yield $=91 \%$; m.p. $124.8-125.4{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.41(\mathrm{~m}$, $4 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.29-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~m}$, $1 \mathrm{H}), 4.40-4.29(\mathrm{~s}, 1 \mathrm{H}), 4.28-3.99(\mathrm{~m}, 3 \mathrm{H}), 2.85(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1,154.9,147.9,143.8,143.5,141.4$, $141.3,137.0,133.5,130.2,129.5,128.8,127.8,127.8,127.1,127.1,125.4,120.0$, 120.0, 118.6, 68.0, 67.8, 62.2, 46.9, 38.5, 14.7, 14.3; HRMS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=515.1999$, found $=515.2004$.

Methyl-2-(3-(methoxycarbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazine-1-carbo xylate 3e:

A white solid; 45.7 mg ; isolated yield $=68 \%$; m.p. $130.4-130.9^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.08(\mathrm{~m}, 5 \mathrm{H}), 6.21-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.27-4.82(\mathrm{~m}$, $2 \mathrm{H}), 3.98-3.49(\mathrm{~m}, 6 \mathrm{H}), 2.63-2.82(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.5,154.7,147.6,136.9,133.3,130.0,129.5,128.7,118.5,67.9,52.9$, $52.8,38.3,14.6 ; H R M S$ (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=337.1217$, found $=337.1212$.

Benzyl-2-(3-((benzyloxy)carbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazine-1-car boxylate 3f:

A yellow oil; 70.3 mg ; isolated yield $=72 \% ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~s}$, $1 \mathrm{H}), 7.46-7.13(\mathrm{~m}, 15 \mathrm{H}), 5.95-6.05(\mathrm{~m}, 1 \mathrm{H}), 5.34-4.77(\mathrm{~m}, 6 \mathrm{H}), 2.66-2.89(\mathrm{~m}$, $2 \mathrm{H}), 1.80-2.23(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,153.6,147.2,136.9$, $135.9,135.0,133.2,129.9,129.5,128.8,128.7,128.6,128.6,128.5,128.3,118.6$, 68.0, 67.8, 67.4, 38.4, 14.4; HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=$ 489.1843 , found $=489.1846$.

Benzyl-2-(3-(isobutoxycarbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazine-1-carb oxylate 3g:

A yellow oil; 74.4 mg ; isolated yield $=82 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~s}$, $1 \mathrm{H}), 7.45-7.10(\mathrm{~m}, 10 \mathrm{H}), 5.99-6.08(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.16(\mathrm{~m}, 4 \mathrm{H}), 3.87-3.89(\mathrm{~m}$, 2H), $2.68-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.76(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1,153.6,147.9,136.8,135.9,133.5,130.0,129.5,128.7$, 128.6, 128.3, 118.5, 72.5, 68.4, 67.4, 38.5, 27.6, 19.1, 14.6; HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=455.1999$, found $=455.2009$.

Benzyl-2-(3-(tert-butoxycarbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazine-1-car boxylate 3h:

A yellow solid; 73.5 mg ; isolated yield $=81 \%$; m.p. $117.5-118.3^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.05(\mathrm{~m}, 10 \mathrm{H}), 6.20-5.96(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.18$ $(\mathrm{m}, 4 \mathrm{H}), 2.64-2.85(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.8,153.9,148.2,136.8,136.0,133.6,132.2,130.3,129.3,129.0,128.9,128.6$, 128.5, 128.3, 127.8, 118.4, 83.3, 68.6, 67.1, 38.2, 27.9, 14.8; HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}=477.1818$, found $=477.1830$.

Benzyl-2-(3-((allyloxy)carbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazine-1-carb oxylate 3i:

A yellow oil; 63.9 mg ; isolated yield $=73 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~s}$, $1 \mathrm{H}), 7.48-7.15(\mathrm{~m}, 10 \mathrm{H}), 6.14-5.75(\mathrm{~m}, 2 \mathrm{H}), 5.43-5.03(\mathrm{~m}, 6 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=6.0$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.79(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.7, 153.3, 147.6, 136.8, 135.9, 133.3, 131.3, 129.9, 129.6, 128.7, 128.6, 128.5, 128.3, 119.6, 118.6, 68.0, 67.4, 66.7, 38.5, 14.5; HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+$ $H]^{+}=439.1686$, found $=439.1684$.

Benzyl-2-(3-((2-methoxyethoxy)carbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazi ne-1-carboxylate 3j:

A yellow oil; 71.1 mg ; isolated yield $=78 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~s}$, $1 \mathrm{H}), 7.54-7.02(\mathrm{~m}, 10 \mathrm{H}), 6.29-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.00(\mathrm{~m}, 4 \mathrm{H}), 4.44-4.15(\mathrm{~m}$, $2 \mathrm{H}), 3.53(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.90(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1,153.5,147.8,136.9,136.0,133.4,130.0,129.5$, 128.7, 128.5, 128.3, 128.1, 118.5, 70.0, 68.0, 67.3, 64.7, 58.8, 38.4, 14.4; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=457.1792$, found $=457.1793$.

Benzyl-2-(4-(ethoxycarbonyl)-4-(phenylthio)hept-6-en-3-ylidene)hydrazine-1-carbox ylate 3k:

A yellow oil; 73.9 mg ; isolated yield $=84 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95$ (s, $1 \mathrm{H}), 7.56-7.05(\mathrm{~m}, 10 \mathrm{H}), 6.21-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.32-4.95(\mathrm{~m}, 4 \mathrm{H}), 4.36-4.04(\mathrm{~m}$, $2 \mathrm{H}), 2.64-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,153.3,151.6,136.8,135.9,133.4$, $130.2,129.4,128.6,128.6,128.3,118.6,68.3,67.4,62.1,37.9,21.8,14.2,9.9$; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=441.1843$, found $=441.1839$.

Benzyl-2-(5-(methoxycarbonyl)-5-(phenylthio)oct-7-en-4-ylidene)hydrazine-1-carbox ylate 31:

A yellow oil; 66.0 mg ; isolated yield $=75 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74$ (s, $1 \mathrm{H}), 7.51-7.05(\mathrm{~m}, 10 \mathrm{H}), 6.12-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.07-5.18(\mathrm{~m}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $2.97-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.52(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,154.0,150.7,136.7,135.9,133.4,130.1,129.4$, 128.7, 128.6, 128.3, 118.6, 68.3, 67.4, 52.7, 37.9, 30.9, 18.7, 14.8; HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=441.1843$, found $=441.1845$.

Benzyl-2-(4-(methoxycarbonyl)-4-(phenylthio)non-1-en-5-ylidene)hydrazine-1-carbo xylate 3m:

A yellow oil; 70.8 mg ; isolated yield $=78 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71$ (s, $1 \mathrm{H}), 7.44-7.08(\mathrm{~m}, 10 \mathrm{H}), 6.24-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.32-4.88(\mathrm{~m}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $2.63-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,154.2,150.7,136.7,135.9,133.4,130.1,129.4$, 128.7, 128.5, 128.3, 118.6, 68.3, 67.4, 52.6, 38.0, 28.6, 27.1, 23.4, 13.7; HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=455.1999$, found $=455.2000$.

Benzyl-2-(3-(methoxycarbonyl)-1-phenyl-3-(phenylthio)hex-5-en-2-ylidene)hydrazin e-1-carboxylate 3n:

A red solid; 74.2 mg ; isolated yield $=76 \%$; m.p. $118.2-118.9^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.06(\mathrm{~m}, 15 \mathrm{H}), 6.00-6.08(\mathrm{~m}, 1 \mathrm{H}), 5.31-4.94(\mathrm{~m}, 4 \mathrm{H})$, $3.70-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.98(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,153.3,147.9,136.9,135.9,133.3,133.0,129.9,129.6,129.1,128.8,128.5$, 128.2, 128.0, 127.3, 118.8, 68.7, 67.2, 52.4, 38.0, 34.7; HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=489.1843$, found $=489.1846$.

Benzyl-2-(3-(ethoxycarbonyl)-3-((4-fluorophenyl)thio)hex-5-en-2-ylidene)hydrazine-1-carboxylate 30:

3o, $\mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$
A yellow solid; 63.9 mg ; isolated yield $=72 \%$; m.p. $112.9-113.7^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.37(\mathrm{~m}, 7 \mathrm{H}), 6.91-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.29-5.83(\mathrm{~m}$, $1 \mathrm{H}), 5.31-4.93(\mathrm{~m}, 4 \mathrm{H}), 4.16-4.22(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.85(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.24$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,163.8(J=250 \mathrm{~Hz}), 153.6$, $147.5,139.0(J=9 \mathrm{~Hz}), 135.9,133.2,128.6,128.4,125.4,125.3,118.7,115.9(J=20$
$\mathrm{Hz}), 68.0,67.4,62.2,38.2,14.4,14.2 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.33$; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=445.1592$, found $=445.1591$.

Benzyl-2-(3-((4-bromophenyl)thio)-3-(ethoxycarbonyl)hex-5-en-2-ylidene)hydrazine-1-carboxylate 3p:

$\mathbf{3 p}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$
A white solid; 88.7 mg ; isolated yield $=88 \%$; m.p. $102.6-103.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 5.93-5.99(\mathrm{~m}$, $1 \mathrm{H}), 5.30-4.99(\mathrm{~m}, 4 \mathrm{H}), 4.15-4.19(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.87(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.24$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,153.6,147.5,138.2,135.8$, 133.0, 131.9, 129.3, 128.7, 128.6, 128.4, 128.4, 124.3, 118.8, 68.0, 67.5, 62.3, 38.3, 14.4, 14.2; HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=505.0791$, found $=505.0793$.

Benzyl-2-(3-(ethoxycarbonyl)-3-((4-(trifluoromethyl)phenyl)thio)hex-5-en-2-ylidene) hydrazine-1-carboxylate 3q:

$\mathbf{3 q}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$
A yellow solid; 75.1 mg ; isolated yield $=76 \%$; m.p. $96.4-96.8^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 4 \mathrm{H}), 7.35(\mathrm{~s}, 5 \mathrm{H}), 5.94-6.01(\mathrm{~m}, 1 \mathrm{H}), 5.43-4.93(\mathrm{~m}$, $4 \mathrm{H}), 4.17-4.23(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.93(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,153.3,147.4,136.3,135.6(J=30 \mathrm{~Hz}), 132.8$, $131.1(J=30 \mathrm{~Hz}), 128.7,128.6,128.4,128.2,127.9,125.4,125.4(J=3 \mathrm{~Hz}), 125.2$, $123.9(J=271 \mathrm{~Hz}), 68.2,67.5,62.4,38.4,14.3,14.1 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 62.75; HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=495.1560$, found $=$ 495.1559.

Benzyl-2-(3-(ethoxycarbonyl)-3-((4-nitrophenyl)thio)hex-5-en-2-ylidene)hydrazine-1 -carboxylate 3r:

$3 \mathrm{r}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$

A yellow oil; 60.3 mg ; isolated yield $=64 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~s}, 5 \mathrm{H}), 5.90-5.97(\mathrm{~m}, 1 \mathrm{H})$, $5.36-4.98(\mathrm{~m}, 4 \mathrm{H}), 4.19-4.25(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.98(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.4,153.4,147.8,140.1,135.6$, 132.3, 128.6, 128.6, 128.3, 123.5, 119.3, 68.5, 67.7, 62.6, 38.5, 14.2, 14.1; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=472.1537$, found $=472.1536$.

Benzyl-2-(3-(ethoxycarbonyl)-3-((4-ethylphenyl)thio)hex-5-en-2-ylidene)hydrazine-1 -carboxylate 3s:

$3 \mathrm{~s}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$
A yellow solid; 59.9 mg ; isolated yield $=66 \%$; m.p. $98.8-99.5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.52-6.91(\mathrm{~m}, 9 \mathrm{H}), 6.26-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.33-4.98(\mathrm{~m}, 4 \mathrm{H})$, $4.37-3.86(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.57(\mathrm{~m}, 3 \mathrm{H})$, $1.43-0.97(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1,149.3,146.0,137.4,136.9$, 135.9, 133.7, 133.6, 129.5, 129.2, 129.0, 128.5, 128.3, 126.6, 125.9, 118.4, 67.9, 67.3, 62.1, 38.4, 28.6, 15.3, 14.5, 14.2; HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ $=455.1999$, found $=455.1999$.

Benzyl-2-(3-((4-(tert-butyl)phenyl)thio)-3-(ethoxycarbonyl)hex-5-en-2-ylidene)hydra zine-1-carboxylate 3t:

3t, $\mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$
A yellow oil; 72.3 mg ; isolated yield $=75 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71$ (s, $1 \mathrm{H}), 7.44-7.12(\mathrm{~m}, 9 \mathrm{H}), 6.00-6.06(\mathrm{~m}, 1 \mathrm{H}), 5.36-4.89(\mathrm{~m}, 4 \mathrm{H}), 4.16-4.21(\mathrm{~m}$, $2 \mathrm{H}), 2.98-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.04(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.1,152.8,147.8,136.5,135.9,133.6,128.6,128.3,126.5,125.8,118.4$, $67.9,67.3,62.1,38.5,34.7,31.2,14.5,14.2 ; \operatorname{HRMS}$ (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=483.2312$, found $=483.2316$.

Benzyl-2-(3-((2-chlorophenyl)thio)-3-(ethoxycarbonyl)hex-5-en-2-ylidene)hydrazine-1-carboxylate 3u:

S13

$3 \mathbf{u}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$

A yellow oil; 74.5 mg ; isolated yield $=81 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~s}$, $1 \mathrm{H}), 7.34-7.48(\mathrm{~m}, 7 \mathrm{H}), 7.10-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.29-5.96(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.22(\mathrm{~m}$, $4 \mathrm{H}), 4.17-4.23(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.91(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.0,149.2,143.0,135.9,134.4,131.2,128.7,126.0$, $125.4,124.8,123.8,123.6,122.0,113.8,63.6,62.6,57.5,33.8,9.7,9.4$; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=461.1296$, found $=461.1303$.

Benzyl-2-(3-(ethoxycarbonyl)-3-((2-methoxyphenyl)thio)hex-5-en-2-ylidene)hydrazi ne-1-carboxylate 3v:

$\mathbf{3 v}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$
A yellow solid; 77.5 mg ; isolated yield $=85 \%$; m.p. $103.7-104.2^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.23(\mathrm{~m}, 7 \mathrm{H}), 6.74-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.35-5.92(\mathrm{~m}$, $1 \mathrm{H}), 5.35-4.98(\mathrm{~m}, 4 \mathrm{H}), 4.14-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.66-2.83(\mathrm{~m}, 2 \mathrm{H}), 1.92$ ($\mathrm{s}, 3 \mathrm{H}$), $1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,156.8$, 149.4, $143.9,135.2,131.3,129.4,127.0,123.8,123.5,115.8,113.2,112.9,106.4,63.3,62.4$, 57.3, 50.8, 33.5, 9.6, 9.4; HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=$ 457.1792 , found $=457.1799$.

Benzyl-2-(3-((3,4-dichlorophenyl)thio)-3-(ethoxycarbonyl)hex-5-en-2-ylidene)hydraz ine-1-carboxylate 3w:

$\mathbf{3 w}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$
A white solid; 72.1 mg ; isolated yield $=73 \%$; m.p. $93.1-93.9^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.68-6.85(\mathrm{~m}, 9 \mathrm{H}), 5.91-5.97(\mathrm{~m}, 1 \mathrm{H}), 5.34-4.99(\mathrm{~m}, 4 \mathrm{H}), 4.16-4.21$ $(\mathrm{m}, 2 \mathrm{H}), 2.61-2.85(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,153.9,147.3,138.1,135.9,135.8,134.1,132.8,132.4,130.5$, 130.4, 128.6, 128.3, 119.0, 68.3, 67.5, 62.4, 38.2, 14.5, 14.2; HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=495.0907$, found $=495.0911$.

Benzyl-2-(3-((3,5-dimethylphenyl)thio)-3-(ethoxycarbonyl)hex-5-en-2-ylidene)hydra zine-1-carboxylate 3x:

$\mathbf{3 x}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$
A yellow solid; 73.5 mg ; isolated yield $=81 \%$; m.p. $97.5-98.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~s}, 6 \mathrm{H}), 6.90-6.93(\mathrm{~m}, 3 \mathrm{H}), 6.29-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.06-5.17(\mathrm{~m}, 4 \mathrm{H})$, $4.15-4.21(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.1,153.7,148.0,138.1,136.0,134.4$, $133.7,131.2,129.3,128.6,128.6,128.5,128.4,128.3,118.3,67.9,67.3,62.1,38.4$, 21.0, 14.6, 14.2; HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=455.1999$, found $=455.1999$.

Benzyl-2-(3-(allylthio)-3-(ethoxycarbonyl)hex-5-en-2-ylidene)hydrazine-1-carboxylat e 3y:

A yellow oil; 66.3 mg ; isolated yield $=85 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03$ (s, $1 \mathrm{H}), 7.34-7.40(\mathrm{~m}, 5 \mathrm{H}), 6.01-5.63(\mathrm{~m}, 2 \mathrm{H}), 5.44-5.09(\mathrm{~m}, 6 \mathrm{H}), 4.18(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.32-2.77(\mathrm{~m}, 4 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,153.8,148.7,135.9,133.7,133.2,128.6,128.4,118.5,117.8$, 67.5, 65.1, 62.0, 38.4, 31.9, 14.2, 13.8; HRMS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}$ $+\mathrm{H}]^{+}=391.1686$, found $=391.1682$.

Benzyl-2-(3-((4-bromophenyl)thio)-3-(ethoxycarbonyl)hexa-4,5-dien-2-ylidene)hydra zine-1-carboxylate 3z:

$\mathbf{3 z}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$
A red oil; 68.3 mg ; isolated yield $=68 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~s}, 1 \mathrm{H})$, $7.34-7.41(\mathrm{~m}, 9 \mathrm{H}), 5.78(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.25(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 4.13-4.18(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 207.9,168.6,153.9,148.8,138.3,135.8,131.7,130.1,128.6,128.5,124.1$, $90.8,79.0,67.7,66.6,62.4,14.6,14.0$; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}=503.0635$, found $=503.0631$.

Benzyl-2-(3-(ethoxycarbonyl)-3-((4-(trifluoromethyl)phenyl)thio)hexa-4,5-dien-2-yli dene)hydrazine-1-carboxylate 3a':

$\mathbf{3 a}^{\mathbf{\prime}}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$
A red solid; 73.8 mg ; isolated yield $=75 \%$; m.p. $95.1-95.6^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.67(\mathrm{~m}, 9 \mathrm{H}), 5.83(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.29(\mathrm{~m}$, $2 \mathrm{H}), 4.88(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.37-4.06(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.1,168.5,153.6,146.9,136.2,135.7,130.8(J$ $=32 \mathrm{~Hz}), 129.0,128.7,128.6,128.5,125.3,123.9(J=271 \mathrm{~Hz}), 122.6,90.8,79.2$, 67.7, 66.7, 62.6, 14.5, 14.0; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.74$; HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=493.1403$, found $=493.1406$.

Benzyl-2-(3-(ethoxycarbonyl)-3-((4-nitrophenyl)thio)hexa-4,5-dien-2-ylidene)hydrazi ne-1-carboxylate 3b':

$\mathbf{3 b}^{\prime}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$
A yellow oil; 62.8 mg ; isolated yield $=67 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-$ $8.04(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.39(\mathrm{~m}, 5 \mathrm{H}), 5.88-5.91(\mathrm{t}, J$ $=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.29(\mathrm{~m}, 2 \mathrm{H}), 4.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.45-3.89(\mathrm{~m}, 2 \mathrm{H})$, $1.84(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.4,168.3$, $153.9,148.8,147.5,141.0,135.6,134.9,128.7,128.6,128.5,123.3,90.6,79.6,67.8$, 66.9, 62.8, 14.3, 14.1; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}=470.1380$, found $=470.1377$.

Benzyl-2-(3-(ethoxycarbonyl)-3-((2-methoxyphenyl)thio)hexa-4,5-dien-2-ylidene)hy drazine-1-carboxylate 3c':

$\mathbf{3 c} \mathbf{c}^{\prime}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$
A yellow oil; 58.1 mg ; isolated yield $=64 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~s}$, $1 \mathrm{H}), 7.65-7.27(\mathrm{~m}, 7 \mathrm{H}), 6.77-6.87(\mathrm{~m}, 2 \mathrm{H}), 5.82(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{t}, J=$ $17.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.82-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.22(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H})$, $1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.0,168.9$, 161.1, 154.9 ,
147.2, 139.8, 135.9, 131.5, 128.7, 128.7, 128.5, 128.3, 120.6, 118.3, 110.9, 91.0, 78.5, 67.4, 66.3, 62.2, 55.7, 14.5, 14.1; HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ $=455.1635$, found $=455.1632$.

Ethyl 2-acetyl-2-(phenylthio)pent-4-enoate 4:

A yellow oil; 37.8 mg ; isolated yield $=68 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-$ $7.42(\mathrm{~m}, 5 \mathrm{H}), 6.13-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.26-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.27(\mathrm{~m}, 2 \mathrm{H}), 2.48-$ $2.68(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.3, 168.6, 136.8, 132.2, 123.0, 129.1, 129.0, 119.1, 70.3, 62.4, 36.6, 26.4, 14.1; HRMS (ESI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}=301.0869$, found $=301.0864$.

Ethyl 2-(1-hydroxyethyl)-2-(phenylthio)pent-4-enoate 5:

A yellow oil; $54.3 \mathrm{mg} ; \mathrm{dr}=4: 1$; isolated yield $=97 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.73-7.14(\mathrm{~m}, 5 \mathrm{H}), 6.21-5.55(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.29-3.87(\mathrm{~m}, 3 \mathrm{H})$, $3.13-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.02(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,137.0,133.7,130.1,129.6,128.8,118.0,70.1$, $62.9,61.5,36.6,17.7,14.0$; $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}=$ 303.1025 , found $=303.1030$.

Ethyl 2-acetyl-2-(allylthio)pent-4-enoate 6:

A yellow oil; 29.0 mg ; isolated yield $=60 \%$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.95-$ $5.65(\mathrm{~m}, 2 \mathrm{H}), 5.09-5.22(\mathrm{~m}, 4 \mathrm{H}), 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-3.07(\mathrm{~m}, 4 \mathrm{H}), 2.30$ (s, 3H), $1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.7,168.8,132.5$, 131.9, 119.1, 118.6, 67.2, 62.3, 36.6, 32.1, 25.8, 14.0; HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{SNa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}=265.0869\right.$, found $=265.0863$.

Ethyl 2-acetyl-3,6-dihydro-2H-thiopyran-2-carboxylate 7:

A brown oil; 39.4 mg ; isolated yield $=92 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.16-$ 5.58 (m, 2H), $4.24-4.30(\mathrm{~m}, 2 \mathrm{H}), 2.51-3.07(\mathrm{~m}, 4 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.6, 169.3, 126.4, 121.9, 62.6, 61.2, 29.8, 24.9, 24.8, 14.0; HRMS (ESI) m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}=237.0556$, found $=237.0556$.

Benzyl 2-(3-(ethoxycarbonyl)-3-(phenylsulfonyl)hex-5-en-2-ylidene)hydrazine-1carboxylate 8:

A yellow oil; 74.2 mg ; isolated yield $=81 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99$ (s, $1 \mathrm{H}), 7.95-7.15(\mathrm{~m}, 10 \mathrm{H}), 5.78-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.31-4.87(\mathrm{~m}, 4 \mathrm{H}), 4.10-4.27(\mathrm{~m}$, $2 \mathrm{H}), 3.78-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.25-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.06(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,152.9,136.8,134.7,131.9,130.5,128.6,128.6,128.5,119.6$, 83.4, 67.6, 62.5, 36.8, 15.9, 14.0; HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SNa}^{+}[\mathrm{M}+$ $\mathrm{Na}]^{+}=481.1404$, found $=481.1414$.

Benzyl 4-allyl-3-methyl-5-oxo-4-(phenylthio)-4,5-dihydro-1H-pyrazole-1-carboxylate 9:

A red oil; 49.4 mg ; isolated yield $=65 \%$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-6.95$ $(\mathrm{m}, 10 \mathrm{H}), 5.58-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.30-4.94(\mathrm{~m}, 4 \mathrm{H}), 2.52-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,160.3,148.3,136.0,134.9,130.7,129.4,129.3$, $128.5,128.5,128.5,127.0,121.2,68.5,62.2,36.2,14.0$; HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}=403.1087$, found $=403.1088$.

4. X-ray single crystal data for compound 3a

Compound 3a:

CCDC:2234932

Table 1 Crystal data and structure refinement for 202209176.

Identification code	202209176
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$
Formula weight	426.52
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21/c
a/Å	11.8940(8)
b/Å	13.8863(6)
c/Å	14.5801(9)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	108.178(7)
$\gamma /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	2287.9(2)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.238
μ / mm^{-1}	1.506
F(000)	904.0
Crystal size/mm ${ }^{3}$	$0.17 \times 0.13 \times 0.1$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ} 7.824$ to 134.158	
Index ranges	$-14 \leq \mathrm{h} \leq 10,-10 \leq \mathrm{k} \leq 16,-17 \leq 1 \leq 17$
Reflections collected	8969
Independent reflections	$4075\left[\mathrm{R}_{\text {int }}=0.0276, \mathrm{R}_{\text {sigma }}=0.0357\right]$
Data/restraints/parameters	4075/0/273
Goodness-of-fit on F^{2}	1.034
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0504, \mathrm{wR}_{2}=0.1357$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0627, \mathrm{wR}_{2}=0.1500$
Largest diff. peak/hole / e $\AA^{-3} 0.42 /-0.24$	

5. NMR Spectra

3a

$\begin{array}{cc}8 & 4 \\ 80 \\ 6 & 0 \\ i & 0 \\ i\end{array}$

3b

3c

$$
\begin{aligned}
& \begin{array}{ll}
n & 8 \\
0 & 8 \\
1 & 0
\end{array} \\
& \stackrel{\omega}{\infty}
\end{aligned}
$$

3d, R = fluorenylmethyl

3 e

8
80
080
40
$\stackrel{\circ}{\infty}$

3g

3h

3j

$$
\begin{aligned}
& \text { À } \\
& \text { ó } \\
& \text { î }
\end{aligned}
$$

$$
\begin{aligned}
& \underset{~}{\ddagger} \\
& \underset{~}{\ddagger}
\end{aligned}
$$

3k

$\left.\begin{array}{lllllllllllllll} \\ 210 & 190 & 170 & 150 & 130 & \begin{array}{c}110 \\ \mathrm{fl}(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right)$

3m

ス

3n

3o, $\mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$

-38.17
$\stackrel{\ddagger}{\ddagger}$

3p, $\mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$

3q, $\mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$

3r, $\mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$

3s, $\mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$

$3 t, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$

$\mathbf{3 u}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$

-164.98
-149.15
-142.94

$f^{128.73}$
-124.81
-122.02
-113.81

$\mathbf{3 v}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$

$\mathbf{3 w}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$

8
8
8
$\stackrel{\infty}{\infty}$
$\stackrel{\circ}{\stackrel{\infty}{\ddagger}}$

$\mathbf{3 x}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$

3y

$\mathbf{3 z}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$
品

3a', $\mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$

$\mathbf{3 b}^{\mathbf{\prime}}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$

$\mathbf{3 c}^{\mathbf{\prime}}, \mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bn}$

```
N\mp@code{NNMN}
O
```


4

$\stackrel{+}{\infty}$
$\stackrel{\infty}{\infty}$
$\stackrel{1}{+}$

5

6

7

$$
\xrightarrow{\infty}
$$

8

6. References

[1] Nelson, A. M. Pereira; Américo Lemos; Arménio C. Serraa; Teresa M. V. D. Pinho e Melo. Tetrahedron. Lett. 2013, 54, 1553-1557.
[2] Zhang X.-Y., Lin B., Chen J.-H., Chen J.-J., Luo Y.-S., and Xia Y.-Z. Org. Lett. 2021, 23, 3, 819-825.
[3] Wagh, Sachin Bhausaheb; Singh, Rahulkumar Rajmani; Sahani, Rajkumar Lalji; Liu, R.-S. Org. Lett. 2019, 21, 8, 2755-2758.

