Supplementary Information

Catalytic [2,3]-sigmatropic rearrangement of sulfonium ylides

derived from azoalkenes: non-carbenoid Doyle-Kirmse reaction

Fu-Yuan Yang, Tian-Jiao Han, Shi-Kun Jia, Min-Can Wang, and Guang-Jian Mei*

Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

*E-mail: meigj@zzu.edu.cn

Contents

1. General Methods	2
2. Reaction optimization	3
3. Representative Procedures	4
4. Characterization of Products	7
5. X-ray single crystal data for compound 3a	
6. NMR Spectra	
7. References	

1. General Methods

Unless otherwise specified, all reactions were conducted under an inert atmosphere and anhydrous conditions. All the solvents were purified according to the standard procedures. All chemicals which are commercially available were employed without further purification. Thin - layer chromatography (TLC) was performed on silica gel plates (60F - 254) using UV - light (254 nm). Flash chromatography was conducted on silica gel (200-300 mesh). ¹H and ¹³C NMR spectra were recorded at ambient temperature in CDCl₃ on a 400 MHz NMR spectrometer. Chemical shifts were reported in parts per million (ppm). The data are reported as follows: for ¹H NMR, chemical shift in ppm from tetramethylsilane with the solvent as internal standard (CDCl₃ δ 7.26 ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or overlap of non-equivalent resonances), integration; for ¹³C NMR, chemical shift in ppm from tetramethylsilane with the solvent as internal indicator (CDCl₃ δ 77.1 ppm), multiplicity with respect to protons. All high-resolution mass spectra were obtained on a Q-TOF Micro LC/MS System ESI spectrometer to be given in m/z. Azoalkenes 1 were either employed directly from commercial sources or prepared according to the literature¹; thioethers 2 were synthesized according to modified literature-reported procedures²⁻³.

2. Reaction optimization^{*a*}

CO ₂ √∽N	Bn		Cat.	[]
N .	+ _{Db} ~ ^S	· <u>(1</u>	0 mol%) ➤ P	h_S
CO-Et	FII	sol	Ivent, r.t.	CO ₂ Et
00 ₂ ∟t 1a		(R = 2a	NHCO ₂ Bn)	3a
Entry	Cat.	Solvent	Additive	Yield $(\%)^b$
1	Cu(OTf) ₂	CH_2Cl_2	-	64
2	Ni(OTf) ₂	CH_2Cl_2	-	n.r.
3	Fe(OTf) ₃	CH_2Cl_2	-	58
4	In(OTf) ₃	CH_2Cl_2	-	34
5	Sc(OTf) ₃	CH_2Cl_2	-	88
6	MsOH	CH_2Cl_2	-	41
7	$HNTf_2$	CH_2Cl_2	-	30
8	PA	CH_2Cl_2	-	Trace
9	Sc(OTf) ₃	CH ₃ CN	-	87
10	Sc(OTf) ₃	toluene	-	51
11	Sc(OTf) ₃	THF	-	39
12	Sc(OTf) ₃	CH_2Cl_2	3Å MS	44
13	Sc(OTf) ₃	CH_2Cl_2	4Å MS	52
14	Sc(OTf) ₃	CH_2Cl_2	5Å MS	70

^{*a*}Reaction conditions: **1a** (0.12 mmol), **2a** (0.1 mmol), and **Cat.** (10 mol%) in the solvent specified (1 mL) at room temperature (r.t.) for 3d, n.r. = no reaction. ^{*b*}Isolated yields. PA = diphenyl phosphate.

3. Representative Procedures

General Procedures for the synthesis of target products 3

Azoalkenes 1 (0.24 mmol) and thioethers 2 (0.2 mmol) (ratio of 1:2 = 1.2:1) were dissolved in CH₂Cl₂ (**3a-3y**) or CH₃CN (**3z-3c**') and Sc(OTf)₃ (10 mol%) was added. The reaction mixture was stirred for 3 days at room temperature. After the completion of the reaction which was indicated by TLC, the solvents were removed in vacuo and the crude product was separated by flash column chromatography on silica gel (petroleum ether / ethyl acetate 8:1–4:1) to afford the target products **3**.

Procedure for the gram-scale reaction

Azoalkene **1a** (1.04 g, 3.6 mmol), thioether **2a** (0.45 g, 3.0 mmol) were dissolved in CH₂Cl₂ and Sc(OTf)₃ (10 mol%) was added. The reaction mixture was stirred for 3 days at room temperature. After the completion of the reaction which was indicated by TLC, H₂O was added followed by extraction with CH₂Cl₂. The organic phase was dried on anhydrous sodium sulphate and evaporated under reduced pressure. The crude product was separated by flash column chromatography on silica gel (petroleum ether / ethyl acetate = 8:1 - 4:1) to afford the target products **3a** (1.12 g, 88% yield) as a white solid.

Derivatization of 3a and 3y into compounds 4-9

Compound **3a** (85.2 mg, 0.2 mmol) was refluxed in 10 mL of acetone/water (9:1 mixture) in the presence of Amberlyst-15h (100 mg) for 3 days (TLC check). The reaction mixture was filtered off and the solution was concentrated under reduced

pressure and then extracted with ethyl acetate. The organic phase was dried on anhydrous sodium sulphate and evaporated under reduced pressure. The crude reaction mixture was purified by flash chromatography eluting with petroleum ether / ethyl acetate (10:1) mixtures to obtain ketone derivative **4** (37.8 mg, 68% yield) as a yellow oil.

To a stirred suspension of ketone derivative **4** (55.6 mg, 0.2 mmol, 1.0 equiv) in MeOH (5 mL) at 0 °C, NaBH₄ (11.4 mg, 0.3 mmol, 1.5 equiv) was slowly added. The resulting mixture was stirred at room temperature for 30 min. MeOH was removed under reduced pressure, and the residue was purified by flash chromatography (petroleum ether / ethyl acetate = 10:1) to afford alcohol **5** (54.3 mg, 97% yield, 4:1 dr) as a yellow oil.

Compound 3y (78.0 mg, 0.2 mmol) was refluxed in 10 mL of acetone/water (9:1 mixture) in the presence of Amberlyst-15h (100 mg) for 7 days (TLC check). The reaction mixture was filtered off and the solution was concentrated under reduced pressure and then extracted with ethyl acetate. The organic phase was dried on anhydrous sodium sulphate and evaporated under reduced pressure. The crude reaction mixture was purified by flash chromatography eluting with petroleum ether / ethyl acetate (10:1) mixtures to obtain ketone derivative **6** (29.0 mg, 60% yield) as a yellow oil.

Ketone derivative **6** (48.4 mg, 0.2 mmol, 1.0 equiv), and Grubbs catalyst II (25.5 mg, 0.03 mmol, 15 mol%) were dissolved in CH_2Cl_2 (5 mL). The reaction mixture was stirred at 40 °C for 2 h, which was directly purified by flash column chromatography (petroleum ether / ethyl acetate = 10:1) to afford the title product **7** (39.4 mg, 92% yield) as a brown oil.

Compound **3a** (85.2 mg, 0.2 mmol) was dissolved in CH_2Cl_2 (5 mL), then *m*-CPBA (103.2 mg, 0.6 mmol, 3.0 equiv) was added. The reaction mixture was stirred at room temperature for 1h. After the completion of the reaction which was indicated by TLC, saturated NaHCO₃ aqueous solution was added followed by extraction with CH_2Cl_2 . The organic phase was dried on anhydrous sodium sulphate and evaporated under reduced pressure. The crude product was separated by flash column chromatography on silica gel (petroleum ether / ethyl acetate = 2:1) to afford the sulfone derivative **8** (74.2 mg, 81% yield) as a yellow oil.

Compound **3a** (85.2 mg, 0.2 mmol) was dissolved in acetic acid (5 mL). The reaction mixture was refluxed at 130°C for 2h. After the completion of the reaction which was indicated by TLC, saturated NaHCO₃ aqueous solution was added followed by extraction with ethyl acetate. The organic phase was dried on anhydrous sodium sulphate and evaporated under reduced pressure. The crude product was separated by flash column chromatography on silica gel (petroleum ether / ethyl acetate = 2:1) to afford the title product **9** (49.4 mg, 65% yield) as a red oil.

3. Characterization of Products

Benzyl-2-(3-(ethoxycarbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazine-1-carboxy late **3a**:

A white solid; 74.9 mg; isolated yield = 88%; m.p. 123.2-123.6°C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.52 – 7.05 (m, 10H), 6.26 – 5.85 (m, 1H), 5.31 – 4.96 (m, 4H), 4.16 – 4.22(m, 2H), 3.04 – 2.52 (m, 2H), 1.90 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 153.4, 147.7, 136.8, 135.9, 133.4, 130.0, 129.5, 128.7, 128.6, 128.3, 118.5, 68.0, 67.3, 62.2, 38.4, 14.5, 14.2; HRMS (ESI) m/z calcd for C₂₃H₂₇N₂O₄S⁺ [M + H]⁺ = 427.1686, found = 427.1690.

<u>Methyl-2-(3-(ethoxycarbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazine-1-carboxy</u> late **3b**:

A white solid; 53.2 mg; isolated yield = 76%; m.p. 121.3-121.8°C; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.52 – 6.99 (m, 5H), 5.99 – 6.05 (m, 1H), 5.20 – 4.99 (m, 2H), 4.18 – 4.22 (m, 2H), 3.74 (s, 3H), 2.92 – 2.60 (m, 2H), 1.93 – 2.25 (m, 3H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 154.5, 147.7, 136.9, 133.3, 130.0, 129.5, 128.7, 118.5, 67.8, 62.1, 52.9, 38.2, 14.5, 14.2; HRMS (ESI) m/z calcd for C₁₇H₂₃N₂O₄S⁺ [M + H]⁺ = 351.1373, found = 351.1369.

Ethyl-2-(3-(ethoxycarbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazine-1-carboxyla te 3c:

A yellow solid; 53.8 mg; isolated yield = 74%; m.p. 119.2-119.9°C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.50 – 7.10 (m, 5H), 5.99 – 6.08 (m, 1H), 5.25 – 5.01 (m, 2H), 4.40 – 4.02 (m, 4H), 2.98 – 2.59 (m, 2H), 1.93 – 2.25 (m, 3H), 1.23 – 1.27 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 153.8, 147.3, 136.8, 133.4, 130.1, 129.5, 128.7, 118.5, 67.9, 62.1, 61.8, 38.3, 14.5, 14.4, 14.2; HRMS (ESI) m/z calcd for C₁₈H₂₅N₂O₄S⁺ [M + H]⁺ = 365.1530, found = 365.1529.

(9H-fluoren-9-yl)methyl-2-(3-(ethoxycarbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazine-1-carboxylate**3d**, R = fluorenylmethyl:

A white solid; 93.5 mg; isolated yield = 91%; m.p. 124.8-125.4°C; ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.74 – 7.76 (m, 2H), 7.68 – 7.54 (m, 2H), 7.36 – 7.41 (m, 4H), 7.34 – 7.22 (m, 5H), 6.29 – 5.94 (m, 1H), 5.15 (d, *J* = 12.3 Hz, 2H), 4.48 (m, 1H), 4.40 – 4.29 (s, 1H), 4.28 – 3.99 (m, 3H), 2.85 (m, 2H), 1.97 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 154.9, 147.9, 143.8, 143.5, 141.4, 141.3, 137.0, 133.5, 130.2, 129.5, 128.8, 127.8, 127.8, 127.1, 127.1, 125.4, 120.0, 120.0, 118.6, 68.0, 67.8, 62.2, 46.9, 38.5, 14.7, 14.3; HRMS (ESI) m/z calcd for C₃₀H₃₁N₂O₄S⁺ [M + H]⁺ = 515.1999, found = 515.2004.

<u>Methyl-2-(3-(methoxycarbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazine-1-carbo</u> <u>xylate **3e:**</u>

A white solid; 45.7 mg; isolated yield = 68%; m.p. 130.4-130.9°C; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.51 – 7.08 (m, 5H), 6.21 – 5.85 (m, 1H), 5.27 – 4.82 (m, 2H), 3.98 – 3.49 (m, 6H), 2.63 – 2.82 (m, 2H), 1.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 154.7, 147.6, 136.9, 133.3, 130.0, 129.5, 128.7, 118.5, 67.9, 52.9, 52.8, 38.3, 14.6; HRMS (ESI) m/z calcd for C₁₆H₂₁N₂O₄S⁺ [M + H]⁺ = 337.1217, found = 337.1212.

Benzyl-2-(3-((benzyloxy)carbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazine-1-car boxylate **3f**:

A yellow oil; 70.3 mg; isolated yield = 72%; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.46 – 7.13 (m, 15H), 5.95– 6.05 (m, 1H), 5.34 – 4.77 (m, 6H), 2.66 – 2.89 (m, 2H), 1.80 – 2.23 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 153.6, 147.2, 136.9, 135.9, 135.0, 133.2, 129.9, 129.5, 128.8, 128.7, 128.6, 128.6, 128.5, 128.3, 118.6, 68.0, 67.8, 67.4, 38.4, 14.4; HRMS (ESI) m/z calcd for C₂₈H₂₉N₂O₄S⁺ [M + H]⁺ = 489.1843, found = 489.1846.

Benzyl-2-(3-(isobutoxycarbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazine-1-carb oxylate **3g:**

A yellow oil; 74.4 mg; isolated yield = 82%; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.45 – 7.10 (m, 10H), 5.99 – 6.08 (m, 1H), 5.08 – 5.16 (m, 4H), 3.87 – 3.89 (m, 2H), 2.68 – 2.86 (m, 2H), 2.09 – 1.76 (m, 4H), 0.92 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 153.6, 147.9, 136.8, 135.9, 133.5, 130.0, 129.5, 128.7, 128.6, 128.3, 118.5, 72.5, 68.4, 67.4, 38.5, 27.6, 19.1, 14.6; HRMS (ESI) m/z calcd for C₂₅H₃₁N₂O₄S⁺ [M + H]⁺ = 455.1999, found = 455.2009.

Benzyl-2-(3-(*tert*-butoxycarbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazine-1-car boxylate **3h**:

A yellow solid; 73.5 mg; isolated yield = 81%; m.p. 117.5-118.3°C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.52 – 7.05 (m, 10H), 6.20 – 5.96 (m, 1H), 5.10 – 5.18 (m, 4H), 2.64 – 2.85 (m, 2H), 1.93 (s, 3H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 153.9, 148.2, 136.8, 136.0, 133.6, 132.2, 130.3, 129.3, 129.0, 128.9, 128.6, 128.5, 128.3, 127.8, 118.4, 83.3, 68.6, 67.1, 38.2, 27.9, 14.8; HRMS (ESI) m/z calcd for C₂₅H₃₀N₂O₄SNa⁺ [M + Na]⁺ = 477.1818, found = 477.1830.

Benzyl-2-(3-((allyloxy)carbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazine-1-carb oxylate **3i**:

A yellow oil; 63.9 mg; isolated yield = 73%; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (s, 1H), 7.48 – 7.15 (m, 10H), 6.14 – 5.75 (m, 2H), 5.43 – 5.03 (m, 6H), 4.61 (d, *J* = 6.0 Hz, 2H), 2.79 (m, 2H), 1.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 153.3, 147.6, 136.8, 135.9, 133.3, 131.3, 129.9, 129.6, 128.7, 128.6, 128.5, 128.3, 119.6, 118.6, 68.0, 67.4, 66.7, 38.5, 14.5; HRMS (ESI) m/z calcd for C₂₄H₂₇N₂O₄S⁺ [M + H]⁺ = 439.1686, found = 439.1684.

Benzyl-2-(3-((2-methoxyethoxy)carbonyl)-3-(phenylthio)hex-5-en-2-ylidene)hydrazi ne-1-carboxylate **3j**:

A yellow oil; 71.1 mg; isolated yield = 78%; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.54 – 7.02 (m, 10H), 6.29 – 5.80 (m, 1H), 5.39 – 5.00 (m, 4H), 4.44 – 4.15 (m, 2H), 3.53 (t, *J* = 4.8 Hz, 2H), 3.32 (s, 3H), 2.67 – 2.90 (m, 2H), 1.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 153.5, 147.8, 136.9, 136.0, 133.4, 130.0, 129.5, 128.7, 128.5, 128.3, 128.1, 118.5, 70.0, 68.0, 67.3, 64.7, 58.8, 38.4, 14.4; HRMS (ESI) m/z calcd for C₂₄H₂₉N₂O₅S⁺ [M + H]⁺ = 457.1792, found = 457.1793.

Benzyl-2-(4-(ethoxycarbonyl)-4-(phenylthio)hept-6-en-3-ylidene)hydrazine-1-carbox ylate **3k:**

A yellow oil; 73.9 mg; isolated yield = 84%; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.56 – 7.05 (m, 10H), 6.21 – 5.89 (m, 1H), 5.32 – 4.95 (m, 4H), 4.36 – 4.04 (m, 2H), 2.64 – 2.88 (m, 2H), 2.59 – 2.20 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.11 (t, *J* = 7.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 153.3, 151.6, 136.8, 135.9, 133.4, 130.2, 129.4, 128.6, 128.6, 128.3, 118.6, 68.3, 67.4, 62.1, 37.9, 21.8, 14.2, 9.9; HRMS (ESI) m/z calcd for C₂₄H₂₉N₂O₄S⁺ [M + H]⁺ = 441.1843, found = 441.1839.

Benzyl-2-(5-(methoxycarbonyl)-5-(phenylthio)oct-7-en-4-ylidene)hydrazine-1-carbox ylate **31:**

A yellow oil; 66.0 mg; isolated yield = 75%; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.51 – 7.05 (m, 10H), 6.12 – 5.83 (m, 1H), 5.07 – 5.18 (m, 4H), 3.72 (s, 3H), 2.97 – 2.58 (m, 2H), 2.51 – 2.08 (m, 2H), 1.75 – 1.52 (m, 2H), 0.99 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 154.0, 150.7, 136.7, 135.9, 133.4, 130.1, 129.4, 128.7, 128.6, 128.3, 118.6, 68.3, 67.4, 52.7, 37.9, 30.9, 18.7, 14.8; HRMS (ESI) m/z calcd for C₂₄H₂₉N₂O₄S⁺ [M + H]⁺ = 441.1843, found = 441.1845.

Benzyl-2-(4-(methoxycarbonyl)-4-(phenylthio)non-1-en-5-ylidene)hydrazine-1-carbo xylate **3m:**

A yellow oil; 70.8 mg; isolated yield = 78%; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.44 – 7.08 (m, 10H), 6.24 – 5.76 (m, 1H), 5.32 – 4.88 (m, 4H), 3.72 (s, 3H), 2.63 – 2.87 (m, 2H), 2.57 – 2.03 (m, 2H), 1.82 – 1.29 (m, 4H), 0.93 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 154.2, 150.7, 136.7, 135.9, 133.4, 130.1, 129.4, 128.7, 128.5, 128.3, 118.6, 68.3, 67.4, 52.6, 38.0, 28.6, 27.1, 23.4, 13.7; HRMS (ESI) m/z calcd for C₂₅H₃₁N₂O₄S⁺ [M + H]⁺ = 455.1999, found = 455.2000.

Benzyl-2-(3-(methoxycarbonyl)-1-phenyl-3-(phenylthio)hex-5-en-2-ylidene)hydrazin e-1-carboxylate **3n**:

A red solid; 74.2 mg; isolated yield = 76%; m.p. 118.2-118.9°C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.50 – 7.06 (m, 15H), 6.00 – 6.08 (m, 1H), 5.31 – 4.94 (m, 4H), 3.70 – 4.04 (m, 2H), 3.40 (s, 3H), 2.72 – 2.98 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 153.3, 147.9, 136.9, 135.9, 133.3, 133.0, 129.9, 129.6, 129.1, 128.8, 128.5, 128.2, 128.0, 127.3, 118.8, 68.7, 67.2, 52.4, 38.0, 34.7; HRMS (ESI) m/z calcd for C₂₈H₂₉N₂O₄S⁺ [M + H]⁺ = 489.1843, found = 489.1846.

Benzyl-2-(3-(ethoxycarbonyl)-3-((4-fluorophenyl)thio)hex-5-en-2-ylidene)hydrazine-1-carboxylate **30:**

30, $R = NHCO_2Bn$

A yellow solid; 63.9 mg; isolated yield = 72%; m.p. 112.9-113.7°C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.30 – 7.37 (m, 7H), 6.91 – 6.95 (m, 2H), 6.29 – 5.83 (m, 1H), 5.31 – 4.93 (m, 4H), 4.16 – 4.22 (m, 2H), 2.62 – 2.85 (m, 2H), 1.90 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 163.8 (*J* = 250 Hz), 153.6, 147.5, 139.0 (*J* = 9 Hz), 135.9, 133.2, 128.6, 128.4, 125.4, 125.3, 118.7, 115.9 (*J* = 20

Hz), 68.0, 67.4, 62.2, 38.2, 14.4, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -110.33; HRMS (ESI) m/z calcd for C₂₃H₂₆FN₂O₄S⁺ [M + H]⁺ = 445.1592, found = 445.1591.

Benzyl-2-(3-((4-bromophenyl)thio)-3-(ethoxycarbonyl)hex-5-en-2-ylidene)hydrazine-1-carboxylate **3p**:

3p, $R = NHCO_2Bn$

A white solid; 88.7 mg; isolated yield = 88%; m.p. 102.6-103.1°C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.41 – 7.30 (m, 7H), 7.24 – 7.16 (m, 2H), 5.93 – 5.99 (m, 1H), 5.30 – 4.99 (m, 4H), 4.15 – 4.19 (m, 2H), 2.63 – 2.87 (m, 2H), 1.89 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 153.6, 147.5, 138.2, 135.8, 133.0, 131.9, 129.3, 128.7, 128.6, 128.4, 128.4, 124.3, 118.8, 68.0, 67.5, 62.3, 38.3, 14.4, 14.2; HRMS (ESI) m/z calcd for C₂₃H₂₆BrN₂O₄S⁺ [M + H]⁺ = 505.0791, found = 505.0793.

Benzyl-2-(3-(ethoxycarbonyl)-3-((4-(trifluoromethyl)phenyl)thio)hex-5-en-2-ylidene) hydrazine-1-carboxylate **3q:**

 $3q, R = NHCO_2Bn$

A yellow solid; 75.1 mg; isolated yield = 76%; m.p. 96.4-96.8°C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.48 (s, 4H), 7.35 (s, 5H), 5.94 – 6.01 (m, 1H), 5.43 – 4.93 (m, 4H), 4.17 – 4.23 (m, 2H), 2.68 – 2.93 (m, 2H), 1.89 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 153.3, 147.4, 136.3, 135.6 (*J* = 30 Hz), 132.8, 131.1 (*J* = 30 Hz), 128.7, 128.6, 128.4, 128.2, 127.9, 125.4, 125.4 (*J* = 3 Hz), 125.2, 123.9 (*J* = 271 Hz), 68.2, 67.5, 62.4, 38.4, 14.3, 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ - 62.75; HRMS (ESI) m/z calcd for C₂₄H₂₆F₃N₂O₄S⁺ [M + H]⁺ = 495.1560, found = 495.1559.

Benzyl-2-(3-(ethoxycarbonyl)-3-((4-nitrophenyl)thio)hex-5-en-2-ylidene)hydrazine-1 -carboxylate **3r:**

 $3\mathbf{r}, \mathbf{R} = \mathbf{NHCO}_2\mathbf{Bn}$

A yellow oil; 60.3 mg; isolated yield = 64%; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.4 Hz, 2H), 7.93 (s, 1H), 7.52 (d, *J* = 8.8 Hz, 2H), 7.36 (s, 5H), 5.90 – 5.97 (m, 1H), 5.36 – 4.98 (m, 4H), 4.19 – 4.25 (m, 2H), 2.73 – 2.98 (m, 2H), 1.89 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 153.4, 147.8, 140.1, 135.6, 132.3, 128.6, 128.6, 128.3, 123.5, 119.3, 68.5, 67.7, 62.6, 38.5, 14.2, 14.1; HRMS (ESI) m/z calcd for C₂₃H₂₆N₃O₆S⁺ [M + H]⁺ = 472.1537, found = 472.1536.

Benzyl-2-(3-(ethoxycarbonyl)-3-((4-ethylphenyl)thio)hex-5-en-2-ylidene)hydrazine-1 -carboxylate **3s:**

3s, $R = NHCO_2Bn$

A yellow solid; 59.9 mg; isolated yield = 66%; m.p. 98.8-99.5°C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.52 – 6.91 (m, 9H), 6.26 – 5.87 (m, 1H), 5.33 – 4.98 (m, 4H), 4.37 – 3.86 (m, 2H), 2.80 – 2.92 (m, 2H), 2.55 - 2.72 (m, 2H), 2.05 – 1.57 (m, 3H), 1.43 – 0.97 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 149.3, 146.0, 137.4, 136.9, 135.9, 133.7, 133.6, 129.5, 129.2, 129.0, 128.5, 128.3, 126.6, 125.9, 118.4, 67.9, 67.3, 62.1, 38.4, 28.6, 15.3, 14.5, 14.2; HRMS (ESI) m/z calcd for C₂₅H₃₁N₂O₄S⁺ [M + H]⁺ = 455.1999, found = 455.1999.

Benzyl-2-(3-((4-(tert-butyl)phenyl)thio)-3-(ethoxycarbonyl)hex-5-en-2-ylidene)hydra zine-1-carboxylate **3t:**

3t, $R = NHCO_2Bn$

A yellow oil; 72.3 mg; isolated yield = 75%; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.44 – 7.12 (m, 9H), 6.00 – 6.06(m, 1H), 5.36 – 4.89 (m, 4H), 4.16 – 4.21 (m, 2H), 2.98 – 2.59 (m, 2H), 1.90 (s, 3H), 1.44 – 1.04 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 152.8, 147.8, 136.5, 135.9, 133.6, 128.6, 128.3, 126.5, 125.8, 118.4, 67.9, 67.3, 62.1, 38.5, 34.7, 31.2, 14.5, 14.2; HRMS (ESI) m/z calcd for C₂₇H₃₅N₂O₄S⁺ [M + H]⁺ = 483.2312, found = 483.2316.

Benzyl-2-(3-((2-chlorophenyl)thio)-3-(ethoxycarbonyl)hex-5-en-2-ylidene)hydrazine-1-carboxylate **3u**:

3u, $R = NHCO_2Bn$

A yellow oil; 74.5 mg; isolated yield = 81%; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.34 – 7.48 (m, 7H), 7.10 – 7.22 (m, 2H), 6.29 – 5.96 (m, 1H), 5.09 – 5.22 (m, 4H), 4.17 – 4.23 (m, 2H), 2.73 – 2.91 (m, 2H), 1.91 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 149.2, 143.0, 135.9, 134.4, 131.2, 128.7, 126.0, 125.4, 124.8, 123.8, 123.6, 122.0, 113.8, 63.6, 62.6, 57.5, 33.8, 9.7, 9.4; HRMS (ESI) m/z calcd for C₂₃H₂₆ClN₂O₄S⁺ [M + H]⁺ = 461.1296, found = 461.1303.

Benzyl-2-(3-(ethoxycarbonyl)-3-((2-methoxyphenyl)thio)hex-5-en-2-ylidene)hydrazi ne-1-carboxylate **3v:**

 $3\mathbf{v}, \mathbf{R} = \mathbf{NHCO}_2\mathbf{Bn}$

A yellow solid; 77.5 mg; isolated yield = 85%; m.p. 103.7-104.2°C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.54 – 7.23 (m, 7H), 6.74 – 6.85 (m, 2H), 6.35 – 5.92 (m, 1H), 5.35 – 4.98 (m, 4H), 4.14 – 4.20 (m, 2H), 3.71 (s, 3H), 2.66 – 2.83 (m, 2H), 1.92 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 156.8, 149.4, 143.9, 135.2, 131.3, 129.4, 127.0, 123.8, 123.5, 115.8, 113.2, 112.9, 106.4, 63.3, 62.4, 57.3, 50.8, 33.5, 9.6, 9.4; HRMS (ESI) m/z calcd for C₂₄H₂₉N₂O₅S⁺ [M + H]⁺ = 457.1792, found = 457.1799.

Benzyl-2-(3-((3,4-dichlorophenyl)thio)-3-(ethoxycarbonyl)hex-5-en-2-ylidene)hydraz ine-1-carboxylate **3w:**

3w, $R = NHCO_2Bn$

A white solid; 72.1 mg; isolated yield = 73%; m.p. 93.1-93.9°C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 6.85 (m, 9H), 5.91 – 5.97 (m, 1H), 5.34 – 4.99 (m, 4H), 4.16 – 4.21 (m, 2H), 2.61 – 2.85 (m, 2H), 1.90 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 153.9, 147.3, 138.1, 135.9, 135.8, 134.1, 132.8, 132.4, 130.5, 130.4, 128.6, 128.3, 119.0, 68.3, 67.5, 62.4, 38.2, 14.5, 14.2; HRMS (ESI) m/z calcd for C₂₃H₂₅Cl₂N₂O₄S⁺ [M + H]⁺ = 495.0907, found = 495.0911.

Benzyl-2-(3-((3,5-dimethylphenyl)thio)-3-(ethoxycarbonyl)hex-5-en-2-ylidene)hydra zine-1-carboxylate **3x:**

$3\mathbf{x}, \mathbf{R} = \mathbf{NHCO}_2\mathbf{Bn}$

A yellow solid; 73.5 mg; isolated yield = 81%; m.p. 97.5-98.1°C; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (s, 6H), 6.90 – 6.93 (m, 3H), 6.29 – 5.82 (m, 1H), 5.06 – 5.17 (m, 4H), 4.15 – 4.21 (m, 2H), 2.63 – 2.83 (m, 2H), 2.19 (s, 6H), 1.91 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 153.7, 148.0, 138.1, 136.0, 134.4, 133.7, 131.2, 129.3, 128.6, 128.6, 128.5, 128.4, 128.3, 118.3, 67.9, 67.3, 62.1, 38.4, 21.0, 14.6, 14.2; HRMS (ESI) m/z calcd for C₂₅H₃₁N₂O₄S⁺ [M + H]⁺ = 455.1999, found = 455.1999.

Benzyl-2-(3-(allylthio)-3-(ethoxycarbonyl)hex-5-en-2-ylidene)hydrazine-1-carboxylat e **3y:**

A yellow oil; 66.3 mg; isolated yield = 85%; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.34 – 7.40 (m, 5H), 6.01 – 5.63 (m, 2H), 5.44 – 5.09 (m, 6H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.32 – 2.77 (m, 4H), 1.87 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 153.8, 148.7, 135.9, 133.7, 133.2, 128.6, 128.4, 118.5, 117.8, 67.5, 65.1, 62.0, 38.4, 31.9, 14.2, 13.8; HRMS (ESI) m/z calcd for C₂₀H₂₇N₂O₄S⁺ [M + H]⁺ = 391.1686, found = 391.1682.

Benzyl-2-(3-((4-bromophenyl)thio)-3-(ethoxycarbonyl)hexa-4,5-dien-2-ylidene)hydra zine-1-carboxylate **3z:**

 $3z, R = NHCO_2Bn$

A red oil; 68.3 mg; isolated yield = 68%; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.34 – 7.41 (m, 9H), 5.78 (t, *J* = 6.7 Hz, 1H), 5.19 – 5.25 (m, 2H), 4.87 (d, *J* = 6.7 Hz, 2H), 4.13 – 4.18 (m, 2H), 1.84 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 207.9, 168.6, 153.9, 148.8, 138.3, 135.8, 131.7, 130.1, 128.6, 128.5, 124.1, 90.8, 79.0, 67.7, 66.6, 62.4, 14.6, 14.0; HRMS (ESI) m/z calcd for C₂₃H₂₄BrN₂O₄S⁺ [M + H]⁺ = 503.0635, found = 503.0631.

 $3a', R = NHCO_2Bn$

A red solid; 73.8 mg; isolated yield = 75%; m.p. 95.1-95.6°C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.34 – 7.67 (m, 9H), 5.83 (t, *J* = 6.6 Hz, 1H), 5.20 – 5.29 (m, 2H), 4.88 (d, *J* = 6.7 Hz, 2H), 4.37 – 4.06 (m, 2H), 1.84 (s, 3H), 1.18 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 208.1, 168.5, 153.6, 146.9, 136.2, 135.7, 130.8 (*J* = 32 Hz), 129.0, 128.7, 128.6, 128.5, 125.3, 123.9 (*J* = 271 Hz), 122.6, 90.8, 79.2, 67.7, 66.7, 62.6, 14.5, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.74; HRMS (ESI) m/z calcd for C₂₄H₂₄F₃N₂O₄S⁺ [M + H]⁺ = 493.1403, found = 493.1406.

Benzyl-2-(3-(ethoxycarbonyl)-3-((4-nitrophenyl)thio)hexa-4,5-dien-2-ylidene)hydrazi ne-1-carboxylate **3b':**

3b', R = NHCO₂Bn

A yellow oil; 62.8 mg; isolated yield = 67%; ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 8.04 (m, 2H), 7.79 (s, 1H), 7.63 – 7.70 (m, 2H), 7.36 – 7.39 (m, 5H), 5.88 – 5.91 (t, *J* = 6.5 Hz, 1H), 5.20 – 5.29 (m, 2H), 4.91 (d, *J* = 6.7 Hz, 2H), 4.45 – 3.89 (m, 2H), 1.84 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 208.4, 168.3, 153.9, 148.8, 147.5, 141.0, 135.6, 134.9, 128.7, 128.6, 128.5, 123.3, 90.6, 79.6, 67.8, 66.9, 62.8, 14.3, 14.1; HRMS (ESI) m/z calcd for C₂₃H₂₄N₃O₆S⁺ [M + H]⁺ = 470.1380, found = 470.1377.

Benzyl-2-(3-(ethoxycarbonyl)-3-((2-methoxyphenyl)thio)hexa-4,5-dien-2-ylidene)hy drazine-1-carboxylate **3c':**

3c', R = NHCO₂Bn

A yellow oil; 58.1 mg; isolated yield = 64%; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.65 – 7.27 (m, 7H), 6.77 – 6.87 (m, 2H), 5.82 (t, *J* = 6.6 Hz, 1H), 5.18 (t, *J* = 17.1 Hz, 2H), 4.82 – 4.84 (m, 2H), 4.17 – 4.22 (m, 2H), 3.75 (s, 3H), 1.89 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 207.0, 168.9, 161.1, 154.9,

147.2, 139.8, 135.9, 131.5, 128.7, 128.7, 128.5, 128.3, 120.6, 118.3, 110.9, 91.0, 78.5, 67.4, 66.3, 62.2, 55.7, 14.5, 14.1; HRMS (ESI) m/z calcd for $C_{24}H_{27}N_2O_5S^+$ [M + H]⁺ = 455.1635, found = 455.1632.

Ethyl 2-acetyl-2-(phenylthio)pent-4-enoate 4:

A yellow oil; 37.8 mg; isolated yield = 68%; ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.42 (m, 5H), 6.13 – 5.78 (m, 1H), 5.26 – 4.96 (m, 2H), 4.22 – 4.27 (m, 2H), 2.48 – 2.68 (m, 2H), 2.36 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.3, 168.6, 136.8, 132.2, 123.0, 129.1, 129.0, 119.1, 70.3, 62.4, 36.6, 26.4, 14.1; HRMS (ESI) m/z calcd for C₁₅H₁₈O₃SNa⁺ [M + Na]⁺ = 301.0869, found = 301.0864.

Ethyl 2-(1-hydroxyethyl)-2-(phenylthio)pent-4-enoate 5:

A yellow oil; 54.3 mg; dr = 4:1; isolated yield = 97%; ¹H NMR (400 MHz, CDCl₃) δ 7.73 - 7.14 (m, 5H), 6.21 - 5.55 (m, 1H), 5.09 - 5.13 (m, 2H), 4.29 - 3.87 (m, 3H), 3.13 - 3.15 (m, 1H), 2.80 - 2.33 (m, 2H), 1.33 - 1.39 (m, 3H), 1.30 - 1.02 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 137.0, 133.7, 130.1, 129.6, 128.8, 118.0, 70.1, 62.9, 61.5, 36.6, 17.7, 14.0; HRMS (ESI) m/z calcd for C₁₅H₂₀O₃SNa⁺ [M + Na]⁺ = 303.1025, found = 303.1030.

Ethyl 2-acetyl-2-(allylthio)pent-4-enoate 6:

A yellow oil; 29.0 mg; isolated yield = 60%; ¹H NMR (400 MHz, CDCl₃) δ 5.95 – 5.65 (m, 2H), 5.09 – 5.22 (m, 4H), 4.25 (q, *J* = 7.1 Hz, 2H), 2.76 – 3.07 (m, 4H), 2.30 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.7, 168.8, 132.5, 131.9, 119.1, 118.6, 67.2, 62.3, 36.6, 32.1, 25.8, 14.0; HRMS (ESI) m/z calcd for C₁₂H₁₈O₃SNa⁺ [M + Na]⁺ = 265.0869, found = 265.0863.

Ethyl 2-acetyl-3,6-dihydro-2H-thiopyran-2-carboxylate 7:

A brown oil; 39.4 mg; isolated yield = 92%; ¹H NMR (400 MHz, CDCl₃) δ 6.16 – 5.58 (m, 2H), 4.24 – 4.30 (m, 2H), 2.51 – 3.07 (m, 4H), 2.34 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.6, 169.3, 126.4, 121.9, 62.6, 61.2, 29.8, 24.9, 24.8, 14.0; HRMS (ESI) m/z calcd for C₁₀H₁₄O₃SNa⁺ [M + Na]⁺ = 237.0556, found = 237.0556.

Benzyl 2-(3-(ethoxycarbonyl)-3-(phenylsulfonyl)hex-5-en-2-ylidene)hydrazine-1carboxylate 8:

A yellow oil; 74.2 mg; isolated yield = 81%; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.95 – 7.15 (m, 10H), 5.78 – 5.86 (m, 1H), 5.31 – 4.87 (m, 4H), 4.10 – 4.27 (m, 2H), 3.78 – 2.31 (m, 2H), 2.25 – 1.70 (m, 3H), 1.40 – 1.06 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 152.9, 136.8, 134.7, 131.9, 130.5, 128.6, 128.6, 128.5, 119.6, 83.4, 67.6, 62.5, 36.8, 15.9, 14.0; HRMS (ESI) m/z calcd for C₂₃H₂₆N₂O₆SNa⁺ [M + Na]⁺ = 481.1404, found = 481.1414.

Benzyl 4-allyl-3-methyl-5-oxo-4-(phenylthio)-4,5-dihydro-1*H*-pyrazole-1-carboxylate **9**:

A red oil; 49.4 mg; isolated yield = 65%; ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 6.95 (m, 10H), 5.58 – 5.40 (m, 1H), 5.30 – 4.94 (m, 4H), 2.52 – 2.87 (m, 2H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 160.3, 148.3, 136.0, 134.9, 130.7, 129.4, 129.3, 128.5, 128.5, 128.5, 127.0, 121.2, 68.5, 62.2, 36.2, 14.0; HRMS (ESI) m/z calcd for C₂₁H₂₀N₂O₃SNa⁺ [M + Na]⁺ = 403.1087, found = 403.1088.

4. X-ray single crystal data for compound 3a

Compound 3a:

Identification code	202209176			
Empirical formula	$C_{23}H_{26}N_2O_4S$			
Formula weight	426.52			
Temperature/K	293(2)			
Crystal system	monoclinic			
Space group	$P2_1/c$			
a/Å	11.8940(8)			
b/Å	13.8863(6)			
c/Å	14.5801(9)			
a/°	90			
β/°	108.178(7)			
γ/°	90			
Volume/Å ³	2287.9(2)			
Z	4			
$\rho_{calc}g/cm^3$	1.238			
μ/mm^{-1}	1.506			
F(000)	904.0			
Crystal size/mm ³	$0.17 \times 0.13 \times 0.1$			
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)			
2Θ range for data collection/° 7.824 to 134.158				
Index ranges	$-14 \le h \le 10, -10 \le k \le 16, -17 \le l \le 17$			
Reflections collected	8969			
Independent reflections	4075 [$R_{int} = 0.0276$, $R_{sigma} = 0.0357$]			
Data/restraints/parameters	4075/0/273			
Goodness-of-fit on F ²	1.034			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0504, wR_2 = 0.1357$			
Final R indexes [all data]	$R_1 = 0.0627, wR_2 = 0.1500$			
Largest diff. peak/hole / e Å ⁻³ 0.42/-0.24				

 Table 1 Crystal data and structure refinement for 202209176.

3a

-8.03 - 8.03 -

3b

$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$ -7.83 17.35

3c

3d, R = fluorenylmethyl

-8.28 - 8.28 -

3e

3f

$\begin{array}{c} -7.68\\ -7.35\\ -7.35\\ -7.35\\ -7.35\\ -7.35\\ -7.25\\ -6.04\\ -6.04\\ -6.02\\ -6.02\\ -6.02\\ -6.02\\ -6.02\\ -6.03\\ -6.02\\ -6.03\\ -6$

3g

3i

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

3j

-7.95 -7.95 -7.95 -7.33 -7.55

3k

S31

-7.74 -7.74 7.26 7.22 7.22 7.22 7.22 7.22 5.13 5.147 5.13 5.147 5.15 5.15 5.15 5.15 5.15 1.16 1.1611.161

3m

3n

30, $R = NHCO_2Bn$

-7.84 $\int_{-7.30}^{7.34}$ -6.95 -6.93 $\bigwedge^{1.26}_{1.24}$

-169.87-162.48-162.48-147.49-147.49-147.49-147.49-125.31-38.17 -38.17 \times 14.44 \times 14.44 \times 14.18 $\int_{67.43}^{67.97}$

10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 f1 (ppm)

3p, $R = NHCO_2Bn$

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 f1 (ppm)

$3\mathbf{r}, \mathbf{R} = \mathbf{NHCO}_2\mathbf{Bn}$

$\begin{array}{c} 8.06 \\ -7.53 \\ -7.51 \\ -7.51 \\ -7.51 \\ -7.51 \\ -7.51 \\ -7.51 \\ -5.92 \\ -5.92 \\ -5.92 \\ -5.13 \\$

3s, $R = NHCO_2Bn$

-7.71 -7.27 7.27 7.27 6.06 6.06 6.03 6.01 6.00 6.00 6.01 6.00 6.01 6.00 6.01 6.02 6.01 6.02 6.02 6.03 6.01 6.02 6.03 6.01 6.026.

3u, $R = NHCO_2Bn$

$\begin{array}{c} -7.80\\ -7.80\\ 7.10\\ 7.10\\ 7.10\\ 7.10\\ 7.10\\ 7.10\\ 6.01\\ 6.03\\ 6.06\\ 6.0$

 $\mathbf{3w}, \mathbf{R} = \mathbf{NHCO}_2\mathbf{Bn}$

 $\begin{array}{c} 7.41\\ 7.15\\ 7.15\\ 7.15\\ 7.15\\ 7.17\\ 7.17\\ 7.17\\ 7.17\\ 7.17\\ 7.17\\ 7.17\\ 7.17\\ 7.17\\ 7.17\\ 7.17\\ 7.17\\ 7.17\\ 7.17\\ 7.17\\ 7.19\\ 7.17\\ 7.19\\ 7.17\\ 7.19\\ 7.17\\ 7.19\\ 7.17\\ 7.19\\ 7.17\\ 7.19\\ 7.19\\ 7.19\\ 7.17\\ 7.19\\ 7.17\\ 7.19\\ 7.17\\ 7.19\\ 7.17\\ 7.19\\ 7.17\\ 7.19\\ 7.17\\ 7.19\\ 7.17\\ 7.19\\ 7.17\\ 7.19\\ 7.19\\ 7.17\\ 7.19\\ 7.19\\ 7.19\\ 7.19\\ 7.19\\ 7.19\\ 7.19\\ 7.19\\ 7.19\\ 7.19\\ 7.19\\ 7.17\\ 7.19\\ 7.19\\ 7.17\\ 7.19\\ 7.19\\ 7.17\\ 7.19\\ 7.19\\ 7.17\\ 7.19$

3x, $R = NHCO_2Bn$

-7.32 (6.97 (6.07 (6.07 (6.03) (6.02) (6.02) (6.02) (6.02) (6.02) (6.02) (6.02) (6.02) (6.02) (6.02) (6.02) (6.02) (6.03)

3y

3z, R=NHCO₂Bn

-7.74 $\begin{array}{c} \left[\begin{array}{c} 7.37\\ 7.37\\ 7.36\\ 7.34\\ 7.34\\ 7.34\\ 5.77\\ 5.77\\ 5.77\\ 5.77\\ 5.77\\ 4.16\\ 4.15\\ 4.15\\ 4.15\end{array} \right]$ -1.841.201.18

3a', R=NHCO₂Bn

 $\begin{array}{c} 7.79\\ 7.45\\ 7.45\\ 7.37\\ 7.37\\ 7.37\\ 7.35\\ 7.35\\ 7.35\\ 7.35\\ 7.35\\ 7.35\\ 7.35\\ 7.35\\ 7.35\\ 7.35\\ 7.35\\ 1.16\\ 4.18\\ 4.18\\ 4.13\\ 4.16\\ 4.18\\ 1.18\\ 1.18\end{array}$

10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 f1 (ppm)

3b', R=NHCO₂Bn

3c', R=NHCO₂Bn

 $\begin{array}{c} 7.57\\ 7.55\\ 7.36\\ 7.36\\ 7.36\\ 7.35\\ 7.35\\ 6.87\\ 6.87\\ 6.87\\ 6.87\\ 6.87\\ 6.77\\ 6.87\\ 6.17\\ 6.17\\ -3.75\\ -3.75\\ -1.89\\ -1.8$

$\begin{array}{c} 7.42\\ 7.41\\ 7.42\\ 7.33\\$

4

230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

S53

230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 fl (ppm)

6. References

[1] Nelson, A. M. Pereira; Américo Lemos; Arménio C. Serraa; Teresa M. V. D. Pinho e Melo. *Tetrahedron. Lett.* **2013**, *54*, 1553-1557.

[2] Zhang X.-Y., Lin B., Chen J.-H., Chen J.-J., Luo Y.-S., and Xia Y.-Z. *Org. Lett.* **2021**, *23*, 3, 819–825.

[3] Wagh, Sachin Bhausaheb; Singh, Rahulkumar Rajmani; Sahani, Rajkumar Lalji; Liu, R.-S. *Org. Lett.* **2019**, *21*, 8, 2755–2758.