Supporting Information

Convergent synthesis of triarylamines via Ni-catalyzed dual C(sp²)-H

amination from benzamides with benzohydroxamic acids

Wenwei Li, a Ruxue Wang, a Zhefeng Li, a Jiuxi Chen, a Yuhong Zhang^{b,*} and Ningning Lv^{a,*}

^aCollege of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
^bDepartment of Chemistry, Zhejiang University, Hangzhou 310027, China *E-mail: yhzhang@zju.edu.cn ningninglv@wzu.edu.cn*Supporting Information Placeholder

Table of Contents

1. General Information	S2
2. Experimental Section	
3. Analytical Data for All Products	S6
4. Synthetic Applications	S23
5. The Mechanistic Investigations	
6. Reference	
7. NMR Spectra for All Products	

1. General Information

All chemicals were obtained from commercial sources and were used as received without any purification. *N*-(quinolin-8-yl)benzamides and *N*-hydroxybenzamides were synthesized according to the relevant references.¹⁻⁹ ¹H NMR and ¹³C NMR spectra were measured on a 500 MHz or 400 MHz Bruker spectrometer, using CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. Chemical shifts are given δ relative to tetramethylsilane, and the coupling constants *J* are given in hertz. The multiplicities are reported as follows: singlet (s), doublet (d), triplet (t), doublet of doublets (dd), and multiplet (m). High-resolution mass spectra (HRMS) were recorded on an electrospray ionization (ESI-TOF) quadrupole time-of-flight mass spectrometer. Analytical thin-layer chromatography (TLC) was performed on pre-coated, and glass-backed silica gel plates flash column chromatography was performed over silica gel (300-400 mesh) using ethyl acetate (EA)/petroleum ether (PE) as eluent.

2. Experimental Section

2.1. General procedure for the preparation of benzamide derivatives (1).

N-(quinolin-8-yl)benzamides were prepared according to the reported methods¹⁻⁷: To a stirred solution of a carboxylic acid (15 mmol) and DMF (5 drops) in CH₂Cl₂ (10 mL), and (COCl)₂ (1.5 mL, 18 mmol) was added dropwise. The solution was stirred at room temperature for 2 h. The solvent was then removed by evaporation under reduced pressure, and the resulting residue was dissolved in CH₂Cl₂ (15 mL). After cooling the reaction mixture to 0 °C, a solution of 8-aminoquinoline (17 mmol) and triethylamine (30 mmol) in 10 mL of the same solvent was added dropwise. The resulting mixture was allowed to warm to room temperature and stirred overnight. The solution containing the crude product was washed with saturated aqueous NaHCO₃ (20 mL), and CH₂Cl₂ (3×20 mL) separately. The combined organic phase was washed with 1 M HCl aq. (20 mL). The organic phase was dried over anhydrous Na₂SO₄ and the solvent

was removed by evaporation. The resulting crude amide was purified by flash chromatography on silica gel (eluent: PE/EtOAc = 5/1) to give the corresponding *N*-(quinolin-8-yl)benzamides (**1a-1p**).

2.2. General procedure for the preparation of benzohydroxamic acids (2).

Benzohydroxamic acids were prepared according to a modified literature method⁸: A solution of Na₂CO₃ (2.12 g, 20 mmol) in H₂O (3 mL) was added to a stirred solution of NH₂OH·HCl (1.39 g, 20 mol) in Et₂O (20 mL). After stirring for additional 30 minutes at room temperature, benzoyl chloride (2.32 mL, 20 mol) in Et₂O (10 mL) was added dropwise at 0 °C and stirring was continued at the same temperature for another 1.0 h. After slowly warming to room temperature, the precipitated white solid was isolated through filtration and poured into EtOAc (100 mL). The resulting suspension was then heated to reflux for an additional 10 min. The undissolved base was removed through hot filtration at 70 °C and the filtrate was cooled and concentrated under reduced pressure to give the crude product as a white solid (**2a-2o**).

2.3. Table S1. Optimization of reaction conditions^{*a,b*}

Q = 8-quinolyl

Ni-catalyst (20 mol %) ligand (20 mol %) Ag-salt (1 equiv) base (2 equiv) solvent, 130 °C, 15 h, N₂

entry	catalyst	ligand	base	additive	solvent	yield(%) ^b
1	Ni(acac) ₂	PPh ₃	AdCOOK	Ag ₃ PO ₄	DMAc	30
2	Ni(OTf) ₂	PPh ₃	AdCOOK	Ag ₃ PO ₄	DMAc	48
3	Ni(OAc) ₂ ·4H ₂ O	PPh ₃	AdCOOK	Ag ₃ PO ₄	DMAc	57
4	Ni(OAc) ₂ ·4H ₂ O	PPh ₃	AdCOOK	Ag ₃ PO ₄	DMSO	42
5	Ni(OAc) ₂ ·4H ₂ O	PPh ₃	AdCOOK	Ag ₃ PO ₄	DMF	35
6	Ni(OAc) ₂ ·4H ₂ O	PPh ₃	AdCOOK	Ag ₃ PO ₄	NMP	33
7	Ni(OAc) ₂ ·4H ₂ O	PPh ₃	AdCOOK	Ag ₂ CO ₃	DMAc	trace
8	Ni(OAc) ₂ ·4H ₂ O	PPh ₃	AdCOOK	Ag_2SO_4	DMAc	44
9	Ni(OAc) ₂ ·4H ₂ O	PPh ₃	AdCOOK	AgOAc	DMAc	13
10	Ni(OAc) ₂ ·4H ₂ O	PPh ₃	KOPiv	Ag ₃ PO ₄	DMAc	54
11	Ni(OAc) ₂ ·4H ₂ O	PPh ₃	CsOPiv	Ag ₃ PO ₄	DMAc	trace
12	Ni(OAc) ₂ ·4H ₂ O	PPh ₃	NaOPiv	Ag ₃ PO ₄	DMAc	38
13	Ni(OAc) ₂ ·4H ₂ O	PPh ₃	tBuOK	Ag ₃ PO ₄	DMAc	trace
14	Ni(OAc) ₂ ·4H ₂ O	dppb	AdCOOK	Ag ₃ PO ₄	DMAc	28
15	Ni(OAc) ₂ ·4H ₂ O	dppe	AdCOOK	Ag ₃ PO ₄	DMAc	55
16	Ni(OAc) ₂ ·4H ₂ O	Cy ₃ P	AdCOOK	Ag ₃ PO ₄	DMAc	46
17	Ni(OAc) ₂ ·4H ₂ O	Ph ₂ MeP	AdCOOK	Ag ₃ PO ₄	DMAc	35
18	Ni(OAc)2·4H2O	dppm	AdCOOK	Ag ₃ PO ₄	DMAc	70
19	Ni(OAc) ₂ ·4H ₂ O		AdCOOK	Ag ₃ PO ₄	DMAc	48
20		dppm	AdCOOK	Ag ₃ PO ₄	DMAc	nd

21	Ni(OAc) ₂ ·4H ₂ O	dppm		Ag ₃ PO ₄	DMAc	trace
22	Ni(OAc) ₂ ·4H ₂ O	dppm	AdCOOK		DMAc	trace
23	$Pd(TFA)_2$	dppm	AdCOOK	Ag ₃ PO ₄	DMAc	nd
24	Cu(OAc) ₂	dppm	AdCOOK	Ag ₃ PO ₄	DMAc	nd
25	Co(OAc) ₂	dppm	AdCOOK	Ag ₃ PO ₄	DMAc	trace

^aReaction conditions: **1a** (0.3 mmol), **2a** (0.1 mmol), Ni-catalyst (20 mol %), ligand (20 mol %), additive (1 equiv), base (2 equiv), solvent (1 mL), 130 °C, 15 h, N₂. ^bIsolated yields. AdCOOK = potassium amantadate. nd = not detected.

2.4. Table S2. Optimization of benzamide directing groups^{*a,b*}

^aReaction conditions: **1** (0.3 mmol), **2a** (0.1 mmol), Ni(OAc)⁴H₂O (20 mol %), dppm (20 mol %), Ag₃PO₄ (1 equiv), AdCOOK (2 equiv), DMAc (1 mL), 130 °C, 15 h, N₂. nr = no reaction.

2.5. General procedure for the synthesis of triarylamines 3 or 4.

In a 10 mL Schlenk reaction tube with a stir bar, *N*-(quinolin-8-yl)benzamide (1, 0.3 mmol), *N*-hydroxybenzamide (2, 0.1 mmol), Ni(OAc)₂·4H₂O (0.04 mmol, 10 mg), dppm (0.04 mmol, 15.6 mg), Ag₃PO₄ (0.2 mmol, 84 mg), AdCOOK (0.4 mmol, 87.2 mg) were dissolved in DMAc (1 mL). The reaction mixture was charged with nitrogen three times, then heated at 130 °C (oil bath) with vigorous stirring for 15 h under an N₂ atmosphere. After the reaction equilibrium, the mixture was extracted with ethyl acetate, and the combined organic layers were dried over anhydrous Na₂SO₄. The filtrate was concentrated in vacuo and purified by a silica gel packed flash chromatography with petroleum ether/ethyl acetate (5:1) as eluent to afford the targeted product **3** or **4**.

3. Analytical Data for All Products

6,6'-(phenylazanediyl)bis(2-methyl-N-(quinolin-8-yl)benzamide) (3a):

White solid (43.0 mg, 70%); mp: 213-214 °C. Column chromatography on silica gel (Eluent: petroleum ether/ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 9.95 (s, 2H), 8.71 (s, 2H), 8.53 (d, J = 6.5 Hz, 2H), 8.10 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 6.5 Hz, 4H), 7.39-7.36 (m, 2H), 7.03-6.98 (m, 4H), 6.91 (d, J = 8.0 Hz, 2H), 6.76 (t, J = 8.0 Hz, 2H), 6.69 (t, J = 6.5 Hz, 1H), 6.50 (d, J = 7.0 Hz, 2H), 2.21 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 166.8, 148.6, 148.0, 144.4, 138.5, 136.6, 136.1, 134.6, 134.6, 129.5, 128.7, 127.7, 127.1, 126.1, 125.7, 123.4, 121.9, 121.4, 116.7, 19.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₃₂N₅O₂ 614.2551; Found 614.2562.

2,2'-(phenylazanediyl)bis(*N*-(quinolin-8-yl)benzamide) (3b):

White solid (28.1 mg, 48%); mp: 239-240 °C. Column chromatography on silica gel (Eluent: petroleum ether/ethyl acetate, 5/1). ¹**H NMR** (500 MHz, CDCl₃) δ 10.56 (s, 2H), 8.61 (s, 2H), 8.38 (d, J = 7.0 Hz, 2H), 8.08 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 7.0 Hz, 2H), 7.42-7.36 (m, 8H), 7.28 (d, J = 7.0 Hz, 2H), 7.06 (t, J = 7.0 Hz, 2H), 6.85 (d, J = 7.5 Hz, 2H), 6.76 (t, J = 7.5 Hz, 2H), 6.58 (t, J = 7.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 166.2, 147.9, 147.6, 145.3, 138.6, 136.1, 134.5, 132.5, 131.2, 130.0, 128.6, 128.0, 127.7, 127.2, 124.2, 123.0, 122.6, 121.4, 121.4, 116.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₈H₂₈N₅O₂ 586.2238; Found 586.2234.

2,2'-(phenylazanediyl)bis(4-methyl-N-(quinolin-8-yl)benzamide) (3c):

White solid (27.5 mg, 45%); mp: 179-180 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 10.44 (s, 2H), 8.60 (s, 2H), 8.43 (d, J = 7.0 Hz, 2H), 8.09 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 7.5 Hz, 2H), 7.42-7.37 (m, 6H), 7.05 (s, 2H), 6.94 (d, J = 8.0 Hz, 2H), 6.87 (t, J = 7.5 Hz, 2H), 6.79 (d, J = 7.5 Hz, 2H), 6.67 (t, J = 7.0 Hz, 1H), 1.99 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 166.4, 147.8, 147.8, 145.1, 141.5, 138.5, 136.0, 134.6, 130.1, 129.9, 128.6, 127.7, 127.2, 125.0, 122.8, 122.3, 122.2, 121.4, 121.2, 116.4, 21.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₃₂N₅O₂ 614.2551; Found 614.2556.

2,2'-(phenylazanediyl)bis(4-(*tert*-butyl)-N-(quinolin-8-yl)benzamide) (3d):

White solid (37.6 mg, 54%); mp: 252-253 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹**H NMR** (500 MHz, CDCl₃) δ 10.50 (s, 2H), 8.57 (s, 2H), 8.45 (d, J = 7.0 Hz, 2H), 8.07 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.41-7.33 (m, 6H), 7.23 (s, 2H), 7.08 (d, J = 7.5 Hz, 2H), 7.00 (d, J = 8.0 Hz, 2H), 6.95 (t, J = 7.0 Hz, 2H), 6.75 (t, J = 7.0 Hz, 1H), 0.93 (s, 18H). ¹³**C NMR** (125 MHz, CDCl₃) δ 166.4, 154.4, 148.0, 147.9, 145.0, 138.5, 136.0, 134.6, 129.9, 129.5, 128.6, 127.8, 127.3, 124.8, 123.1, 122.4, 121.4, 121.3, 121.1, 116.5, 34.6, 30.7. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₆H₄₄N₅O₂ 698.3490; Found 698.3493.

2,2'-(phenylazanediyl)bis(4-fluoro-N-(quinolin-8-yl)benzamide) (3e):

White solid (24.3 mg, 39%); mp: 251-252 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 10.44 (s, 2H), 8.59 (s, 2H), 8.31 (d, *J* = 7.5 Hz, 2H), 8.04 (d, *J* = 8.5 Hz, 2H), 7.53 (t, *J* = 7.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.34-7.31 (m, 4H), 6.91 (d, *J* = 10.5 Hz, 2H), 6.86-6.80 (m, 4H), 6.66 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.2, 164.2 (d, *J*_{C-F} = 250.0 Hz), 148.0, 146.8, 146.8, 146.6, 138.6, 136.2, 134.2, 131.7 (d, *J*_{C-F} = 10.0 Hz), 129.0, 128.6, 127.8, 127.2, 124.0, 121.6 (d, *J*_{C-F} = 15.0 Hz), 116.7, 114.4 (d, *J*_{C-F} = 23.8 Hz), 111.6, 111.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₈H₂₆F₂N₅O₂ 622.2049; Found 622.2039.

White solid (29.3 mg, 45%); mp: 254-255 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 10.47 (s, 2H), 8.69 (s, 2H), 8.39 (d, *J* = 7.5 Hz, 2H), 8.12 (d, *J* = 8.0 Hz, 2H), 7.55-7.35 (m, 8H), 7.26 (s, 2H), 6.99-6.92 (m, 6H), 6.76 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 165.1, 148.1, 146.6, 145.7, 138.4, 136.9, 136.2, 134.0, 131.0, 130.9, 129.0, 127.8, 127.6, 127.2, 124.6, 123.9, 123.8, 121.8, 121.6, 116.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₈H₂₆Cl₂N₅O₂ 654.1458; Found 654.1456.

2,2'-(phenylazanediyl)bis(4-bromo-N-(quinolin-8-yl)benzamide) (3g):

White solid (37.1 mg, 50%); mp: 242-243 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 10.45 (s, 2H), 8.70 (d, *J* = 3.0 Hz, 2H), 8.40 (d, *J* = 7.5 Hz, 2H), 8.12 (d, *J* = 8.0 Hz, 2H), 7.47-7.37 (m, 10H), 7.11 (d, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 6.5 Hz, 4H), 6.78 (t, *J* = 6.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 165.2, 148.1, 146.6, 145.7, 138.4, 136.2, 134.0, 131.3, 131.1, 130.6, 129.1, 127.8, 127.5, 127.3, 125.0, 123.9, 123.9, 121.8, 121.6, 116.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₈H₂₆Br₂N₅O₂ 742.0448 and 744.0431; Found 742.0447 and 744.0433.

White solid (55.2 mg, 66%); mp: 158-159 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 10.42 (s, 2H), 8.70 (s, 2H), 8.43 (d, *J* = 7.0 Hz, 2H), 8.12 (d, *J* = 8.0 Hz, 2H), 7.52 (s, 2H), 7.49-7.39 (m, 6H), 7.29-7.24 (m, 4H), 7.00 (s, 4H), 6.83 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 165.3, 148.2, 146.6, 145.4, 138.4, 136.5, 136.2, 134.0, 133.4, 132.0, 131.1, 129.1, 127.9, 127.4, 123.9, 121.8, 121.7, 121.6, 116.6, 96.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₈H₂₆I₂N₅O₂ 838.0170; Found 838.0176.

2,2'-(phenylazanediyl)bis(N-(quinolin-8-yl)-4-(trifluoromethyl)benzamide) (3i):

White solid (33.3 mg, 46%); mp: 197-198 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 10.47 (s, 2H), 8.68 (d, *J* = 3.5 Hz, 2H), 8.39 (d, *J* = 7.5 Hz, 2H), 8.14 (d, *J* = 8.5 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.43-7.40 (m, 4H), 7.35 (s, 2H), 7.18-7.13 (m, 4H), 7.09 (d, *J* = 8.0 Hz, 2H), 6.98 (t, *J* = 6.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 148.2, 146.6, 145.0 138.4, 136.2, 135.2, 133.7, 132.9 (q, *J*_{C-F} = 32.5 Hz), 130.4, 129.5, 127.8, 127.2, 124.6 (q, *J*_{C-F} = 5.0 Hz), 124.5, 124.4, 123.0 (q, *J*_{C-F} = 272.5 Hz), 122.1, 121.9, 120.7 (q, *J*_{C-F} = 3.8 Hz), 116.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₂₆F₆N₅O₂ 722.1985; Found 722.1995.

White solid (18.6 mg, 29%); mp: 214-215 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹**H** NMR (500 MHz, CDCl₃) δ 9.90 (s, 2H), 8.72 (d, *J* = 3.0 Hz, 2H), 8.61 (d, *J* = 6.0 Hz, 2H), 8.12 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 6.5 Hz, 4H), 7.40-7.38 (m, 2H), 7.06-6.97 (m, 4H), 6.82 (d, *J* = 8.0 Hz, 2H), 6.71 (t, *J* = 6.5 Hz, 1H), 6.51 (d, *J* = 8.0 Hz, 2H), 2.02 (s, 6H), 1.57 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 167.4, 149.2, 147.9, 141.9, 138.4, 136.0, 135.2, 134.8, 134.2, 132.8, 130.9, 128.6, 127.7, 127.2, 126.2, 122.4, 121.3, 121.2, 121.0, 116.6, 19.2, 16.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₂H₃₆N₅O₂ 642.2864; Found 642.2879.

6,6'-(phenylazanediyl)bis(3-methoxy-2-methyl-N-(quinolin-8-yl)benzamide) (3k):

White solid (20.8 mg, 31%); mp: 244-245 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹**H** NMR (500 MHz, CDCl₃) δ 9.87 (s, 2H), 8.67 (d, *J* = 8.0 Hz, 4H), 8.11 (d, *J* = 8.0 Hz, 2H), 7.47 (s, 4H), 7.40-7.37 (m, 2H), 7.02 (t, *J* = 7.5 Hz, 2H), 6.96-6.90 (m, 4H), 6.66 (t, *J* = 7.0 Hz, 1H), 6.11 (d, *J* = 9.0 Hz, 2H), 3.20 (s, 6H), 2.00 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 166.7, 154.0, 149.8, 148.0, 138.3, 136.5, 136.5, 135.8, 134.9, 128.5, 127.6, 127.5, 127.1, 124.4, 121.5, 121.1, 120.9, 120.1, 116.5, 111.0, 55.0, 12.8. **HRMS (ESI-TOF)** m/z: [M + H]⁺ Calcd for C₄₂H₃₆N₅O₄ 674.2762; Found 674.2754.

6,6'-(phenylazanediyl)bis(4-bromo-2-methyl-N-(quinolin-8-yl)benzamide) (31):

White solid (33.3 mg, 49%); mp: 161-162 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹**H** NMR (500 MHz, CDCl₃) δ 10.01 (s, 2H), 8.74 (d, *J* = 3.5 Hz, 2H), 8.59 (d, *J* = 7.0 Hz, 2H), 8.15 (d, *J* = 8.0 Hz, 2H), 7.51 (t, *J* = 9.0 Hz, 4H), 7.43-7.40 (m, 2H), 7.09 (t, *J* = 7.5 Hz, 2H), 7.03 (d, *J* = 7.5 Hz, 2H), 6.83-6.78 (m, 3H), 6.69 (d, *J* = 8.5 Hz, 2H), 2.15 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 165.8, 148.4, 148.1, 142.3, 138.3, 136.3, 134.2, 134.0, 130.3, 130.2, 130.2, 128.9, 127.9, 127.4, 127.1, 123.2, 122.4, 122.0, 121.5, 116.7, 17.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₃₀Cl₂N₅O₂ 682.1771; Found 682.1773.

6,6'-(phenylazanediyl)bis(2,4-dimethyl-*N*-(quinolin-8-yl)benzamide) (3m):

White solid (30.8 mg, 48%); mp: 161-162 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 9.91 (s, 2H), 8.71 (d, *J* = 3.5 Hz, 2H), 8.58 (t, *J* = 4.0 Hz, 2H), 8.11 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 4.0 Hz, 4H), 7.40-7.37 (m, 2H), 7.10 (d, *J* = 4.0 Hz, 4H), 6.84-6.76 (m, 1H), 6.60 (s, 2H), 6.21 (s, 2H), 2.15 (s, 6H), 1.65 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 167.0, 149.0, 148.0, 144.2, 139.4, 138.4, 136.3, 136.0, 134.8, 132.2, 128.7, 127.6, 127.2, 126.7, 126.6, 123.0, 121.5, 121.4, 121.2, 116.4, 20.6, 19.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₂H₃₆N₅O₂ 642.2864; Found 642.2861.

6,6'-(phenylazanediyl)bis(4-methoxy-2-methyl-N-(quinolin-8-yl)benzamide) (3n):

White solid (36.3 mg, 54%); mp: 237-238 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹**H NMR** (500 MHz, CDCl₃) δ 9.96 (s, 2H), 8.72 (s, 2H), 8.58 (s, 2H), 8.11 (d, *J* = 8.0 Hz, 2H), 7.46 (s, 4H), 7.40-7.38 (m, 2H), 7.08 (d, *J* = 8.0 Hz, 4H), 6.80 (s, 1H), 6.36 (s, 2H), 5.98 (s, 2H), 3.17 (s, 6H), 2.17 (s, 6H). ¹³**C NMR** (125 MHz, CDCl₃) δ 166.8, 159.9, 148.3, 148.0, 145.7, 138.4, 137.9, 136.0, 134.8, 128.7, 128.0, 127.7, 127.2, 123.3, 122.0, 121.4, 121.2, 116.4, 112.2, 110.7, 54.7, 19.9. **HRMS (ESI-TOF)** m/z: [M + H]⁺ Calcd for C₄₂H₃₆N₅O₄ 674.2762; Found 674.2799.

6,6'-(phenylazanediyl)bis(4-fluoro-2-methyl-N-(quinolin-8-yl)benzamide) (30):

White solid (35.1 mg, 54%); mp: 272-273 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 10.00 (s, 2H), 8.76 (d, *J* = 3.5 Hz, 2H), 8.53 (d, *J* = 7.0 Hz, 2H), 8.13 (d, *J* = 8.0 Hz, 2H), 7.50-7.44 (m, 4H), 7.42-7.40 (m, 2H), 7.05 (s, 4H), 6.82 (s, 1H), 6.56 (d, *J* = 10.0 Hz, 2H), 6.21 (d, *J* = 8.5 Hz, 2H), 2.17 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 165.9, 162.7 (d, *J*_{C-F} = 247.5 Hz), 148.1, 147.5, 145.8 (d, *J*_{C-F} = 10.0 Hz), 139.0, 138.9, 138.4, 136.2, 134.2, 130.7 (d, *J*_{C-F} = 2.5 Hz), 129.0, 127.7, 127.2, 124.3, 123.3, 121.6 (d, *J*_{C-F} = 25.0 Hz), 116.6, 113.0, 112.7, 19.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₃₀F₂N₅O₂ 650.2362; Found 650.2357.

White solid (47.7 mg, 62%); mp: 218-219 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 10.00 (s, 2H), 8.76 (d, *J* = 4.0 Hz, 2H), 8.55 (t, *J* = 4.0 Hz, 2H), 8.14 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 4.0 Hz, 4H), 7.42-7.40 (m, 2H), 7.14-7.08 (m, 4H), 6.94 (s, 2H), 6.88 (t, *J* = 7.0 Hz, 1H), 6.62 (s, 2H), 2.15 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 148.1, 147.6, 145.0, 138.4, 138.3, 136.2, 134.0, 133.4, 129.1, 128.8, 128.7, 127.8, 127.5, 124.1, 123.3, 123.2, 121.8, 121.5, 116.8, 19.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₃₀Br₂N₅O₂ 770.0761 and 772.0744; Found 770.0754 and 772.0739.

6,6'-(p-tolylazanediyl)bis(2-methyl-N-(quinolin-8-yl)benzamide) (4a):

White solid (28.8 mg, 46%); mp: 216-217 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹**H** NMR (500 MHz, CDCl₃) δ 9.90 (s, 2H), 8.71 (s, 2H), 8.52 (d, *J* = 6.0 Hz, 2H), 8.09 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 6.0 Hz, 4H), 7.39-7.36 (m, 2H), 6.91 (d, *J* = 7.0 Hz, 4H), 6.79 (t, *J* = 8.0 Hz, 2H), 6.73 (d, *J* = 8.0 Hz, 2H), 6.52 (d, *J* = 7.5 Hz, 2H), 2.21 (s, 6H), 1.91 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.9, 147.9, 146.1, 144.9, 138.5, 136.5, 136.0, 134.6, 134.4, 131.7, 129.4, 129.3, 127.7, 127.1, 125.8, 125.4, 124.0, 121.3, 121.3, 116.6, 20.4, 19.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₁H₃₄N₅O₂ 628.2707; Found 628.2723.

6,6'-((4-bromophenyl)azanediyl)bis(2-methyl-N-(quinolin-8-yl)benzamide) (4b):

White solid (36.1 mg, 54%); mp: 196-197 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 9.85 (s, 2H), 8.70 (s, 2H), 8.49 (d, J = 7.0 Hz, 2H), 8.08 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz, 4H), 7.39-7.35 (m, 2H), 7.01 (d, J = 8.0 Hz, 2H), 6.89-6.84 (m, 6H), 6.58 (d, J = 7.5 Hz, 2H), 2.23 (s, 6H), 0.92 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 166.8, 148.0, 145.6, 145.0, 144.6, 138.5, 136.5, 136.0, 134.5, 134.4, 129.6, 127.7, 127.7, 127.1, 126.0, 125.5, 125.4, 123.1, 121.3, 116.6, 33.8, 31.0, 19.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₄H₄₀N₅O₂ 670.3177; Found 670.3190.

6,6'-((4-bromophenyl)azanediyl)bis(2-methyl-N-(quinolin-8-yl)benzamide) (4c):

White solid (41.3 mg, 60%); mp: 205-206 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹**H NMR** (500 MHz, CDCl₃) δ 9.87 (s, 2H), 8.63 (s, 2H), 8.52 (s, 2H), 8.01 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 4.0 Hz, 4H), 7.31-7.07 (m, 9H), 7.03-6.99 (m, 4H), 6.90-6.78 (m, 2H), 6.56 (d, *J* = 7.0 Hz, 2H), 2.22 (s, 6H). ¹³**C NMR** (125 MHz, CDCl₃) δ 166.7, 147.9, 144.4, 140.7, 138.4, 136.7, 136.0, 134.8, 134.6, 134.4, 129.7, 128.4, 127.7, 127.3, 127.1, 126.5, 126.4, 126.3, 126.0, 123.3, 121.4, 121.4, 116.5, 19.6. **HRMS (ESI-TOF)** m/z: [M + H]⁺ Calcd for C₄₆H₃₆N₅O₂ 690.2864; Found 690.2880.

2,2'-([1,1'-biphenyl]-4-ylazanediyl)bis(4-(*tert*-butyl)-*N*-(quinolin-8-yl)benzamide) (4d):

White solid (38.6 mg, 50%); mp: 237-238 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 10.46 (s, 2H), 8.56 (d, J = 2.5 Hz, 2H), 8.45 (d, J = 7.0 Hz, 2H), 8.06 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 8.0 Hz, 2H), 7.40-7.25 (m, 13H), 7.14 (d, J = 8.5 Hz, 2H), 7.09 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 0.97 (s, 18H). ¹³C NMR (125 MHz, CDCl₃) δ 166.4, 154.6, 147.9, 147.4, 144.9, 140.8, 138.5, 136.0, 134.7, 134.6, 129.9, 129.8, 128.5, 127.8, 127.3, 127.2, 127.1, 126.5, 125.1, 122.8, 121.5, 121.4, 121.2, 116.5, 34.6, 30.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₅₂H₄₈N₅O₂ 774.3803; Found 774.3805.

6,6'-((4-fluorophenyl)azanediyl)bis(2-methyl-N-(quinolin-8-yl)benzamide) (4e):

White solid (32.8 mg, 52%); mp: 218-219 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 9.92 (s, 2H), 8.71 (d, *J* = 3.0 Hz, 2H), 8.53 (d, *J* = 6.0 Hz, 2H), 8.11 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 7.0 Hz, 4H), 7.40-7.38 (m, 2H), 6.95-6.91 (m, 4H), 6.84 (t, *J* = 8.0 Hz, 2H), 6.58 (dd, *J*₁ = 20.0 Hz, *J*₂ = 8.0 Hz, 4H), 2.22 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 166.7, 159.3 (d, *J*_{C-F} = 240.0 Hz), 148.0, 144.7, 144.6, 144.6, 138.4, 136.7, 136.1, 134.5, 134.3, 129.6, 127.7, 127.2, 125.7, 125.4 (d, *J*_{C-F} = 7.5 Hz), 121.5, 121.4, 116.6, 115.3 (d, *J*_{C-F} = 22.5 Hz), 19.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₃₁FN₅O₂ 632.2456; Found 632.2451.

White solid (31.8 mg, 46%); mp: 245-246 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹**H** NMR (500 MHz, CDCl₃) δ 9.95 (s, 2H), 8.73 (d, *J* = 3.5 Hz, 2H), 8.57 (d, *J* = 6.0 Hz, 2H), 8.12 (d, *J* = 8.5 Hz, 2H), 7.46 (s, 4H), 7.42-7.39 (m, 2H), 7.02 (s, 2H), 6.71 (t, *J* = 8.0 Hz, 2H), 6.37 (s, 2H), 6.02 (s, 2H), 3.25 (s, 6H), 2.17 (s, 6H). ¹³**C** NMR (125 MHz, CDCl₃) δ 166.7, 160.0, 158.4 (d, *J*_{C-F} = 240.0 Hz), 148.0, 145.9, 144.4, 138.4, 138.0, 136.1, 134.7, 127.7, 127.6, 127.2, 125.3 (d, *J*_{C-F} = 7.5 Hz), 121.4, 121.2, 116.3, 115.4 (d, *J*_{C-F} = 22.5 Hz), 112.0, 110.6, 54.7, 19.9. **HRMS (ESI-TOF)** m/z: [M + H]⁺ Calcd for C₄₂H₃₅FN₅O₄ 692.2668; Found

692.2696.

6,6'-((4-chlorophenyl)azanediyl)bis(2-methyl-N-(quinolin-8-yl)benzamide) (4g):

White solid (29.1 mg, 45%) mp: 244-245 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 9.86 (s, 2H), 8.69 (d, *J* = 2.5 Hz, 2H), 8.53 (d, *J* = 4.5 Hz, 2H), 8.11 (d, *J* = 7.0 Hz, 2H), 7.45 (d, *J* = 6.5 Hz, 4H), 7.40-7.38 (m, 2H), 6.99 (d, *J* = 8.0 Hz, 2H), 6.87-6.80 (m, 6H), 6.58 (d, *J* = 7.5 Hz, 2H), 2.24 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 166.6, 148.0, 147.1, 144.1, 138.3, 136.7, 136.1, 134.7, 134.4, 129.7, 128.6, 127.7, 127.1, 126.8, 126.2, 126.1, 124.3, 121.5, 121.4, 116.5, 19.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₃₁ClN₅O₂ 648.2161; Found 648.2188.

White solid (26.3 mg, 38%); mp: 265-266 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹**H** NMR (500 MHz, CDCl₃) δ 9.84 (s, 2H), 8.69 (s, 2H), 8.53 (d, J = 5.5 Hz, 2H), 8.11 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 6.5 Hz, 4H), 7.40-7.38 (m, 2H), 7.00 (d, J = 8.0 Hz, 2H), 6.93 (d, J = 8.5 Hz, 2H), 6.85 (t, J = 8.0 Hz, 2H), 6.80 (d, J = 8.5 Hz, 2H), 6.59 (d, J = 7.5 Hz, 2H), 2.24 (s, 6H). ¹³**C** NMR (125 MHz, CDCl₃) δ 166.6, 148.0, 147.6, 144.1, 138.4, 136.8, 136.2, 134.8, 134.4, 131.6, 129.7, 127.7, 127.1, 126.2, 126.1, 124.6, 121.5, 121.4, 116.5, 114.3, 19.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₃₁BrN₅O₂ 692.1656 and 694.1638; Found 692.1643 and 694.1624.

6,6'-((4-(trifluoromethyl)phenyl)azanediyl)bis(2-methyl-N-(quinolin-8-

yl)benzamide) (4i):

White solid (23.8 mg, 35%) mp: 200-201 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹**H NMR** (500 MHz, CDCl₃) δ 9.80 (s, 2H), 8.65 (d, *J* = 3.5 Hz, 2H), 8.52 (d, *J* = 7.0 Hz, 2H), 8.10 (d, *J* = 8.5 Hz, 2H), 7.46-7.41 (m, 4H), 7.39-7.36 (m, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 7.05 (d, *J* = 8.0 Hz, 2H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.88 (t, *J* = 8.0 Hz, 2H), 6.65 (d, *J* = 7.0 Hz, 2H), 2.27 (s, 6H). ¹³**C NMR** (125 MHz, CDCl₃) δ 166.4, 151.2, 147.9, 143.4, 138.2, 136.8, 136.1, 135.2, 134.3, 129.8, 127.7, 127.0 (d, *J*_{C-F} = 18.8 Hz), 126.6, 125.8 (d, *J*_{C-F} = 3.8 Hz), 124.2 (d, *J*_{C-F} = 270 Hz), 122.5, 122.2, 121.6, 121.4, 121.2, 116.4, 19.6. **HRMS (ESI-TOF)** m/z: [M + H]⁺ Calcd for C₄₁H₃₁F₃N₅O₂ 682.2424; Found 682.2417.

White solid (39.5 mg, 63%); mp: 223-224 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹**H** NMR (500 MHz, CDCl₃) δ 9.90 (s, 2H), 8.70 (s, 2H), 8.53 (d, *J* = 3.5 Hz, 2H), 8.09 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 6.0 Hz, 4H), 7.38-7.36 (m, 2H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.83-6.78 (m, 5H), 6.54 (d, *J* = 7.5 Hz, 2H), 6.42 (s, 1H), 2.22 (s, 6H), 1.95 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.8, 148.5, 147.9, 144.7, 138.5, 138.4, 136.6, 136.0, 134.6, 134.6, 129.4, 128.5, 127.7, 127.1, 126.1, 125.6, 124.4, 122.9, 121.4, 121.3, 121.0, 116.6, 21.2, 19.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₁H₃₄N₅O₂ 628.2707; Found 628.2726.

6,6'-(*m*-tolylazanediyl)bis(4-bromo-2-methyl-*N*-(quinolin-8-yl)benzamide) (4k):

White solid (44.6 mg, 57%); mp: 257-258 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹**H NMR** (500 MHz, CDCl₃) δ 9.97 (s, 2H), 8.77 (d, *J* = 2.5 Hz, 2H), 8.58-8.49 (m, 2H), 8.15 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 4.0 Hz, 4H), 7.43-7.41 (m, 2H), 7.00-6.85 (m, 5H), 6.64 (s, 3H), 2.15 (s, 6H), 2.09 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 165.6, 148.1, 147.5, 145.2, 139.0, 138.3, 136.2, 134.1, 134.0, 133.3, 128.9, 128.6, 127.7, 127.5, 125.1, 124.4, 123.2, 123.2, 121.7, 121.5, 116.8, 21.3, 19.4. **HRMS (ESI-TOF)** m/z: [M + H]⁺ Calcd for C₄₁H₃₂Br₂N₅O₂ 784.0917 and 786.0901; Found 784.0928 and 786.0899.

6,6'-((3-methoxyphenyl)azanediyl)bis(2-methyl-N-(quinolin-8-yl)benzamide) (4l):

White solid (36.0 mg, 56%); mp: 224-225 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 9.89 (s, 2H), 8.69 (d, *J* = 3.0 Hz, 2H), 8.55 (s, 2H), 8.10 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 5.5 Hz, 4H), 7.38-7.36 (m, 2H), 6.96 (d, *J* = 8.0 Hz, 2H), 6.85-6.78 (m, 3H), 6.59 (d, *J* = 8.0 Hz, 1H), 6.56-6.50 (m, 3H), 6.15 (d, *J* = 8.0 Hz, 1H), 3.44 (s, 3H), 2.22 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 166.7, 160.0, 149.8, 147.9, 144.3, 138.4, 136.6, 136.0, 134.7, 134.6, 129.5, 129.2, 127.6, 127.1, 126.2, 125.8, 121.4, 121.3, 116.6, 116.0, 109.0, 107.9, 55.0, 19.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₁H₃₄N₅O₃ 644.2656; Found 644.2685.

6,6'-([1,1'-biphenyl]-3-ylazanediyl)bis(2-methyl-*N*-(quinolin-8-yl)benzamide)

(4m):

White solid (35.1 mg, 51%); mp: 148-149 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 9.92 (s, 2H), 8.53 (d, *J* = 6.0 Hz, 4H), 8.07 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 9.5 Hz, 4H), 7.34 (s, 2H), 7.21 (s, 3H), 7.16 (s, 1H), 7.05-6.98 (m, 6H), 6.86 (t, *J* = 7.5 Hz, 2H), 6.79 (s, 1H), 6.60 (s, 2H), 2.25 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 166.7, 148.8, 148.0, 144.6, 141.6, 140.9, 138.4, 136.7, 136.0, 134.6, 134.5, 129.6, 129.0, 128.3, 127.6, 127.2, 127.0, 126.9, 126.2, 126.0, 122.4, 122.0, 121.4, 121.3, 120.7, 116.5, 19.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₆H₃₆N₅O₂ 690.2864; Found 690.2882.

6,6'-((3-fluorophenyl)azanediyl)bis(2-methyl-*N*-(quinolin-8-yl)benzamide) (4n):

White solid (29.0 mg, 46%); mp: 213-214 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 9.87 (s, 2H), 8.69 (d, *J* = 3.0 Hz, 2H), 8.59-53 (m, 2H), 8.11 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 6.0 Hz, 4H), 7.40-7.37 (m, 2H), 6.98 (d, *J* = 8.0 Hz, 2H), 6.88-6.82 (m, 1H), 6.79 (t, *J* = 8.0 Hz, 2H), 6.73 (d, *J* = 8.0 Hz, 1H), 6.67 (d, *J* = 11.0 Hz, 1H), 6.55 (d, *J* = 7.5 Hz, 2H), 6.26 (t, *J* = 7.5 Hz, 1H), 2.23 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 166.5, 163.2 (d, *J*_{C-F} = 242.5 Hz), 150.2 (d, *J*_{C-F} = 10 Hz), 147.9, 143.7, 138.4, 136.7, 136.1, 134.5, 134.5, 129.5 (d, *J*_{C-F} = 10.0 Hz), 127.6, 127.1, 126.4, 121.4, 118.1, 116.5, 109.7, 109.6, 109.5, 108.2, 108.1, 19.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₃₁FN₅O₂ 632.2456; Found 632.2470.

6,6'-((3-bromophenyl)azanediyl)bis(2-methyl-N-(quinolin-8-yl)benzamide) (40):

White solid (29.7 mg, 43%); mp: 216-217 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 9.86 (s, 2H), 8.72 (s, 2H), 8.55 (d, *J* = 3.0 Hz, 2H), 8.11 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 5.5 Hz, 4H), 7.40-7.38 (m, 2H), 7.11 (s, 1H), 6.95 (d, *J* = 7.5 Hz, 2H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.81 (t, *J* = 8.0 Hz, 2H), 6.75 (t, *J* = 8.0 Hz, 1H), 6.67 (d, *J* = 7.5 Hz, 1H), 6.58 (d, *J* = 7.0 Hz, 2H), 2.24 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 166.5, 149.9, 148.3, 148.0, 143.7, 138.4, 136.8, 136.1, 134.9, 134.4, 129.8, 129.7, 127.7, 127.2, 126.5, 126.3, 125.7, 124.5, 122.4, 121.6, 121.5, 116.5, 19.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₃₁BrN₅O₂ 692.1656 and 694.1638; Found 692.1676 and 694.1659.

6,6'-((3,5-dimethylphenyl)azanediyl)bis(2-methyl-*N*-(quinolin-8-yl)benzamide) (4p):

White solid (34.0 mg, 53%); mp: 236-237 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 9.83 (s, 2H), 8.70 (s, 2H), 8.54 (s, 2H), 8.09 (d, J = 8.0 Hz, 2H), 7.43 (s, 4H), 7.37 (t, J = 5.0 Hz, 2H), 6.96 (d, J = 7.5 Hz, 2H), 6.85 (t, J = 7.0 Hz, 2H), 6.58 (d, J = 8.5 Hz, 4H), 6.09 (s, 1H), 2.23 (s, 6H), 1.86 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 166.8, 148.3, 147.8, 145.0, 138.4, 138.2, 136.4, 136.0, 134.7, 134.6, 129.5, 127.7, 127.1, 126.2, 125.4, 124.0, 122.0, 121.3, 121.2, 116.4, 21.0, 19.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₂H₃₆N₅O₂ 642.2864; Found 642.2888.

yl)benzamide) (4q):

White solid (37.9 mg, 56%) mp: 281-282 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 9.91 (s, 2H), 8.74 (d, *J* = 2.5 Hz, 2H), 8.55 (d, *J* = 3.5 Hz, 2H), 8.12 (d, *J* = 8.5 Hz, 2H), 7.46 (d, *J* = 5.5 Hz, 4H), 7.41-7.39 (m, 2H), 6.64 (s, 2H), 6.58 (d, *J* = 10.0 Hz, 2H), 6.27 (d, *J* = 10.0 Hz, 3H), 2.19 (s, 6H), 1.94 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 162.7 (d, *J*_{C-F} = 246.2 Hz), 148.0, 147.3, 146.3, 146.2, 138.8 (d, *J*_{C-F} = 10.0 Hz), 138.6, 138.4, 136.2, 134.3, 130.6, 127.7, 127.2, 125.3, 122.7, 121.5 (d, *J*_{C-F} = 11.2 Hz), 116.4, 112.8, 112.6 (d, *J*_{C-F} = 15.0 Hz), 21.0, 19.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₂H₃₄F₂N₅O₂ 678.2675; Found 678.2680.

6,6'-((3,5-dimethylphenyl)azanediyl)bis(4-bromo-2-methyl-*N*-(quinolin-8-yl)benzamide) (4r):

White solid (39.9 mg, 50%); mp: 288-289 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹**H NMR** (500 MHz, CDCl₃) δ 9.92 (s, 2H), 8.76 (d, *J* = 3.0 Hz, 2H), 8.55 (d, *J* = 8.5 Hz, 2H), 8.13 (d, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 6.5 Hz, 4H), 7.42-7.39 (m, 2H), 6.96 (s, 2H), 6.67 (s, 4H), 6.39 (s, 1H), 2.16 (s, 6H), 2.02 (s, 6H). ¹³**C NMR** (125 MHz, CDCl₃) δ 165.6, 148.0, 147.4, 145.4, 138.7, 138.3, 138.3, 136.2, 134.1, 133.3, 128.7, 128.5, 127.7, 127.5, 125.5, 123.2, 122.6, 121.6, 121.5, 116.7, 21.1, 19.4. **HRMS (ESI-TOF)** m/z: [M + H]⁺ Calcd for C₄₂H₃₄Br₂N₅O₂ 798.1074 and 800.1058; Found 798.1076 and 800.1053.

6,6'-(naphthalen-2-ylazanediyl)bis(2-methyl-N-(quinolin-8-yl)benzamide) (4s):

White solid (26.5 mg, 40%); mp: 245-246 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (500 MHz, CDCl₃) δ 9.89 (s, 2H), 8.57 (s, 1H), 8.47 (d, *J* = 7.0 Hz, 2H), 8.04 (d, *J* = 8.5 Hz, 2H), 7.45-7.33 (m, 9H), 7.30 (d, *J* = 3.5 Hz, 2H), 7.23-7.18 (m, 2H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.97 (d, *J* = 7.5 Hz, 2H), 6.80 (t, *J* = 8.0 Hz, 2H), 6.57 (d, *J* = 7.5 Hz, 2H), 2.24 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 166.7, 147.8, 146.2, 144.4, 138.3, 136.6, 135.9, 134.8, 134.4, 134.2, 129.6, 129.6, 128.4, 127.6, 127.1, 127.0, 126.8, 126.3, 126.2, 126.0, 125.7, 123.8, 123.7, 121.3, 119.8, 116.5, 19.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₄H₃₄N₅O₂ 664.2707; Found 664.2703.

4. Synthetic Applications

4.1. Scale-up reaction for the synthesis of triarylamine (3a).

In a 100 mL Schlenk reaction tube, 2-methyl-*N*-(quinolin-8-yl)benzamide (**1a**, 3 mmol, 780 mg), *N*-hydroxybenzamide (**2a**, 1 mmol, 137 mg), Ni(OAc)₂•4H₂O (0.4 mmol, 100 mg), dppm (0. 4 mmol, 156 mg), Ag₃PO₄ (2 mmol, 840 mg), AdCOOK (4 mmol, 872 mg) were dissolved in DMAc (10 mL). The reaction mixture was charge with N₂ for several times, and then heated at 130 °C (oil bath) with vigorous stirring for 15 h under N₂ atmosphere. After the reaction equilibrium, the mixture was extracted with ethyl acetate, the combined organic layers were dried over anhydrous Na₂SO₄. The filtrate was concentrated in vacuo and purified by a silica gel packed flash chromatography with petroleum ether/ ethyl acetate (5:1) as eluent to afford the targeted product **3a**

(61%, 0.374g).

4.2. The removal of 8-aminoquinoline auxiliary group.

The procedure for the removal of the directing group on the targeted product (**3b**) was according to the previous literature⁹: A 15 mL dry screw cap vial was equipped with a magnetic stir bar and charged with product **3b** (58.6 mg, 0.1 mmol) and 6 mol/L NaOH in MeOH (3 mL). This vessel was stirred at 120 °C (oil bath) for 36 h. After completion, the resulting mixture was cooled to room temperature and 10 mL MeOH was added. The mixture was concentrated in vacuum and extracted with ethyl acetate (2 x 20 mL) and H₂O (20 mL). The organic phase was dried over Na₂SO₄ and was concentrated in vacuo, affording 8-aminoquinoline in 96% yield. Then 2.0 mol/L HCl was added to the aqueous layer until pH = 4. Next, the aqueous layer was extracted with ethyl acetate (2 x 20 mL). The organic layer was collected and dried over Na₂SO₄. After concentration in vacuum, the residue was purified by preparative TLC on silica gel (Hexane/Ethyl acetate/HOAc = 50:50:1), the targeted compound **5** was obtained in 80% yield concomitant with 96% recovery of aminoquinoline.

2,2'-((phenylazanediyl)bis(2,1-phenylene))bis(2-oxoacetic acid) (5). White solid (26.6 mg, 80%); mp: 234-235 °C. Cloumn chromatography on silica gel (Eluent: Hexane/Ethyl acetate/HOAc = 50:50:1; $R_f = 0.50$) ¹H NMR (500 MHz, CDCl₃) δ 9.52 (br, 2H), 7.79 (d, J = 7.5 Hz, 2H), 7.38 (t, J = 7.5 Hz, 2H), 7.19-7.12 (m, 4H), 7.01 (t, J = 7.0 Hz, 1H), 6.90 (d, J = 8.0 Hz, 2H), 6.83 (d, J = 7.5 Hz, 2H) ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 148.1, 147.3, 133.3, 132.4, 129.3, 126.3, 125.5, 124.4, 123.9, 123.7.

4.3. Scope of other aminated reagents.

In a 10 mL Schlenk reaction tube with a stir bar, 2-methyl-*N*-(quinolin-8-yl)benzamide (1a, 0.3 mmol, 78.6 mg), other amination reagent (2p-2t, 0.1 mmol), Ni(OAc)₂•4H₂O (0.04 mmol, 10 mg), dppm (0.04 mmol, 15.6 mg), Ag₃PO₄ (0.2 mmol, 84 mg), AdCOOK (0.4 mmol, 87.2 mg), were dissolved in DMAc (1 mL), the mixture was charged with nitrogen three times. The reaction mixture was then heated at 130 °C (oil bath) with vigorous stirring for 15 h under N₂ atmosphere. After the reaction equilibrium, the mixture was extracted with ethyl acetate, the combined organic layers were dried over anhydrous Na₂SO₄. The filtrate was concentrated in vacuo and purified by a silica gel packed flash chromatography with petroleum ether/ethyl acetate (5:1) as eluent to afford the targeted product **3a** or **4j**. It was found that the targeted product **3a** obtained in 51% 45%, respectively, when could be and using N-(pivaloyloxy)benzamide (2p), 3-phenyl-1,4,2-dioxazol-5-one (2q) as the amination reagent. Moreover, the triarylamine product (4j) was isolated in 50% yield using 1isocyanato-3-methylbenzene (2r) as a substrate. However, bare benzamide (2s) and Nmethoxy benzamide (2t) were both ineffective substrates for this conversion, no desired triarylamine were observed during the reaction course.

5. The Mechanistic Investigations

5.1. H/D exchange experiment.

mmol, 73.8 mg), D₂O (10 mmol, 30 mg), Ni(OAc)₂•4H₂O (20 mol %, 10 mg), dppm (0.04 mmol, 15.6 mg), Ag₃PO₄ (0.2 mmol, 84 mg), AdCOOK (0.4 mmol, 87.2 mg) were dissolved in DMAc (1 mL). Then, the solution was charged with nitrogen three times. The reaction mixture was then heated at 130 °C (oil bath) with vigorous stirring for 15 h under N₂ atmosphere. After the reaction equilibrium, the mixture was extracted with ethyl acetate, the combined organic layers were dried over anhydrous Na₂SO₄. The filtrate was concentrated in vacuo and purified by a silica gel packed flash chromatography with petroleum ether/ethyl acetate (5:1) as eluent to afford benzamide **1b**. It was found that no deuterium was detected on the *ortho* C-H bond of the benzamide **1b**.

Figure S1: ¹H NMR spectrum of substrate 1b after the H/D exchange experiment

5.2. Parallel Kinetic isotopic effect experiments.

In a 10 mL Schlenk reaction tube with a stir bar, deuterated *N*-(quinolin-8-yl)benzamide (**D**5-1b, 0.3 mmol, 75.9 mg), *N*-hydroxybenzamide (**2a**, 0.1 mmol, 13.7 mg), Ni(OAc)₂·4H₂O (0.04 mmol, 10 mg), dppm (0.04 mmol, 15.6 mg), Ag₃PO₄ (0.2 mmol,

84 mg), AdCOOK (0.4 mmol, 87.2 mg) were dissolved in DMAc (1 mL), the mixture was charged with N₂ three times. The reaction mixture was then heated at 130 °C (oil bath) with vigorous stirring for 2 h under N₂ atmosphere. After the reaction equilibrium, the mixture was extracted with ethyl acetate, the combined organic layers were dried over anhydrous Na₂SO₄. The filtrate was concentrated in vacuo and purified by a silica gel packed flash chromatography with petroleum ether/ ethyl acetate (5:1) as eluent to afford the desired product **D₈-3b** in 10% yield.

In a 10 mL Schlenk reaction tube, *N*-(quinolin-8-yl)benzamide (**1b**, 0.3 mmol, 74.4 mg), *N*-hydroxybenzamide (**2a**, 0.1 mmol, 13.7 mg), Ni(OAc)₂•4H₂O (0.04 mmol, 10 mg), dppm (0.04 mmol, 15.6 mg), Ag₃PO₄ (0.2 mmol, 84 mg), AdCOOK (0.4 mmol, 87.2 mg) were dissolved in DMAc (1 mL), the mixture was charged with N₂ three times. The reaction mixture was then heated at 130 °C (oil bath) with vigorous stirring for 2 h under N₂ atmosphere. After the reaction equilibrium, the mixture was extracted with ethyl acetate, the combined organic layers were dried over anhydrous Na₂SO₄. The filtrate was concentrated in vacuo and purified by a silica gel packed flash chromatography with petroleum ether/ ethyl acetate (5:1) as eluent to afford the desired product **3b** in 24% yield.

Consequently, the parallel kinetic isotopic effect value equals 2.4. KIE = 24%/10%

- **5.3.** Competitive experiments.
- 5.3.1 Competitive experiments between benzamides 1n and 1o.

In a 10 mL Schlenk reaction tube , 4-methoxy-2-methyl-*N*-(quinolin-8-yl)benzamide (**1n**, 0.3 mmol, 87.6 mg), 4-fluoro-2-methyl-*N*-(quinolin-8-yl)benzamide (**1o**, 0.3 mmol, 84 mg), *N*-hydroxybenzamide (**2a**, 0.1 mmol, 13.7 mg), Ni(OAc)₂•4H₂O (0.04 mmol, 10 mg), dppm (0.04 mmol, 15.6 mg), Ag₃PO₄ (0.2 mmol, 84 mg), AdCOOK (0.4 mmol, 87.2 mg) were dissolved in DMAc (1 mL), which was charged with N₂ three times. The reaction mixture was then heated at 130 °C (oil bath) with vigorous stirring for 15 h under N₂ atmosphere. After the reaction equilibrium, the mixture was extracted with

ethyl acetate, the combined organic layers were dried over anhydrous Na₂SO₄. The filtrate was concentrated in vacuo and purified by a silica gel packed flash chromatography with petroleum ether/ethyl acetate (5:1) as eluent to afford the mixed product. The obtained product **3n**, **3o** and **3q** were isolated in 12%, 17% and 33% yield, respectively.

4-fluoro-2-((5-methoxy-3-methyl-2-(quinolin-7-

ylcarbamoyl)phenyl)(phenyl)amino)-6-methyl-*N*-(quinolin-7-yl)benzamide (3q): White solid (26.5 mg, 33%); mp: 95-96 °C. Column chromatography on silica gel (Eluent: petroleum ether/ ethyl acetate, 5/1). ¹H NMR (400 MHz, CDCl₃) δ 10.03 (d, *J* = 12.0 Hz, 2H), 8.78 (dd, *J*₁ = 11.6, *J*₂ = 2.8 Hz, 2H), 8.63-8.59 (m, 2H), 8.16 (d, *J* = 8.0 Hz, 2H), 7.54-7.48 (m, 4H), 7.46-7.41 (m, 2H), 7.12 (d, *J* = 5.2 Hz, 4H), 6.87-6.84 (m, 1H), 6.60 (d, *J* = 10.4 Hz, 1H), 6.41 (s, 1H), 6.23 (d, *J* = 6.8 Hz, 1H), 6.06 (s, 1H), 3.25 (s, 3H), 2.22 (d, *J* = 4.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 166.1, 162.6 (d, *J*_{C-F} = 246.0 Hz), 160.1, 148.1, 148.0, 147.9, 146.3, 146.2, 145.4, 138.9, 138.8, 138.5, 138.4, 138.1, 136.2, 134.5 (d, *J*_{C-F} = 6.0 Hz), 130.6, 128.8, 128.0, 127.7, 127.2 (d, *J*_{C-F} = 13.0 Hz), 123.8, 122.7, 121.5, 116.5 (d, *J*_{C-F} = 5.0 Hz), 112.5, 111.1, 54.7, 19.9, 19.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₁H₃₃FN₅O₃ 662.2562; Found 662.2580.

5.3.2 Competitive experiments between N-hydroxybenzamides 2b and 2h.

In a 10 mL Schlenk reaction tube, 2-methyl-*N*-(quinolin-8-yl)benzamide (**1a**, 0.3 mmol, 78 mg), *N*-hydroxy-4-methylbenzamide (**2b**, 0.1 mmol, 15.1 mg), *N*-hydroxy-4-(trifluoromethyl)benzamide (**2h**, 0.1 mmol, 20.5 mg), Ni(OAc)₂•4H₂O (0.04 mmol, 10 mg), dppm (0.04 mmol, 15.6 mg), Ag₃PO₄ (0.2 mmol, 84 mg), AdCOOK (0.4 mmol, 87.2 mg) were dissolved in DMAc (1 mL), then the mixture was charged with N₂ three times. The reaction mixture was then heated at 130 °C (oil bath) with vigorous stirring for 15 h under N₂ atmosphere. After the reaction equilibrium, the mixture was extracted with ethyl acetate, the combined organic layers were dried over anhydrous Na₂SO₄. The filtrate was concentrated in vacuo and purified by a silica gel packed flash chromatography with petroleum ether/ethyl acetate (5:1) as eluent to afford the mixed products. The obtained products **4a** and **4i** were isolated in 21% and 15% yield, respectively.

5.4. Control experiments.

5.4.1. Radical-trapping experiments.

Conditions A: In a 10 mL Schlenk reaction tube with a stir bar, 2-methyl-*N*-(quinolin-8-yl)benzamide (**1a**, 0.3 mmol, 78.6 mg), *N*-hydroxybenzamide (**2a**, 0.1 mmol, 13.7 mg), Ni(OAc)₂•4H₂O (0.04 mmol, 10 mg), dppm (0.04 mmol, 15.6 mg), Ag₃PO₄ (0.2 mmol, 84 mg), AdCOOK (0.4 mmol, 87.2 mg), DPE (0.8 mmol, 144.2 mg) or DPE (2.0 mmol, 360.5 mg) , were dissolved in DMAc (1 mL), the mixture was charged with nitrogen three times. The reaction mixture was then heated at 130 °C (oil bath) with vigorous stirring for 15 h under N₂ atmosphere. After the reaction equilibrium, the mixture was extracted with ethyl acetate, the combined organic layers were dried over anhydrous Na₂SO₄. The filtrate was concentrated in vacuo and purified by a silica gel packed flash chromatography with petroleum ether/ethyl acetate (5:1) as eluent to afford the targeted product **3a** in 46% and 43% yield, respectively.

5.4.2. Using aniline as amination reagent for this reaction

In a 10 mL Schlenk reaction tube with a stir bar, 2-methyl-*N*-(quinolin-8-yl)benzamide (**1a**, 0.3 mmol, 78 mg), aniline (0.1 mmol, 9.3 mg), Ni(OAc)₂•4H₂O (0.04 mmol, 10 mg), dppm (0.04 mmol, 15.6 mg), Ag₃PO₄ (0.2 mmol, 84 mg), AdCOOK (0.4 mmol, 87.2 mg) were dissolved in DMAc (1 mL), then the mixture was charged with N₂ three

times. The reaction mixture was then heated at 130 °C (oil bath) with vigorous stirring for 15 h under N₂ atmosphere. After the reaction equilibrium, the mixture was extracted with ethyl acetate, the combined organic layers were dried over anhydrous Na₂SO₄. The filtrate was concentrated in vacuo and purified by a silica gel packed flash chromatography with petroleum ether/ethyl acetate (5:1) as eluent to afford the mixed products. The obtained products **3a** was isolated in 50% yield.

6.Reference

[1] L. D. Tran, I. Popov and O. Daugulis, J. Am. Chem. Soc., 2012, **134**, 18237–12840.
 [2] Y. Ano, M. Tobisu and N. Chatani, Org. Lett., 2012, **14**, 354–357.
 [3] L. D. Tran, J. Roane and O. Daugulis, Angew. Chem. Int. Ed., 2013, **52**, 6043–6046.
 [4] L. Grigorjeva and O. Daugulis, Angew. Chem. Int. Ed., 2014, **53**, 10209–10212.
 [5] F.-R. Gou, X.-C. Wang, P.-F. Huo, H.-P. Bi, Z.-H. Guan and Y.-M. Liang, Org. Lett., 2009, **11**, 5726–5729.
 [6] K. Shibata and N. Chatani, Org. Lett., 2014, **16**, 5148–5151.
 [7] N. Lv, Z. Chen, S. Yu, Z. Liu and Y. Zhang, Org. Chem. Front., 2020, **7**, 2224–2229.
 [8] H. Jiang and A. Studer, Angew. Chem. Int. Ed., 2017, **56**, 12273–12276.
 [9] C. Du, P.-X. Li, X. Zhu, J.-N. Han, J.-L. Niu and M.-P. Song, ACS Catal., 2017, **7**, 2810–2814.

7. NMR Spectra for All Products.

¹³C NMR (125 MHz, CDCl₃) of product 3a

¹³C NMR (125 MHz, CDCl₃) of product 3b

¹³C NMR (125 MHz, CDCl₃) of product 3c

¹³C NMR (125 MHz, CDCl₃) of product 3d

¹³C NMR (125 MHz, CDCl₃) of product 3e

¹³C NMR (125 MHz, CDCl₃) of product 3f

¹³C NMR (125 MHz, CDCl₃) of product 3g

¹³C NMR (125 MHz, CDCl₃) of product 3h

¹³C NMR (125 MHz, CDCl₃) of product 3i

¹³C NMR (125 MHz, CDCl₃) of product 3j

¹³C NMR (125 MHz, CDCl₃) of product 3k

¹³C NMR (125 MHz, CDCl₃) of product 31

¹³C NMR (125 MHz, CDCl₃) of product 3n

¹³C NMR (125 MHz, CDCl₃) of product 30

¹³C NMR (125 MHz, CDCl₃) of product 3p

¹³C NMR (100 MHz, CDCl₃) of compound 3q

¹³C NMR (125 MHz, CDCl₃) of product 4a

¹³C NMR (125 MHz, CDCl₃) of product 4b

 ^{13}C NMR (125 MHz, CDCl₃) of product 4c

¹³C NMR (125 MHz, CDCl₃) of product 4d

¹³C NMR (125 MHz, CDCl₃) of product 4e

¹³C NMR (125 MHz, CDCl₃) of product 4f

¹³C NMR (125 MHz, CDCl₃) of product 4g

¹³C NMR (125 MHz, CDCl₃) of product 4h

 ^{13}C NMR (125 MHz, CDCl_3) of product 4j

¹³C NMR (125 MHz, CDCl₃) of product 4k

¹³C NMR (125 MHz, CDCl₃) of product 41

¹³C NMR (125 MHz, CDCl₃) of product 4m

¹³C NMR (125 MHz, CDCl₃) of product 4n

¹³C NMR (125 MHz, CDCl₃) of product 40

¹³C NMR (125 MHz, CDCl₃) of product 4p

¹³C NMR (125 MHz, CDCl₃) of product 4q

¹³C NMR (125 MHz, CDCl₃) of product 4r

¹³C NMR (125 MHz, CDCl₃) of product 5