Electronic Supporting Information (ESI)

Fast and slow walking driven by chemical fuel

Vishnu Verman Rajasekaran, Emad Elramadi, Isa Valiyev, Prodip Howlader and Michael Schmittel*

${ }^{\text {a }}$ Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, D-57068, Germany
E-mail: schmittel@chemie.uni-siegen.de

Fax: (+49) 271-740-3270

Table of Contents

1. Synthesis S 2
2. Synthesis and characterization of complexes S15
3. Model studies S19
4. NMR Spectra $\left({ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY},{ }^{13} \mathrm{C}\right) \quad$ S21
5. DOSY NMR S38
6. Stepwise walking using DBU titration S40
7. Stepwise walking using chemical fuel (two cycles) S41
8. ESI-MS spectra S43
9. References S45

1. Synthesis

1.1 General Information

All commercial reagents were used without further purification. Solvents were dried with the appropriate desiccants and distilled prior to use. Bruker Avance (400 MHz), Jeol ECZ (500 MHz) and Varian (600 MHz) spectrometers were used to measure ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra employing a deuterated solvent as the lock and residual protiated solvent as internal reference $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}\right.$ $7.26 \mathrm{ppm}, \delta_{\mathrm{C}} 77.0 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{H}} 5.32 \mathrm{ppm}, \delta_{\mathrm{C}} 53.8 \mathrm{ppm}, \mathrm{THF}-\mathrm{d} 8: \delta_{\mathrm{H}} 1.72 \mathrm{ppm}, 3.58 \mathrm{ppm}, \delta_{\mathrm{C}}$ $25.3 \mathrm{ppm}, 67.2 \mathrm{ppm})$. The following abbreviations were used to describe NMR peak pattern: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, brs = broad singlet, $\mathrm{brd}=$ broad doublet, $\mathrm{m}=$ multiplet. The coupling constant values are given in Hertz (Hz) and, wherever possible, assignment of protons is provided. The numbering of different carbons in different molecular skeletons does not necessarily follow IUPAC nomenclature rules; it was exclusively implemented for assigning NMR signals. All electrospray ionization (ESI-MS) spectra were recorded on a Thermo-Quest LCQ deca and the theoretical isotopic distributions of the mass signals were calculated using IsoPro 3.0 software. Melting points of compounds were measured on a BÜCHI 510 instrument and are not corrected. Elemental analysis was performed using the EA-3000 CHNS analyzer. Column chromatography was performed either on silica gel (60-400 mesh) or neutral alumina (Fluka, 0.05-0.15 mm, Brockmann Activity 1). Merck silica gel (60 F254) or neutral alumina (150 F254) sheets were used for thin layer chromatography (TLC). The multi-component assembly of complexes was performed directly in the NMR tube with $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ as solvent. Compounds $\mathbf{3},{ }^{1} \mathbf{5},{ }^{2} \mathbf{8},{ }^{3} \mathbf{6},{ }^{4} \mathbf{9},{ }^{5} \mathbf{1 0},{ }^{6} \mathbf{1 2},{ }^{7} \mathbf{1 3},{ }^{8}$ and complexes $[\mathbf{1 2} \cdot \mathbf{1 4}]^{9}$ and $\left[\mathrm{DB} 24 \mathrm{C} 8 \cdot 12 \cdot(\mathrm{H})_{2}\right] \mathrm{PF}_{6}{ }^{10}$ were prepared/characterized according to reported procedures available in the literature.

1.2 Ligands used in this study and synthetic schemes

2

3

Figure S1: Ligands used in this study.

5
$+\mathbf{R}^{1} \equiv \underset{\text { THF, rt, } 36 \mathrm{~h}}{\overline{\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \text { DIPA }}}$ 14\%

6

8

Scheme S1: Synthetic route to ligand 1.

12

Scheme S2: Synthetic route to biped 4.

Scheme S3: Synthetic route to 2 and $\left[\mathbf{2} \cdot(\mathrm{H})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$.

1.3 Synthesis of organic ligands

Synthesis of compound 7

In a reaction tube, compounds $5(89.5 \mathrm{mg}, 109 \mu \mathrm{~mol})$ and $6(230 \mathrm{mg}, 219 \mu \mathrm{~mol})$ were dissolved in THF and diisopropylamine ($30 \mathrm{~mL}, 1: 4, \mathrm{v} / \mathrm{v}$). The solution was subjected to 15 min of sparging with N_{2}. Then, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(13 \mathrm{mg}, 11 \mu \mathrm{~mol})$ was added under an inert N_{2} atmosphere. The tube was sealed with a screw cap and stirred at rt for 36 h (TLC). After evaporation of the solvents, the crude pink residue was dissolved in DCM, washed with $\mathrm{H}_{2} \mathrm{O}$, brine and subsequently dried over anhydrous MgSO_{4}. The solvent was evaporated to afford a pink solid which was further purified by size-exclusion column chromatography on Biobeads ${ }^{\circledR}-\mathrm{SX} 1$ using distilled THF as the eluent to obtain the desired compound $7\left(R_{\mathrm{f}}=0.45\right.$ in 50% chloroform in hexane on $\left.\mathrm{SiO}_{2}\right)$ as a dark-pink glassy solid ($80.0 \mathrm{mg}, 29.4 \mu \mathrm{~mol}, 14 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 10.40(\mathrm{~s}, 4 \mathrm{H}, \mathrm{r}-\mathrm{H}), 9.53$ (d, $\left.{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 3-\mathrm{H}\right), 9.49\left(\mathrm{~d},{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 2-\mathrm{H}\right), 9.20\left(\mathrm{~d},{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 4-\mathrm{H}\right), 9.16$ (d, $\left.{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 1-\mathrm{H}\right), 8.36\left(\mathrm{~d},{ }^{4} J=1.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{b}-\mathrm{H}\right), 8.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{c}-\mathrm{H}\right), 8.07(\mathrm{t}$,
$\left.{ }^{4} J=1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{a}-\mathrm{H}\right), 8.01\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{d}-\mathrm{H}\right), 7.74\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{h}-\mathrm{H}\right), 7.70\left(\mathrm{~d},{ }^{3} J=\right.$ $8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{e}-\mathrm{H}), 7.37\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{g} / \mathrm{f}-\mathrm{H}\right), 7.12\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{f} / \mathrm{g}-\mathrm{H}\right), 0.93-1.53(\mathrm{~m}$, $120 \mathrm{H}, \mathrm{x} 1-, \mathrm{x} 2-, \mathrm{x} 3-, \mathrm{x} 4-, \mathrm{x} 5-\mathrm{H}), 0.86\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{x} 6-\mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, THF-d8): $\delta 150.9,150.5,150.4,150.3,146.9,146.5,144.6,142.5,141.6,139.5,137.9,135.6$, $135.2,133.7,132.6,132.3,132.2,132.0,131.9,131.7,130.3,123.0,122.5,121.3,119.0,106.4$, $92.9,90.6,90.4,67.7,34.3,32.4,24.9,23.3,14.3,13.3 \mathrm{ppm}$. Elemental analysis $\left(\mathrm{C}_{160} \mathrm{H}_{198} \mathrm{I}_{2} \mathrm{~N}_{8} \mathrm{Si}_{4} \mathrm{Zn}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right)$: Calcd. C, $70.37 ; \mathrm{H}, 70.44 ; \mathrm{N}, 3.98$. Found, C, $70.24 ; \mathrm{H}, 7.25 ; \mathrm{N}, 3.71$.

Synthesis of compound 1

In a reaction tube, compounds $7(75.0 \mathrm{mg}, 27.4 \mu \mathrm{~mol})$ and $\mathbf{8 (3 8 . 7 \mathrm { mg } , 8 2 . 2 \mu \mathrm { mol }) \text { were dissolved }}$ in THF and diisopropylamine ($30 \mathrm{~mL}, 1: 4, \mathrm{v} / \mathrm{v}$). The solution was subjected to 15 min of sparging with N_{2}. Then, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{mg})$ was added under an inert N_{2} atmosphere. The tube was sealed with a screw cap and stirred at $60^{\circ} \mathrm{C}$ for 18 h (TLC). After cooling to rt and evaporation of the solvents, the crude pink residue was dissolved in DCM, washed with $\mathrm{H}_{2} \mathrm{O}$, brine and subsequently dried over anhydrous MgSO_{4}. The solvent was evaporated to furnish a pink solid which was further purified by size-exclusion column chromatography on Biobeads ${ }^{\circledR}$-SX1 using distilled

THF as the eluent to obtain a sticky, pink solid which was subsequently precipitated using $\mathrm{DCM} / \mathrm{MeOH}$ affording the desired compound $1(40.0 \mathrm{mg}, 11.5 \mu \mathrm{~mol}, 42 \%)$ as a dark-pink crystalline solid ($R_{\mathrm{f}}=0.2$ in $50 \% \mathrm{EtOAc}$ in DCM on SiO_{2}). $\mathbf{M p}=168-170{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{5 0 0}$ $\mathbf{M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}$): $\delta 10.40(\mathrm{~s}, 4 \mathrm{H}, \mathrm{r}-\mathrm{H}), 9.52\left(\mathrm{~d},{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 3-\mathrm{H}\right), 9.48\left(\mathrm{~d},{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}\right.$, $\beta 2-\mathrm{H}), 9.19\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 4-\mathrm{H}\right), 9.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 1-\mathrm{H}\right), 8.36\left(\mathrm{~d},{ }^{4} J=1.0 \mathrm{~Hz}, 4 \mathrm{H}\right.$, b-H), $8.30\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{c}-\mathrm{H}\right), 8.07\left(\mathrm{t},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{a}-\mathrm{H}\right), 8.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{d}-\mathrm{H}\right)$, $7.71\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{e}-\mathrm{H}\right), 7.55\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{h}-\mathrm{H}\right), 7.43\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{g} / \mathrm{f}-\mathrm{H}\right)$, $7.37\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{f} / \mathrm{g}-\mathrm{H}\right), 7.15\left(\mathrm{dd},{ }^{3} J=8.6 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{m}-\mathrm{H}\right), 7.08\left(\mathrm{~d},{ }^{3} J=2.0\right.$ Hz, 2H, l-H), 6.89-6.85 (m, 10H, o-, p-, n-H), 4.14-4.09 (m, 16H, q-, v-H), 3.86-3.82 (m, 16H, r-, u-H), 3.74 ($\mathrm{s}, 16 \mathrm{H}, \mathrm{s}-, \mathrm{t}-\mathrm{H}), 0.94-1.53\left(\mathrm{~m}, 120 \mathrm{H}, \mathrm{x} 1-\right.$, x2-, x3-, x4-, x5-H), 0.86 (t, ${ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}$, 36H, x6-H) ppm. ${ }^{13}$ C NMR (125 MHz, THF-d8): $\delta 150.9$ (2C), 150.5, 150.4, 149.9, 147.2, $146.6,144.6,142.5,141.7,139.5,135.6,135.2$, 132.7 (2C), 132.3, 132.2, 132.0, 131.9 (2C), 131.7, 131.5, 130.4, 125.8, 123.1, 122.9, 122.5, 121.8, 121.3, 119.0, 117.9, 116.4, 115.3, 115.2, $114.5,106.4,90.9,90.6,90.5,87.9,71.9,70.5,70.4$ (2C), 70.3 (2C), 70.2, 34.3, 32.3, 24.8, 23.3, 14.3, 13.3. Elemental analysis $\mathrm{C}_{217} \mathrm{H}_{268} \mathrm{~N}_{8} \mathrm{O}_{16} \mathrm{Si}_{4} \mathrm{Zn}_{2} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$): Calcd. C, 72.92; H, 7.64; N, 3.12. Found, C, 72.62; H, 7.24; N, 2.85.

Synthesis of compound 11

In a reaction tube, compounds $\mathbf{9}(505 \mathrm{mg}, 131 \mu \mathrm{~mol})$ and $\mathbf{1 0}(118 \mathrm{mg}, 393 \mu \mathrm{~mol}))$ were dissolved in THF and diisopropylamine ($30 \mathrm{~mL}, 1: 4, \mathrm{v} / \mathrm{v}$). The solution was subjected to 15 min of sparging with N_{2}. Then, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(7.5 \mathrm{mg}, 6.5 \mu \mathrm{~mol})$ was added under an inert N_{2} atmosphere. The tube was sealed with a screw cap and stirred at $65{ }^{\circ} \mathrm{C}$ for 12 h (TLC). After cooling to rt and evaporation of the solvents, the crude brown residue was dissolved in DCM, washed with $\mathrm{H}_{2} \mathrm{O}$, brine and subsequently dried over anhydrous MgSO_{4}. The solvent was evaporated to obtain a crude-yellow solid which was subsequently dissolved in 50 mL THF/MeOH (3:1). To this solu-
tion, $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.00 g as granules) was added and stirred at rt for 4 h until completion (TLC). The suspension was then filtered and the resultant filtrate was evaporated to afford a yellow solid which was further purified by column chromatography ($R_{\mathrm{f}}=0.45$ in $5 \% \mathrm{EtOAc}$ in hexane on SiO_{2}) on silica gel (60-120 mesh) using EtOAc/hexane (5:95) as the eluent to furnish the desired compound $\mathbf{1 1}$ as a bright-yellow sticky solid ($510 \mathrm{mg}, 880 \mu \mathrm{~mol}, 66 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($\mathbf{5 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 7.66\left(\mathrm{t},{ }^{4} J=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{b}-\mathrm{H}\right), 7.50\left(\mathrm{td}, 2 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, \mathrm{c} / \mathrm{e}-\mathrm{H}\right), 7.45(\mathrm{td}$, $\left.2 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, \mathrm{e} / \mathrm{c}-\mathrm{H}\right), 7.30\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{5} J=0.5 \mathrm{~Hz}, \mathrm{~d}-\mathrm{H}\right), 7.06(\mathrm{~s}, 2 \mathrm{H}, \mathrm{a}-\mathrm{H})$, 4.03 (t, ${ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}$, w1-H), 3.09 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{f}-\mathrm{H}$), 1.86-1.26 (m, 24H, (w2-w7)-H), 0.86 (t, ${ }^{3} \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{w} 8-\mathrm{H}) \mathrm{ppm}{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 153.9,135.2,131.9,128.5,123.9$, $122.6,117.1,114.0,93.9,86.8,82.9,77.8,69.8,32.0,29.6$ (2C), 29.5 (2C), 26.3, 22.8, 14.2 ppm.
Elemental analysis $\left(\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{O}_{2} \bullet 1.5 \mathrm{H}_{2} \mathrm{O}\right)$: Calcd. C, 82.72; H, 8.10. Found, C, 82.69; H, 7.75.

Synthesis of compound 2

In a reaction tube, compounds $13(121 \mathrm{mg}, 314 \mu \mathrm{~mol})$ and $12(304 \mathrm{mg}, 941 \mu \mathrm{~mol})$) were dissolved in THF and diisopropylamine ($30 \mathrm{~mL}, 1: 4, \mathrm{v} / \mathrm{v}$). The solution was subjected to 15 min
 The tube was sealed with a screw cap and stirred at $65^{\circ} \mathrm{C}$ for 12 h (TLC). After cooling to rt and evaporation of the solvents, the crude pale yellow residue was dissolved in DCM, washed with $\mathrm{H}_{2} \mathrm{O}$, brine and subsequently dried over anhydrous MgSO_{4}. The solvent was evaporated to obtain a yellow solid which was further purified by column chromatography ($R_{\mathrm{f}}=0.45$ in $4 \% \mathrm{MeOH}$ in DCM on SiO_{2}) on silica gel (60-120 mesh) using $\mathrm{MeOH} / \mathrm{DCM}$ (2:98) as the eluent to obtain 2 as a pale yellow solid ($45 \mathrm{mg}, 59 \mu \mathrm{~mol}, 18 \%$). $\mathbf{M p}=$ decomposition (turns dark brown) at $125^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.73\left(\mathrm{t},{ }^{3} J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{b}-\mathrm{H}\right), 7.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.00 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{f} / \mathrm{g}-\mathrm{H}\right)$, 7.52-7.48 (m, 4H, c-, e-H), 7.36-7.32 (m, 14H, g/f-, d-, j-, k-H), 7.28-7.26 (m, 2H, 1-H), 3.83 (s,
$4 \mathrm{H}, \mathrm{i} / \mathrm{h}-\mathrm{H}), 3.82(\mathrm{~s}, 4 \mathrm{H}, \mathrm{h} / \mathrm{i}-\mathrm{H}), 2.51(\mathrm{~s}, 12 \mathrm{H}, \mathrm{a}-\mathrm{H}) \mathrm{ppm} .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 141.0$, $140.2,135.9,134.4,131.9,131.3,131.2,128.7,128.6,128.4,128.3,127.2,124.3,123.9,123.4$, 121.7, $97.5,90.2,89.3,88.6,53.3,53.0,18.6$. Elemental analysis $\left(\mathrm{C}_{58} \mathrm{H}_{48} \mathrm{~N}_{2} \cdot{ }^{\circ} \cdot .5 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: Calcd. C, 86.16; H, 6.06; N, 3.44. Found, C, 86.44; H, 5.96; N, 3.34. ESI-MS: $m / z(\%)=773.1$ (100) $[2+H]^{+}$.

Synthesis of compound $\left[2\left(\mathrm{H}^{+}\right)_{2}\right]\left(\mathrm{PF}_{6}{ }^{-}\right)_{2}$

A solution of trifluoroacetic acid ($73.5 \mathrm{mg}, 646 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to a solution of $2(50.0 \mathrm{mg}, 64.6 \mu \mathrm{~mol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After stirring for 15 min at $\mathrm{rt}, \mathrm{NH}_{4} \mathrm{PF}_{6}$ ($104 \mathrm{mg}, 639 \mu \mathrm{~mol}$) in 10 mL of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (3:1) was added dropwise and the solution was stirred at rt for another 3 h . The solution was then evaporated in vacuo to obtain a brown suspension. The suspension was filtered, the filtrate was washed several times with MeOH and $\mathrm{Et}_{2} \mathrm{O}$. The residue was then dried in ambient conditions for 2 h to furnish product $\left[\mathbf{2}\left(\mathrm{H}^{+}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ as an orange solid ($35 \mathrm{mg}, 32 \mu \mathrm{~mol}, 51 \%$). $\mathbf{M p}=>250^{\circ}{ }^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathbf{M H z}, \mathbf{C D} 3 \mathbf{C N}): \delta 7.77$ $\left(\mathrm{t},{ }^{3} J=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{b}-\mathrm{H}\right), 7.64\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{f} / \mathrm{g}-\mathrm{H}\right), 7.62\left(\mathrm{td},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, c/e-H), $7.57\left(\mathrm{td},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{e} / \mathrm{c}-\mathrm{H}\right), 7.51\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{g} / \mathrm{f}-\mathrm{H}\right), 7.49-7.45$ (m, 12H, j-, k-, l-, d-H), 4.27-4.23 (m, 8H, i-, h-H), 2.52 (s, 12H, a-H) ppm. ${ }^{13}$ C NMR ($\mathbf{1 2 5}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$: $\delta 137.0,134.8,132.9,132.5,132.3,131.9,131.5,131.3,131.1,130.7,130.1$, $130.0,125.0,124.9,124.1,124.0,98.1,90.4,89.8,89.7,52.4,51.9,18.6$. Elemental analysis $\left(\mathrm{C}_{58} \mathrm{H}_{50} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{P}_{2}\right)$: Calcd. C, 65.41 ; H, 4.73; N, 2.63. Found, C, $65.15 ; \mathrm{H}, 4.74 ;$ N, 2.59. ESI-MS: $m / z(\%)=773.0(100)[2+H]^{+}$.

Synthesis of compound 4

In a reaction tube, compounds $11(200 \mathrm{mg}, 343 \mu \mathrm{~mol})$ and $12(332 \mathrm{mg}, 1.03 \mathrm{mmol})$) were dissolved in THF and diisopropylamine ($30 \mathrm{~mL}, 1: 4, \mathrm{v} / \mathrm{v}$). The solution was subjected to 15 min of sparging with N_{2}. Then, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(21 \mathrm{mg}, 17 \mu \mathrm{~mol})$ was added under an inert N_{2} atmosphere. The tube was sealed with a screw cap and stirred at $65^{\circ} \mathrm{C}$ for 12 h (TLC). After cooling to rt and evaporation of the solvents, the crude yellow residue was dissolved in DCM, washed with $\mathrm{H}_{2} \mathrm{O}$ as well as brine and subsequently dried over anhydrous MgSO_{4}. The solvent was evaporated to furnish a yellow solid that was further purified by column chromatography ($R_{\mathrm{f}}=0.45$ in 2% MeOH in DCM on SiO_{2}) on silica gel (60-120 mesh) using $\mathrm{MeOH} / \mathrm{DCM}$ (2:98) as the eluent to afford $\mathbf{4}$ as a bright-yellow solid ($181 \mathrm{mg}, 185 \mu \mathrm{~mol}, 54 \%$). $\mathbf{M p}=130-132{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl ${ }_{3}$): $\delta 7.69\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{b}-\mathrm{H}\right.$), $7.52-7.49(\mathrm{~m}, 8 \mathrm{H}, \mathrm{f} / \mathrm{g}-, \mathrm{c}-, \mathrm{e}-\mathrm{H}), 7.37\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0\right.$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{g} / \mathrm{f}-\mathrm{H}), 7.36-7.31(\mathrm{~m}, 10 \mathrm{H}, \mathrm{d}-\mathrm{j}-\mathrm{k}-\mathrm{H}), 7.25\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}\right), 7.05(\mathrm{~s}, 2 \mathrm{H}, \mathrm{a}-\mathrm{H})$, 4.05 (t, 4H, w1-H), 3.83 (s, 4H, i/h-H), 3.80 (s, 4H, h/i-H), 1.87-1.26 (m, 24H, (w2-w7)-H), 0.84 (t, $\left.{ }^{3} J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{w} 8-\mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 154.2,141.9,141.0,134.7$, $132.0,131.7,131.6,129.0,128.7,128.6,128.5,127.3,124.2,121.7,117.3,114.3,94.3,90.4$, 88.5, 87.0, 70.1, 53.5, 53.2, 32.2, 29.8 (2C), 29.8, 29.7, 26.5, 23.1, 14.3 ppm. Elemental analysis $\left(\mathrm{C}_{70} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: Calcd. C, 83.36; H, 7.24; N, 2.76. Found, C, 82.96; H, 6.87; N, 2.40. ESI-MS: $m / z(\%)=973.3(100)[4+\mathrm{H}]^{+}$.

Synthesis of compound $\left[12\left(\mathrm{H}^{+}\right)\right]\left(\mathrm{PF}_{6}{ }^{-}\right)$

To compound $12(2.00 \mathrm{~g}, 6.19 \mathrm{mmol})$, dissolved in 75 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{HPF}_{6}$ was added dropwise at $0{ }^{\circ} \mathrm{C}$ resulting in a white precipitation. HPF_{6} was added until no further precipitation was observed. The mixture was filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then dried under high vacuum to afford $\left[\mathbf{1 2}\left(\mathrm{H}^{+}\right)\right]\left(\mathrm{PF}_{6}{ }^{-}\right)(2.45 \mathrm{~g}, 5.25 \mathrm{mmol}, 85 \%) . \mathbf{M p}=223-225{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right): \delta=7.83\left(\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{f}-\mathrm{H}\right), 7.46(\mathrm{~s}, 5 \mathrm{H}, \mathrm{j}-\mathrm{k}-, \mathrm{l}-\mathrm{H}), 7.24\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=8.5 \mathrm{~Hz}, \mathrm{~g}-\mathrm{H}\right)$, 4.22 (s, 2H, h-H), 4.18 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{i}-\mathrm{H}$) ppm. ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 139.2, 133.2, 131.3, 131.2, 131.1, 130.8, 130.0, 52.5, 51.8 ppm. Elemental analysis ($\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{INP}$): Calcd. C, 35.84; H, 3.22; N, 2.99. Found, C, 35.64; H, 3.09; N, 2.91. ESI-MS: $m / z(\%)=324.0(100)[\mathbf{1 2 + H}]^{+}$.

2. Synthesis and characterization of complexes

Model complex $[\mathbf{1 2 \cdot 1 4}]^{9}$

[12•14]
In an NMR tube, compound $12(462 \mu \mathrm{~g}, 757 \mathrm{nmol})$ and zinc porphyrin $\mathbf{1 4}^{\mathbf{8}}(244 \mu \mathrm{~g}, 757 \mathrm{nmol})$ were dissolved in $560 \mu \mathrm{~L}$ of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ to furnish a clear pink solution. The sample was submitted for NMR measurement. Data were in close agreement with those reported. ${ }^{9}$ Yield: Quantitative (by NMR). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 10.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{r}-\mathrm{H}), 9.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 1-\mathrm{H}\right)$, $8.88\left(\mathrm{~d},{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 2-\mathrm{H}\right), 7.44\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{a}-\mathrm{H}\right), 7.33(\mathrm{~s}, 4 \mathrm{H}, \mathrm{s}-\mathrm{H}), 7.14-7.07(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{d}-, \mathrm{e}-\mathrm{H}), 6.70-6.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{c}-\mathrm{H}), 6.41\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{b}-\mathrm{H}\right), 2.66(\mathrm{~s}, 6 \mathrm{H}, \mathrm{u}-\mathrm{H}), 2.59(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{i} / \mathrm{h}-\mathrm{H}), 2.57(\mathrm{~s}, 2 \mathrm{H}, \mathrm{h} / \mathrm{i}-\mathrm{H}) 1.80(\mathrm{~s}, 12 \mathrm{H}, \mathrm{t}-\mathrm{H}) \mathrm{ppm}$.

Model complex C1 ${ }^{10}$

C1

In an NMR tube, crown ether DB24C8 ($339 \mu \mathrm{~g}, 756 \mathrm{nmol}$) and $\left.[\mathbf{1 2 \bullet (H)})_{2}\right] \mathrm{PF}_{6}(355 \mu \mathrm{~g}, 756 \mathrm{nmol})$ were dissolved in $50 \mu \mathrm{~L}$ of $\mathrm{CD}_{3} \mathrm{CN}$ to obtain a clear solution. The solution was then evaporated to dryness using a stream of dry N_{2} gas. The resultant residue was dissolved in $560 \mu \mathrm{~L}$ of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and submitted for NMR measurement. Data were in close agreement with those reported. ${ }^{10}$ Yield: Quantitative (by NMR). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.42\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{b}-\mathrm{H}\right.$), 7.34-7.25 (m, 5H, d-,e-H), $7.00\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{a}-\mathrm{H}\right), 6.91-6.89(\mathrm{~m}, 4 \mathrm{H}, \mathrm{o}-\mathrm{p}-\mathrm{H}), 6.77-6.75$ (m, 4H, o-,p-H), 4.64-4.61 (m, 2H, h-H), 4.59-4.56 (m, 2H, i-H), 4.09-4.04 (m, 8H, j-H), 3.763.74 (m, 8H, k-H), 3.52-3.43 (m, 8H, l-H) ppm.

Complex [1•2]

In an NMR tube, compounds $\mathbf{1}(616 \mu \mathrm{~g}, 176 \mu \mathrm{~mol})$ and $2(136 \mu \mathrm{~g}, 0.176 \mu \mathrm{~mol})$ were dissolved in $560 \mu \mathrm{~L}$ of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ furnishing a dark pink solution. The sample was submitted for NMR measurement. Yield: Quantitative (by NMR). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{2}$): $\delta 10.37$ (s, 4H, r-H), 9.50 (d, $\left.{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 3-\mathrm{H}\right), 9.46\left(\mathrm{~d},{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 2-\mathrm{H}\right), 9.17\left(\mathrm{~d},{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 4-\mathrm{H}\right), 9.14$ $\left(\mathrm{d},{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 1-\mathrm{H}\right), 8.36(\mathrm{~s}, 4 \mathrm{H}, \mathrm{b}-\mathrm{H}), 8.27\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{c}-\mathrm{H}\right), 8.06(\mathrm{~s}, 2 \mathrm{H}, \mathrm{a}-\mathrm{H})$, $8.01\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{d}-\mathrm{H}\right), 7.70\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{e}-, \mathrm{b}\right.$ ' H), $7.55\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{f} / \mathrm{g}-\mathrm{H}\right), 7.52(\mathrm{td}$, $\left.{ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{c} / \mathrm{e}{ }^{\prime}-\mathrm{H}\right), 7.48\left(\mathrm{td},{ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{e} / \mathrm{c} \cdot \mathrm{H}\right.$), $7.42-7.35$ ($\mathrm{m}, 10 \mathrm{H}, \mathrm{g} / \mathrm{f}-, \mathrm{d}^{\prime}-, \mathrm{h}-\mathrm{H}$), 7.31 (brd, ${ }^{3} J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{f}^{\prime}-\mathrm{H}$), 7.16-7.11 (m, 8H, m-, k'-, l'-H), 7.08 $\left(\mathrm{d},{ }^{3} \mathrm{~J}=2.0 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}\right), 6.89-6.85(\mathrm{~m}, 10 \mathrm{H}, \mathrm{o}-, \mathrm{p}-, \mathrm{n}-\mathrm{H}), 6.70$ (brs, $4 \mathrm{H}, \mathrm{j}^{\prime}-\mathrm{H}$), 6.63 (brs, 4H, g'H), 4.14-4.09 (m, 16H, q-, v-H), $4.03\left(\mathrm{t},{ }^{3} J=6.5 \mathrm{~Hz}, 4 \mathrm{H}\right.$, w1-H), 3.86-3.82 (m, 16H, r-, u-H), 3.74 (s, 16H, s-, t-H), 2.51 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{a}^{\prime}-\mathrm{H}$), 2.49 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{i}^{\prime} / \mathrm{h}$ '-H), 2.47 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{h}^{\prime} / \mathrm{i}{ }^{\prime}-\mathrm{H}$), 0.94-1.88 $(\mathrm{m}, 120 \mathrm{H},(\mathrm{x} 1-\mathrm{x} 5)-\mathrm{H}), 0.87\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{x} 6-\mathrm{H}\right) \mathrm{ppm}$. Elemental analysis $\left(\mathrm{C}_{275} \mathrm{H}_{316} \mathrm{~N}_{10} \mathrm{O}_{16} \mathrm{Si}_{4} \mathrm{Zn}_{2} \cdot 3.5 \mathrm{H}_{2} \mathrm{O} \cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: Calcd. C, $71.86 ; \mathrm{H}, 7.15 ; \mathrm{N}, 3.00$. Found, C, $71.56 ; \mathrm{H}$, 7.31; N, 3.06.

Complex $\left[\mathbf{1 \cdot 2}\left(\mathrm{H}^{+}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$

Compounds $1(0.476 \mu \mathrm{~g}, 0.134 \mu \mathrm{~mol})$ and $\left[\mathbf{1} \mathbf{2}\left(\mathrm{H}^{+}\right)_{2}\right]\left(\mathrm{PF}_{6}^{-}\right)_{2}(143 \mu \mathrm{~g}, 0.134 \mu \mathrm{~mol})$ were dissolved in $50 \mu \mathrm{~L}$ of $\mathrm{CD}_{3} \mathrm{CN}: \mathrm{CD}_{2} \mathrm{Cl}_{2}$ (1:1). This solution was evaporated to dryness using a stream of dry N_{2} gas and the pink residue was then redissolved in $560 \mu \mathrm{~L}$ of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ furnishing a clear, pink solution. The sample was submitted for NMR measurement. Yield: Quantitative (by NMR). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CD2Cl2): $\delta 10.40$ (s, 4H, r-H), $9.52\left(\mathrm{~d},{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 3-\mathrm{H}\right), 9.48\left(\mathrm{~d},{ }^{3} J=4.6\right.$ $\mathrm{Hz}, 4 \mathrm{H}, \beta 2-\mathrm{H}), 9.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 4-\mathrm{H}\right), 9.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 1-\mathrm{H}\right), 8.35(\mathrm{~s}, 4 \mathrm{H}, \mathrm{b}-$ H), $8.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{c}-\mathrm{H}\right), 8.07(\mathrm{~s}, 2 \mathrm{H}, \mathrm{a}-\mathrm{H}), 8.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{d}-\mathrm{H}\right), 7.82(\mathrm{~s}, 2 \mathrm{H}$, b'-H), 7.73-7.68 (m, 4H, e-H), 7.65 (d, $\left.{ }^{3} J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{e}^{\prime} / \mathrm{c}^{\prime}-\mathrm{H}\right), 7.62\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{c}^{\prime} / \mathrm{e}^{\prime}-\right.$ H), $7.58\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{f} / \mathrm{g}-\mathrm{H}\right), 7.54-7.48\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{g}^{\prime}-\right.$, $\left.\mathrm{d}^{\prime}-, \mathrm{j}^{\prime}-\mathrm{H}\right), 7.43-7.38\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{g} / \mathrm{f}-, \mathrm{k}^{\prime}-\right.$ H), 7.35-7.28 (m, 6H, h-, l'-H), $7.21\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{f}^{\prime}-\mathrm{H}\right), 7.16\left(\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{m}-\mathrm{H}\right)$, 7.00 (s, 2H, l-H), 6.93-6.70 (m, 10H, o-, p-, n-H), 4.74 (brs, 8H, i'-, h'-H), 4.14-3.43 (m, 48H, q-, v-, r-, u-, s-, t-H), 2.56 (s, 6H, a'-H), 2.55 (s, 6H, a'-H), 0.94-1.88 (m, 120H, (x1-x5)-H), 0.87 (t, $\left.{ }^{3} J=6.4 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{x} 6-\mathrm{H}\right) \mathrm{ppm}$. ESI-MS: $\mathrm{m} / z(\%)=2162.1(100)\left[\mathbf{1} \cdot 2 \cdot(\mathrm{H})_{2} \cdot\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]^{2+}$. Elemental analysis $\left(\mathrm{C}_{275} \mathrm{H}_{318} \mathrm{~F}_{12} \mathrm{~N}_{10} \mathrm{O}_{16} \mathrm{P}_{2} \mathrm{Si}_{4} \mathrm{Zn}_{2} \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 3.5 \mathrm{H}_{2} \mathrm{O}\right)$: Calcd. C, $68.56 ; \mathrm{H}, 6.85 ; \mathrm{N}$, 2.88. Found, C, 68.84; H, 6.70; N, 2.49.

Complex [1•4]

In an NMR tube, compounds $1(621 \mu \mathrm{~g}, 178 \mathrm{nmol})$ and $4(172 \mu \mathrm{~g}, 178 \mathrm{nmol})$ were dissolved in $560 \mu \mathrm{~L}$ of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ furnishing a dark pink solution. The sample was submitted for NMR measurement. Yield: Quantitative (by NMR). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}\right.$): $\delta 10.37$ ($\mathrm{s}, 4 \mathrm{H}, \mathrm{r}-\mathrm{H}$), 9.50 (d, $\left.{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 3-\mathrm{H}\right), 9.46\left(\mathrm{~d},{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 2-\mathrm{H}\right), 9.17\left(\mathrm{~d},{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 4-\mathrm{H}\right), 9.14$ $\left(\mathrm{d},{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta 1-\mathrm{H}\right), 8.36\left(\mathrm{~d},{ }^{4} J=1.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{b}-\mathrm{H}\right), 8.27\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{c}-\mathrm{H}\right), 8.06(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{a}-\mathrm{H}), 8.01\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{d}-\mathrm{H}\right), 7.70\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{e}-\mathrm{H}\right), 7.68\left(\mathrm{t},{ }^{3} J=1.6 \mathrm{~Hz}, 2 \mathrm{H}\right.$, b'-H), $7.55\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{f} / \mathrm{g}-\mathrm{H}\right), 7.49\left(\mathrm{td},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{c}\right.$ '/e'-H), $7.48(\mathrm{td}$, $\left.{ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{e}^{\prime} / \mathrm{c}^{\prime}-\mathrm{H}\right), 7.41\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{g} / \mathrm{f}-\mathrm{H}\right), 7.37-7.34\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{d}{ }^{\prime}-\right.$, f${ }^{\prime}-$ H), $7.29\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{h}-\mathrm{H}\right), 7.15\left(\mathrm{dd},{ }^{3} J=8.6 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{m}-\mathrm{H}\right), 7.12-7.09(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{k}^{\prime}-, \mathrm{l}^{\prime}-\mathrm{H}\right), 7.08\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{l}-\mathrm{H}\right), 7.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{a}^{\prime}-\mathrm{H}\right), 6.89-6.85(\mathrm{~m}, 10 \mathrm{H}, \mathrm{o}-, \mathrm{p}-, \mathrm{n}-\mathrm{H})$,
6.65 (brd, $\left.{ }^{3} J=7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{j}^{\prime}-\mathrm{H}\right), 6.58$ (brd, $\left.{ }^{3} J=7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{g}{ }^{\prime}-\mathrm{H}\right), 4.14-4.09(\mathrm{~m}, 16 \mathrm{H}, \mathrm{q}-, \mathrm{v}-\mathrm{H})$, $4.03\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{w} 1-\mathrm{H}\right), 3.86-3.82(\mathrm{~m}, 16 \mathrm{H}, \mathrm{r}-, \mathrm{u}-\mathrm{H}), 3.74(\mathrm{~s}, 16 \mathrm{H}, \mathrm{s}-, \mathrm{t}-\mathrm{H}), 2.54(\mathrm{~s}, 4 \mathrm{H}$, i'/h'-H), 2.44 (s, 4H, h'/i'-H), 1.88-0.86 (m, 144H, (x1-x5)-H, (w2-w7)-H), $0.87\left(\mathrm{t},{ }^{3} J=6.4 \mathrm{~Hz}\right.$, $36 \mathrm{H}, \mathrm{x} 6-\mathrm{H}), 0.83\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{w} 8-\mathrm{H}\right) \mathrm{ppm}$. Elemental analysis $\left(\mathrm{C}_{287} \mathrm{H}_{340} \mathrm{~N}_{10} \mathrm{O}_{18} \mathrm{Si}_{4} \mathrm{Zn}_{2} \cdot 2.5\right.$ $\mathrm{H}_{2} \mathrm{O} \cdot 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$): Calcd. C, 71.13; H, 7.26; N, 2.84. Found, C, 70.92; H, 7.02; N, 2.95.

3. Model studies

Firstly, self-sorting was tested by mixing ligands 12, DB24C8 and 14 in a 1:1:1 molar ratio in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 298 K . The ${ }^{1} \mathrm{H}$-NMR spectrum measured subsequently was compared with those of the ligand 12 (Fig. S2e), mixture of free 14, DB24C8 (Fig. S2f) and [12•14] (Fig. S2d), which indicated quantitative formation of $[\mathbf{1 2 \cdot 1 4}]$ and free DB24C8 (Fig. S2c).

Secondly, ligands 14, DB24C8 and $\left[\mathbf{1 2}\left(\mathrm{H}^{+}\right)\right]\left(\mathrm{PF}_{6}^{-}\right)$were mixed in a 1:1:1 molar ratio in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 298 K . The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum when compared with that of the mixture containing the free ligands DB24C8, 14 and complex C1 (Fig. S2a) indicated the quantitative formation of complex C1 and free 14 (Fig. S2b).

The study confirms the orthogonality of the $\mathrm{NH}_{\text {Amine }} \rightarrow \mathrm{ZnPor}$ and the ammonium \subset crown ether pseudo-rotaxane interactions.

S

DB24C8

12

C1

Scheme S4: Ligands 12, 14, DB24C8 and $\left[12\left(\mathrm{H}^{+}\right)\right]\left(\mathrm{PF}_{6}^{-}\right)$and the resultant complexes $[\mathbf{1 2 \cdot 1 4}]$ and $\mathbf{C 1}$ formed in this model study.
(a) Complex C1

Figure S2: Comparison of ${ }^{1} \mathrm{H}$-NMR spectra $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500 \mathrm{MHz}\right)$ of complex $\mathbf{C 1}$, the mixture $\mathbf{C 1}+\mathbf{1 4}$, the mixture DB24C8 + [12•14], complex [12•14], ligand 12, and the mixture 14+DB24C8.

4. NMR Spectra: ${ }^{1} \mathbf{H},{ }^{13} \mathbf{C},{ }^{1} \mathbf{H}-{ }^{1} \mathbf{H}$ COSY

Compound 7

Figure S3: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $7\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S4: ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectrum of compound $7\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S5: ${ }^{13} \mathrm{C}$ spectrum of compound 7 (THF- $\mathrm{d}_{8,} 125 \mathrm{MHz}, 298 \mathrm{~K}$).

Compound 1

Figure S6: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S7: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{1}\left(\mathrm{THF}-\mathrm{d}_{8}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S8: ${ }^{13} \mathrm{C}$ spectrum of compound $\mathbf{1}$ (THF-d $\mathrm{d}_{8}, 125 \mathrm{MHz}, 298 \mathrm{~K}$).

Compound 2

Figure S9: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $2\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S10: ${ }^{13} \mathrm{C}$ spectrum of compound $\mathbf{2}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 125 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Compound $\left[2\left(\mathrm{H}^{+}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$

Figure S11: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\left[\mathbf{2}\left(\mathrm{H}^{+}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S12: ${ }^{13} \mathrm{C}$ spectrum of compound $\left[\mathbf{2}\left(\mathrm{H}^{+}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}\left(\mathrm{CD}_{3} \mathrm{CN}, 125 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Compound 4

Figure S13: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $4\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S14: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{4}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S15: ${ }^{13} \mathrm{C}$ spectrum of compound $\mathbf{4}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 125 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Compound 11

Figure S16: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $11\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S17: ${ }^{13} \mathrm{C}$ spectrum of compound $\mathbf{1 1}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Compound $\left[12\left(\mathrm{H}^{+}\right)\right]\left(\mathrm{PF}_{6}-\right)$

Figure S18: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\left[\mathbf{1 2}\left(\mathrm{H}^{+}\right)\right]\left(\mathrm{PF}_{6}{ }^{-}\right)\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S19: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\left[\mathbf{1 2}\left(\mathrm{H}^{+}\right)\right]\left(\mathrm{PF}_{6}-\right)\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S20: ${ }^{13} \mathrm{C}$ spectrum of compound $\left[\mathbf{1 2}\left(\mathrm{H}^{+}\right)\right]\left(\mathrm{PF}_{6}{ }^{-}\right)\left(\mathrm{CD}_{3} \mathrm{CN}, 125 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Complex [1•2]

Figure S21: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of complex $[\mathbf{1 \cdot 2}]\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S22: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of complex $[\mathbf{1 \cdot 2}]\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Complex $\left[\mathbf{1 \cdot 2}\left(\mathrm{H}^{+}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$

Figure S23: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of complex $\left[\mathbf{1 \bullet 2}\left(\mathrm{H}^{+}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S24: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of complex $\left[\mathbf{1} \mathbf{2}\left(\mathrm{H}^{+}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Complex [1•4]

Figure S25: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of complex $[\mathbf{1 \cdot 4}]\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S26: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of complex $[\mathbf{1 \cdot 4}]\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S27: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY NMR spectrum of complex $\left[\mathbf{1} \cdot \mathbf{2}\left(\mathrm{H}^{+}\right)\right]\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500 \mathrm{MHz}\right.$, mixing time $=500 \mathrm{~ms}$, 298 K$)$ The complex $\left[\mathbf{1 \cdot 2}\left(\mathrm{H}^{+}\right)\right]$was generated in situ by adding 1 eq DBU to $\left[\mathbf{1 \cdot 2}\left(\mathrm{H}^{+}\right)_{2}\right]$ and a ROESY-NMR was recorded for the sample.

5. ${ }^{1} \mathbf{H}-{ }^{\mathbf{1}} \mathbf{H}$ DOSY NMR

Figure S28: ${ }^{1} \mathrm{H}$-DOSY NMR of $\left[\mathbf{1 \cdot 2}\left(\mathrm{H}^{+}\right)_{2}\right]\left(\mathrm{PF}_{6}{ }^{-}\right)_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(600 \mathrm{MHz}, 298 \mathrm{~K})$. Diffusion coefficient $D=3.30 \times$ $10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ and experimental hydrodynamic radius $r=16.0 \AA$.

Figure S29: ${ }^{1} \mathrm{H}$-DOSY NMR of $[\mathbf{1 - 2}]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(600 \mathrm{MHz}, 298 \mathrm{~K})$. Diffusion coefficient $D=4.40 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ and experimental hydrodynamic radius $r=12.0 \AA$.

Figure S30: ${ }^{1} \mathrm{H}$-DOSY NMR of $[\mathbf{1 \cdot 4}]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(600 \mathrm{MHz}, 298 \mathrm{~K})$. Diffusion coefficient $D=3.50 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ and experimental hydrodynamic radius $r=15.2 \AA$.

6. Stepwise walking using DBU titration

Figure S31: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of titration of 2.0 eq of DBU against equimolar $(0.35 \mathrm{mM})$ mixture of $\left[\mathbf{1 \bullet 2}\left(\mathrm{H}^{+}\right)_{2}\right]\left(\mathrm{PF}_{6}^{-}\right)_{2}$ and 1,3,5-trimethoxybenzene (TMB, internal standard) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 298 K . Ratio of TMB : $\left[\mathbf{1} \mathbf{2}\left(\mathrm{H}^{+}\right)\right]\left(\mathrm{PF}_{6}^{-}\right)$is calculated by integration of characteristic peak of TMB (integration set to 3 ; constant) at 6.01 ppm and integration of the r-H signal of formed $\left[\mathbf{1} \mathbf{2}\left(\mathrm{H}^{+}\right)\right]\left(\mathrm{PF}_{6}{ }^{-}\right)$at 10.36 ppm in the mixture. Since, the signal at 10.36 ppm only represents exactly half of the total r-H signals of $\left[\mathbf{1 \cdot 2}\left(\mathrm{H}^{+}\right)\right]\left(\mathrm{PF}_{6}{ }^{-}\right)$, the $\%\left[\mathbf{1} \mathbf{2}\left(\mathrm{H}^{+}\right)\right]\left(\mathrm{PF}_{6}{ }^{-}\right)$is calculated using the equation below. Other possible assemblies in this mixture during the course of the titration are: $\left[\mathbf{1} \cdot \mathbf{2}\left(\mathrm{H}^{+}\right)_{2}\right]\left(\mathrm{PF}_{6}{ }^{-}\right)_{2}$ and $[\mathbf{1} \mathbf{\bullet}]$.

Equation 1. Formula used to calculate the \%: $\left[\mathbf{1 \cdot 2}\left(\mathrm{H}^{+}\right)\right]\left(\mathrm{PF}_{6}{ }^{-}\right)$(Fig S26) formed in the titration using integration of r H signal at 10.36 ppm vs TMB as shown in Fig 3a in manuscript.

$$
\begin{gathered}
\%\left[\mathbf{1 \cdot 2}\left(\mathrm{H}^{+}\right)\right]\left(\mathrm{PF}_{6}^{-}\right)=\frac{\text { Integration of } \mathrm{r}-\mathrm{H} \text { signal (10.36 ppm) * } 2}{\text { Integration of } \mathrm{r}-\mathrm{H} \text { for all assemblies }} \\
\text { * Integration of } r \text { - } \mathrm{H} \text { for all assemblies is a constant and equal to } 4
\end{gathered}
$$

7. Stepwise walking using chemical fuel (two cycles)

A mixture of $1(645 \mu \mathrm{~g}, 185 \mathrm{nmol})$ and $4(179 \mu \mathrm{~g}, 185 \mathrm{nmol})$ were dissolved in $500 \mu \mathrm{~L}$ of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ in an NMR tube with. Then, the assembly [1•4] was treated with chemical fuel $\mathbf{3}$ (94.8 $\mu \mathrm{g}, 462 \mathrm{nmol}$) at room temperature.

Figure S32: Partial ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ recorded at various times (after start) as shown by time stamps on the right. Marked proton signals r-H split into two sets approximately during the middle of the full cycle. Signals marked with asterisks are $\mathrm{j}^{\prime}, \mathrm{g}^{\prime}-\mathrm{H}$ which are attributed to reformation of the starting state/assembly $[\mathbf{1 \bullet 4}]$ after consumption of all the fuel that was added in the beginning of cycle 1 .

Figure S33: Partial ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ recorded at various times (after start) as shown by time stamps on the right. Proton signals of h ', i '-H marked with asterisks are attributed to regeneration of the starting state/assembly [1•4] (in Phase-3) after consumption of all the fuel added in the beginning of cycle 1.

Figure S34: Partial ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ recorded at various times (after start) as shown by time stamps on the right. Marked proton signals r-H don't clearly split into two sets (only lateral shifting of the r-H signal) during the second cycle. Signals marked with asterisks are j', g'-H which are attributed to reformation of the starting state/assembly [1•4] after consumption of all the fuel that was added in the beginning of cycle 2 . Signal of the chemical waste/byproduct accumulated in the system is shown at 7.25 ppm .

8. ESI-MS Spectra

Figure S35 : ESI-MS of ligand $\left[\mathbf{2}\left(\mathrm{H}^{+}\right)_{2}\right]\left(\mathrm{PF}_{6}^{-}\right)_{2}$. Inset: The experimental and theoretical (red) isotopic distributions are in good agreement.

Figure S36: ESI-MS of ligand 2 after protonation. Inset: The experimental and theoretical (red) isotopic distributions correlate well.

Figure S37: ESI-MS of ligand 4 after protonation. Inset: The experimental and theoretical (red) isotopic distributions correlate well.

Figure S38: ESI-MS of complex $\left[\mathbf{1} \mathbf{\bullet}\left(\mathrm{H}^{+}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ dissolved in DCM/MeOH (4:1). No isotopic distribution available above $m / z>2000$.

Figure S39: ESI-MS of ligand $\left[12\left(\mathrm{H}^{+}\right)\right]\left(\mathrm{PF}_{6}^{-}\right)$. Inset: The experimental and theoretical (red) isotopic distributions correlate well.

9. References

1. J. A. Berrocal, C. Biagini, L. Mandolini and S. Di Stefano, Coupling of the Decarboxylation of 2-Cyano-2phenylpropanoic Acid to Large-Amplitude Motions: A Convenient Fuel for an Acid-Base-Operated Molecular Switch, Angew. Chem. Int. Ed., 2016, 55, 6997-7001.
2. I. Aujard, J.-P. Baltaze, J.-B. Baudin, E. Cogné, F. Ferrage, L. Jullien, É. Perez, V. Prévost, L. M. Qian and O. Ruel, Tetrahedral Onsager Crosses for Solubility Improvement and Crystallization Bypass, J. Am. Chem. Soc., 2001, 123, 8177-8188.
3. A. Ghosh, I. Paul and M. Schmittel, Multitasking with Chemical Fuel: Dissipative Formation of a Pseudorotaxane Rotor from Five Distinct Components, J. Am. Chem. Soc., 2021, 143, 5319-5323.
4. V. V. Rajasekaran, I. Paul and M. Schmittel, Reversible switching from a three- to a nine-fold degenerate dynamic slider-on-deck through catenation, Chem. Commun., 2020, 56, 12821-12824.
5. C. Montoro-García, M. J. Mayoral, R. Chamorro and D. González-Rodríguez, How Large Can We Build a Cyclic Assembly? Impact of Ring Size on Chelate Cooperativity in Noncovalent Macrocyclizations, Angew. Chem. Int. Ed., 2017, 56, 15649-15653.
6. M. A. B. Block and S. Hecht, Poly(propylene oxide)-Poly(phenylene ethynylene) Block and Graft Copolymers, Macromolecules, 2008, 41, 3219-3227.
7. B. M. Illescas, J. Santos, M. C. Díaz, N. Martín, C. M. Atienza and D. M. Guldi, Supramolecular Threaded Complexes from Fullerene-Crown Ether and π-Extended TTF Derivatives, Eur. J. Org. Chem., 2007, 2007, 50275037.
8. I. Paul, A. Goswami, N. Mittal, M. Schmittel, M. I. Sc Paul, M. A. Sc Goswami, M. N. Sc Mittal and D. chmittel, Catalytic Three-Component Machinery: Control of Catalytic Activity by Machine Speed, Angew. Chem. Int. Ed., 2018, 57, 354-358.
9. V. P. Andreev, P. S. Sobolev, D. O. Zaitsev, L. A. Remizova and V. A. Tafeenko, Coordination of secondary and tertiary amines to zinc tetraphenylporphyrin, Russ. J. Gen. Chem., 2014, 84, 1979-1988.
10. P. R. Ashton, P. J. Campbell, P. T. Glink, D. Philp, N. Spencer, J. F. Stoddart, E. J. T. Chrystal, S. Menzer, D. J. Williams and P. A. Tasker, Dialkylammonium Ion/Crown Ether Complexes: The Forerunners of a New Family of Interlocked Molecules, Angew. Chem. Int. Ed., 1995, 34, 1865-1869.
