Supplementary Information

Anion Receptors with Nitrone C-H Hydrogen Bond Donors

Xuxian He, Richard R. Thompson, Sarah A. Clawson, Frank R. Fronczek, Semin Lee*
Department of Chemistry, Louisiana State University
Baton Rouge LA 70803, USA
Email of the corresponding author: seminlee@1su.edu

S. 1 General Methods

S. 2 Synthesis and Characterization of Compounds
S. 3 NMR Spectra of Compounds
S. 4 Determining Anion Association Constant Using ${ }^{1} H$ NMR Titration
S. 5 Computational Studies of Dinitrone 3
S. 6 X-ray Crystallographic Analysis of Dinitrone 3
S. 7 References

S. 1 General methods

All commercially available reagents and solvents were used without purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz and 500 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz and 125 MHz) were recorded on a Bruker AVIII400 MHz Nanobay and Bruker AVIII 500 MHz at rt (298 K). Chemical shifts (δ) were referenced to tetramethylsilane (TMS) or residual solvent peaks, chloroform (7.26 ppm for ${ }^{1} \mathrm{H}$ NMR, 77.16 ppm for ${ }^{13} \mathrm{C}$ NMR $)$, acetone- $d_{6}\left(2.05 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ NMR, 29.84 ppm for ${ }^{13} \mathrm{C}$ NMR $)$, DMSO- $d_{6}(2.50$ ppm for ${ }^{1} \mathrm{H}$ NMR, 39.52 ppm for ${ }^{13} \mathrm{C}$ NMR), acetonitrile- $d_{3}\left(1.94 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ NMR, 1.32 ppm for ${ }^{13} \mathrm{C}$ NMR). High resolution electrospray ionization (ESI) mass spectrometry was performed on Agilent 6230 TOF LC/MS. Column chromatography was performed on the Biotage Isolera One system. Empty flash cartridge housing from Luknova were filled and packed with Silicycle F60 silica gel ($40-63 \mu \mathrm{~m}, 60 \AA$) for column chromatography purifications.

S. 2 Synthesis and Characterization of Compounds

$2 \mathrm{mmol})$ and rhodium 5% on carbon (Rh / C) ($11 \mathrm{mg}, 0.0054 \mathrm{mmol} \mathrm{Rh}, 0.006$ equivalents) in THF (3 mL) was slowly added hydrazine monohydrate $(0.107 \mathrm{~g}, 2.14 \mathrm{mmol}, 2.4$ equiv.) and stirred at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere for 1 hour. The reaction was monitored by TLC. The reaction mixture was filtered through Celite to remove the residue of Rh / C. The filtrate was dried using a rotary evaporator and then high vacuum to provide a yellow-brown solid $(0.107 \mathrm{~g}$ $0.76 \mathrm{mmol}, 86 \%)$ without further purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone $-d_{6}$): $\delta=7.57(\mathrm{~s}, 2 \mathrm{H})$, $7.51(\mathrm{~s}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{t}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=8,2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
(125 MHz, Acetone- d_{6}): $\delta=153.5,129.3,106.7,99.9$. ESI: $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 141.06585, found 141.06581 .

Dinitrone 3: Dihydroxylamine $2(0.107 \mathrm{~g}, 0.77 \mathrm{mmol})$ and benzaldehyde ($0.406 \mathrm{~g}, 3.83 \mathrm{mmol}$, 5 equiv) were dissolved with 5 mL ethanol in a vial. The reaction mixture was stirred at room temperature under N_{2} atmosphere overnight. The milky suspension was generated next day. 10 mL hexane was added to the milky suspension and then sonicated for 15 minutes. The mixture was filtered using a membrane filter and thoroughly washed with hexane $(5 \mathrm{~mL} \times 3)$. The solid mixture was collected and transferred to a vial and dried completely under high vacuum to provide a light yellow solid product ($90 \mathrm{mg}, 0.28 \mathrm{mmol}, 36 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=8.66(\mathrm{~s}, 2 \mathrm{H}), 8.52-8.50(\mathrm{~m}, 5 \mathrm{H}), 8.09(\mathrm{dd}, J=8,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{t}, J=8$, 1.03H), 7.55-7.51 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=148.7,134.2,130.9,130.9,129.9$, 129.0, 128.5, 122.8, 115.1. ESI: $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 317.12845, found 317.12842.

3,5-Dinitrobenzyl alcohol (5) was prepared from 3,5-Dinitrobenzoic acid following the published method. ${ }^{2}$ The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra matched that of the published results. ${ }^{2}$

Compound 6: A solution of nonanoic acid ($1.64 \mathrm{~g}, 11.4 \mathrm{mmol}, 1.5$ equiv.) and thionyl chloride ($5.4 \mathrm{~g}, 45.4 \mathrm{mmol}, 6$ equiv.) in chloroform (8 mL) was stirred at $70{ }^{\circ} \mathrm{C}$ for 6 hours. Chloroform and excess thionyl chloride were removed by distillation to give nonanoyl chloride, which was used in the next step without
further purification. To a solution of compound $5(1.5 \mathrm{~g}, 7.57 \mathrm{mmol})$ and triethyl amine (4.2 mL , $30 \mathrm{mmol}, 4$ equiv.) in $\mathrm{DCM}(50 \mathrm{~mL})$ was dropwise added nonanoyl chloride (11.4 mmol) at $0^{\circ} \mathrm{C}$. The reaction was warmed to room temperature and stirred under nitrogen atmosphere for 16 hours. The reaction was quenched with water. The reaction mixture was extracted with DCM (3×50 $\mathrm{mL})$ and the organic phase was washed with brine $(1 \times 50 \mathrm{~mL})$. The organic phase was collected and dried with MgSO_{4}, filtered and dried by rotary evaporation. The crude mixture was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane:ethyl acetate $\left.10: 1\right)$ yielding the product as a light yellow solid (2.25 g. $6.66 \mathrm{mmol}, 88 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz CDCl 3): $\delta=9.00(\mathrm{t}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J$ $=2 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 10 \mathrm{H}), 0.87(\mathrm{t}, J$ $=8,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.2,148.7,141.0,127.8,118.4 .63 .7,34.1,31.8$, 29.25, 29.18, 29.16, 24.9, 22.7, 14.1. ESI: $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}]^{-}$calcd 338.14834, found 338.14695.

Dihydroxylamine 7: To a mixture of compound $6(0.3 \mathrm{~g}, 0.89 \mathrm{mmol})$ and rhodium 5% on carbon $(\mathrm{Rh} / \mathrm{C})(18 \mathrm{mg}, 0.0089 \mathrm{mmol}, 0.01$ equiv. $)$ in THF (3 mL) was slowly added hydrazine monohydrate $(0.11 \mathrm{~mL}$, $2.2 \mathrm{mmol}, 2.5$ equiv.) and stirred at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere for 1 hour. The reaction was monitored by TLC. The reaction mixture was filtered through Celite. The filtrate was dried using a rotary evaporator, followed by high vacuum to provide 7 as a yellow solid ($0.26 \mathrm{~g} 0.84 \mathrm{mmol}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}): $\delta=7.63(\mathrm{~s}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 2 \mathrm{H})$, $6.61(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 2 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.27(\mathrm{~m}$, $10 \mathrm{H}), 0.87(\mathrm{t}, J=4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz Acetone $-d_{6}$): $\delta=173.6,153.5,138.0,106.1$, 99.3, 66.7, 34.6, 32.5, 29.9, 29.8, 29.8, 25.6, 23.2, 14.3. ESI: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calcd 311.19653, found 311.19631 .

8

Dinitrone 8: Dihydroxylamine $7(0.088 \mathrm{~g}, 0.28 \mathrm{mmol})$ and benzaldehyde ($0.14 \mathrm{~mL}, 1.42 \mathrm{mmol}, 5$ equiv.) were dissolved with 2 mL ethanol in a vial. The reaction mixture was stirred at room temperature under nitrogen atmosphere overnight. The solvent was removed by rotary evaporation. The crude mixture was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane:ethyl acetate $\left.2.5: 1\right)$ yielding the product as blown sticky oil (76 mg. $0.16 \mathrm{mmol}, 57 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz Acetone $-d_{6}$): $\delta=8.56-8.54(\mathrm{~m}, 4 \mathrm{H}), 8.52(\mathrm{~s}, 2 \mathrm{H})$, $8.43(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 2 \mathrm{H}), 7.51-7.50(\mathrm{~m}, 6 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}$, $2 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 10 \mathrm{H}), 0.85(\mathrm{t}, J=4 \mathrm{~Hz}, 3.00 \mathrm{H}).) .{ }^{13} \mathrm{C}$ NMR (125 MHz Acetone- d_{6}): $\delta=173.5$, $150.4,140.3,134.7,132.2,131.6,129.9,129.3,122.7,115.3,65.1,34.5,32.5,30.0$ (overlap with the solvent peak), 29.9, 29.8, 25.6, 23.3, 14.3. ESI: $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calcd 487.25913, found 487.25850.

Dicyanostilbene (9) was prepared from the condensation between p-Anisaldehyde and 1,3-Phenylenediacetonitrile following the published method. ${ }^{3}$ The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra matched that of the published results. ${ }^{3}$

S. 3 NMR Spectra of Compounds

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $2\left(400 \mathrm{MHz}\right.$, Acetone $\left.-d_{6}\right)$.

Figure $\boldsymbol{S} \mathbf{2} .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}\left(125 \mathrm{MHz}\right.$, Acetone $\left.-d_{6}\right)$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of $6\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of 7 (400 MHz , Acetone $-d_{6}$).
$\stackrel{\sim}{\sim}$
긍
$\stackrel{\uparrow}{\bullet}$

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of $7\left(125 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right)$.

8

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of $8\left(400 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right)$.
N

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8}\left(125 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right)$.

S. 4 Determining Anion Association Constant Using ${ }^{1}$ H NMR Titration

A solution of dinitrone $\mathbf{8}$ in acetone- $d_{6}(5 \mathrm{mM}, 0.5 \mathrm{~mL})$ was loaded into an NMR tube capped with silicone/PTFE septum. Increasing equivalents of tetrabutylammonium chloride (TBACI), tetrabutylammonium bromide (TBABr) and tetrabutylammonium iodide (TBAI) were added as a concentrated solution (250 mM). Spectra were recorded after each addition.

Figure S11. ${ }^{1} \mathrm{H}$ NMR titration of dinitrone $\mathbf{8}$ with TBACl (5 mM Acetone- $d_{6}, 298 \mathrm{~K}$)

Parameters			
Parameter (bounds)	Optimised	Error	Initial
$\mathrm{K}(0 \rightarrow \infty)$	$107.16 \mathrm{M}^{-1}$	± 1.9341	100.00
		$\%$	M^{-1}

Figure S12. Result of data fitting of dinitrone $\mathbf{8}$ for proton H^{a} and H^{c} using online Bindfit platform

Figure S13. ${ }^{1} \mathrm{H}$ NMR titration of dinitrone $\mathbf{8}\left(5 \mathrm{mM}\right.$ Acetone- $\left.d_{6}, 298 \mathrm{~K}\right)$ with TBABr.

Figure S14. Result of data fitting of dinitrone $\mathbf{8}$ for proton H^{a} and H^{c} using online Bindfit platform

Figure S15. ${ }^{1} \mathrm{H}$ NMR titration of dinitrone $\mathbf{8}$ with TBAI (5 mM Acetone- $d_{6}, 298 \mathrm{~K}$)

Figure S16. Result of data fitting of dinitrone $\mathbf{8}$ for proton $\mathrm{H}^{\mathrm{a}}, \mathrm{H}^{\mathrm{b}}$ and H^{c} using online Bindfit platform.

Figure S17. ${ }^{1} \mathrm{H}$ NMR titration of dinitrone $\mathbf{8}$ with $\mathrm{TBAH}_{2} \mathrm{PO}_{4}(5 \mathrm{mM} \mathrm{CD} 3 \mathrm{CN}, 298 \mathrm{~K})$.

Figure S18. Result of data fitting of dinitrone $\mathbf{8}$ for proton H^{a} using online Bindfit platform.

Figure S19. ${ }^{1} \mathrm{H}$ NMR titration of dinitrone $\mathbf{8}$ with $\mathrm{TBAHSO}_{4}\left(5 \mathrm{mM}\right.$ Acetone- $\left.d_{6}, 298 \mathrm{~K}\right)$. Dinitrone $\mathbf{8}$ started to decompose when 10 equiv. of TBAHSO_{4} is added.

To compare the binding constant of dinitrone $\mathbf{8}$ with dicyanostilbene $\mathbf{9}$, we titrated dicyanostilbene 9 with TBACl in acetone (0.6 mM in acetone $-d_{6}$) and determined its binding constant.

Figure S20. ${ }^{1} \mathrm{H}$ NMR titration of dicyanostibene $\mathbf{9}$ with $\mathrm{TBACl}\left(0.6 \mathrm{mM}\right.$ acetone- $\left.d_{6}, 298 \mathrm{~K}\right)$.

Parameters			
Parameter (bounds)	Optimised	Error	Initial
$\mathbf{K}(0 \rightarrow \infty)$	$29.75 \mathrm{M}^{-1}$	± 0.6227 $\%$	100.00 M^{-1}

Figure S21. Result of data fitting of dicyanostilbene 9 for proton H^{a} using online Bindfit platform.

S. 5 Computational Studies of Dinitrone 3

All structures were minimized using DFT B3LYP 6-31G* in Spartan '18 (version1.1.0). All energies are given in kcal/mol. "Conformer Distribution" method (shown below) was used to identify viable conformations I, II, and III.

Conformation I

Figure S22. Conformation I, Energies $=-647328.30 \mathrm{kcal} / \mathrm{mol}$

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
H	0.906834	-0.266087	-4.474763
C	0.676677	-0.287942	-3.413677
C	0.130458	-0.347621	-0.674416
C	0.402469	-1.503136	-2.792658
C	0.673971	0.903339	-2.685802
C	0.377278	0.861284	-1.323378
C	0.154237	-1.523177	-1.418643
H	0.380938	-2.437960	-3.338495
H	0.922376	1.841117	-3.170503

H	-0.089921	-0.324226	0.384925
N	-0.118961	-2.822715	-0.814603
C	0.233383	-3.044801	0.441315
H	0.754005	-2.230124	0.925336
C	0.010192	-4.255234	1.199768
C	-0.330910	-6.517943	2.840732
C	-0.653039	-5.402324	0.710227
C	0.495918	-4.272301	2.526967
C	0.328551	-5.388707	3.336047
C	-0.817855	-6.514411	1.532472
H	-1.024812	-5.396393	-0.3052
H	1.007745	-3.395617	2.916885
H	0.710017	-5.379680	4.3542
H	-1.331307	-7.389622	1.143829
H	-0.462713	-7.392715	3.471906
O	-0.669293	-3.681099	-1.592605
N	0.333897	2.061179	-0.496132
C	-0.089510	3.198570	-1.022776
H	-0.426203	3.131706	-2.048828
C	-0.164222	4.483224	-0.363186
C	-0.375545	7.066978	0.738611
C	0.222683	4.726635	0.974021
C	-0.660388	5.562664	-1.127478
C	-0.764401	6.837058	-0.584372
C	0.115874	6.009078	1.507360
H	0.600102	3.904379	1.564829
H	-0.963518	5.389760	-2.157220
H	-1.148398	7.653298	-1.191500

H	0.418759	6.182020	2.536630
H	-0.457385	8.063044	1.165269
O	0.692017	1.898502	0.724844

Conformation II

Figure S23. Conformation II, Energy $=-647327.29 \mathrm{kcal} / \mathrm{mol}$

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
H	-5.185922	-0.000358	-0.486968
C	-4.117056	-0.000181	-0.293904
C	-1.370183	0.000218	0.225339
C	-3.440383	-1.211635	-0.166999
C	-3.440485	1.211490	-0.166068
C	-2.067500	1.199699	0.077460
C	-2.067381	-1.199576	0.076769
H	-3.948465	-2.165923	-0.232304
H	-3.948720	2.165610	-0.230478
H	-0.326689	0.000651	0.515886
N	-1.407647	-2.490477	0.234398
C	-0.155434	-2.635728	-0.170087
H	0.277967	-1.766673	-0.647122

C	0.656456	-3.826925	-0.058626
C	2.396255	-6.038539	0.073843
C	0.233469	-5.037262	0.534470
C	1.967406	-3.756286	-0.582926
C	2.825070	-4.847033	-0.519021
C	1.104311	-6.122738	0.596810
H	-0.769062	-5.099500	0.933665
H	2.307409	-2.830771	-1.043055
H	3.827720	-4.770532	-0.930816
H	0.766178	-7.046920	1.057811
H	3.064854	-6.893546	0.125530
O	-2.133700	-3.418741	0.736778
N	-1.407778	2.490300	0.236339
C	-0.157267	2.636911	-0.173062
H	0.274421	1.769032	-0.654532
C	0.655123	3.827661	-0.060778
C	2.395931	6.038209	0.074309
C	0.232005	5.038156	0.531434
C	1.966847	3.756055	-0.582730
C	2.825329	4.846043	-0.517149
C	1.103036	6.123494	0.594596
H	-0.770760	5.100498	0.929480
H	2.307134	2.830035	-1.041273
H	3.829325	4.768200	-0.925856
H	0.764806	7.048117	1.055292
H	3.065037	6.892767	0.127413
O	-2.131660	3.416197	0.746132

Conformation III

Figure S24. Conformation III, Energy $=-647326.82 \mathrm{kcal} / \mathrm{mol}$

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
H	-3.364851	0.000054	-2.048724
C	-2.496936	0.000026	-1.396190
C	-0.336144	-0.000080	0.378779
C	-1.957926	1.211555	-0.965706
C	-1.958183	-1.211561	-0.965405
C	-0.868604	-1.196973	-0.090682
C	-0.868330	1.196870	-0.090983
H	-2.410663	2.148169	-1.272142
H	-2.411095	-2.148150	-1.271656
H	0.465975	-0.000084	1.104276
N	-0.270025	2.427832	0.416221
C	-0.222844	3.494765	-0.366214
H	-0.595807	3.344929	-1.370473
C	0.284035	4.802260	-0.014477
C	1.197796	7.419343	0.484825
C	0.806063	5.149952	1.251267
C	0.237085	5.794925	-1.019635
C	0.688019	7.085525	-0.773792
C	1.252174	6.448520	1.486816
H	0.849428	4.394193	2.022767

H	-0.160611	5.540476	-1.999789
H	0.642479	7.832773	-1.561530
H	1.648656	6.702995	2.466239
H	1.550457	8.428412	0.680323
O	0.197534	2.361307	1.605758
N	-0.270579	-2.428000	0.416688
C	-0.222982	-3.494766	-0.365912
H	-0.595550	-3.344724	-1.370216
C	0.284045	-4.802226	-0.014316
C	1.198514	-7.419024	0.484396
C	0.805171	-5.150223	1.251656
C	0.237778	-5.794569	-1.019798
C	0.689004	-7.085100	-0.774264
C	1.251723	-6.448657	1.486927
H	0.846746	-4.395033	2.023897
H	-0.159757	-5.539936	-1.999960
H	0.643651	-7.832247	-1.562033
H	1.646665	-6.703898	2.466842
H	1.551401	-8.428034	0.679748
O	0.196488	-2.361594	1.606469

Dinitrone $3 \cdot \mathrm{Cl}^{-}$complex

Figure S25. Dinitrone 3 $\cdot \mathrm{Cl}^{-}$complex, Energy $=-936176.60 \mathrm{kcal} / \mathrm{mol}$

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
H	5.167029	-0.000000	1.097694
C	4.117983	-0.000000	0.812621
C	1.418605	0.000000	0.062876
C	3.454473	1.210064	0.627866
C	3.454473	-1.210064	0.627866
C	2.106333	-1.199273	0.265296
C	2.106333	1.199274	0.265296
H	3.947160	2.167065	0.741252
H	3.947160	-2.167065	0.741252
H	0.376036	0.000000	-0.241370
N	1.474493	2.503752	0.068955
C	0.159892	2.613713	0.132158
H	-0.406943	1.711501	0.353528
O	2.289840	3.483481	-0.136359
C	-0.602924	3.828131	-0.072250
C	-2.296297	6.047705	-0.435324
C	-0.061453	5.107401	-0.329104
C	-2.008846	3.684027	-0.003729
C	-2.840363	4.783968	-0.183351
C	-0.909571	6.199044	-0.507358
H	1.013110	5.213840	-0.382941
H	-2.421886	2.692922	0.180458
H	-3.918771	4.654044	-0.129302
H	-0.480766	7.179628	-0.704430
H	-2.948659	6.907210	-0.575834
N	1.474493	-2.503752	0.068956
	0.159892	-2.613713	0.132157
H			

H	-0.406943	-1.711501	0.353527
O	2.289840	-3.483481	-0.136358
C	-0.602924	-3.828131	-0.072250
C	-2.296297	-6.047705	-0.435324
C	-0.061453	-5.107401	-0.329104
C	-2.008846	-3.684027	-0.003729
C	-2.840363	-4.783969	-0.183351
C	-0.909571	-6.199044	-0.507359
H	1.013110	-5.213840	-0.382942
H	-2.421886	-2.692923	0.180459
H	-3.918771	-4.654044	-0.129301
H	-0.480766	-7.179628	-0.704430
H	-2.948659	-6.907210	-0.575834
Cl	-2.177298	0.000000	0.449115

S. 6 X-ray Crystallographic Analysis of Dinitrone 3

Single crystals suitable for X-ray crystallography were prepared by slow diffusion of n-pentane into a solution of $\mathbf{3}$ in acetone. The crystal was placed MiTeGen pins, coated in oil. The X-ray intensity data collection was carried out on a Bruker APEXII DUO CCD area detector using graphite-monochromated Mo-K α radiation $(\lambda=0.71073 \AA)$ at 90.0 K. CCDC 2201970 contain the supplementary crystallographic data for this paper.

Crystal data of dinitrone 3

$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$	$D_{\mathrm{x}}=1.397 \mathrm{Mg} \mathrm{m}$
$M_{r}=316.35$	Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Tetragonal, $P 4_{1}$	Cell parameters from 9912 reflections
$a=5.3375(6) \AA$	$\theta=3.1-28.1^{\circ}$
$c=52.802(9) \AA$	$\mu=0.09 \mathrm{~mm}^{-1}$
$V=1504.3(4) \AA^{3}$	$T=90 \mathrm{~K}$
$Z=4$	Triangular, colourless
$F(000)=664$	$0.33 \times 0.17 \times 0.17 \mathrm{~mm}$

Data collection

Bruker Kappa APEX-II DUO diffractometer	3562 independent reflections
Radiation source: fine-focus sealed tube	3508 reflections with $I>2 \sigma(I)$
TRIUMPH curved graphite monochromator	$R_{\text {int }}=0.062$
ϕ and ω scans	$\theta_{\max }=30.2^{\circ}, \theta_{\min }=1.2^{\circ}$
Absorption correction: multi-scan $S A D A B S$ (Krause et al., 2015)	$h=-7-7$
$T_{\min }=0.921, T_{\max }=0.985$	$k=-7-7$
33370 measured reflections	$l=-68-67$

Refinement

Refinement on F^{2}	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$	$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.038 P)^{2}+1.4807 P\right]$

	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.119$	$(\Delta / \sigma)_{\max }<0.001$
$S=1.16$	$\Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3}$
3562 reflections	$\Delta \rho_{\min }=-0.41 \mathrm{e} \AA^{-3}$
218 parameters	Absolute structure: Flack x determined using 1632 quotients [(I +$)-(\mathrm{I}-)] /[(\mathrm{I}+)+(\mathrm{I}-)]$ (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249- $259)$.
1 restraint	Absolute structure parameter: 0.2 (4)

Refinement. Refined as a 2-component twin.

Figure S26. X-ray crystal structure of dinitrone 3. Thermal ellipsoids at the 50% probability level.

Fi
gure $\boldsymbol{S} 27$. Packing structure of $\mathbf{3}$ viewed along the a-axis.

Figure S28. Packing structure of $\mathbf{3}$ viewed along the b-axis.

Figure S29. Packing structure of $\mathbf{3}$ viewed along the c-axis.

S. 6 References

1. Ichikawa, S.; Zhu, S.; Buchwald, S. L. A Modified System for the Synthesis of Enantioenriched N-Arylamines through Copper-Catalyzed Hydroamination. Angew. Chem. Int. Ed. 2018, 57, 87148718.
2. Campbell, R. F.; Fitzpatrick, K.; Inghardt, T.; Karlsson, O.; Nilsson, K.; Reilly, J. E.; Yet, L. Tetrahedron Lett. 2003, 44, 5477-5481.
3. Lee, S.; Chen, C.-H.; Flood, A. H. Nat. Chem. 2013, 5, 704-710.
