Electronic Supporting Information (10 pages)

Phototransduction in a supramolecular cascade: a mimic for essential features of the vision process

Jialei Chen Wu,^a Patrícia Máximo,^b Patricia Remón,^a A. Jorge Parola,^b Nuno Basílio,^b and Uwe Pischel^{*a}

^[a] CIQSO – Center for Research in Sustainable Chemistry, University of Huelva, Campus de El Carmen s/n, E-21007 Huelva, Spain.

^[b] Laboratorio Associado para a Química Verde (LAQV) Rede de Química e Tecnología (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnología, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal

* Corresponding author: uwe.pischel@diq.uhu.es (U.P.)

Table of contents

1. General methods and materials	S2
2. ¹ H NMR spectra	S3
3. NMR titration for binding of 10 and 1c by CB7	S6
4. Simulation of speciation	S8
5. References	S10

1. General methods and materials

All chemicals (geranylamine – GA, dopamine – DA, cucurbit[8]uril – CB8, 3-amino-1adamantol), except 1 and cucurbit[7]uril (CB7), were commercially available from Sigma-Aldrich and used as received without further purification. The photoswitch 1 was available from a previous project¹ and CB7 was prepared by following a published procedure.² The water content of CB7 was determined to 27% by ¹H NMR spectroscopy, using malonic acid as internal standard.

¹H NMR measurements were done on a Bruker Advanced 500 MHz HPPR2 instrument. Deuterium oxide for NMR measurements (D₂O, 99.6 atom% D) was purchased from Eurisotope. The residual solvent peak (δ = 4.79 ppm) was used as reference signal for the ¹H NMR spectra. All measurements were done at room temperature and at pD 5.4. The pD was adjusted by addition of DCl or NaOD and corrected for isotope effects (pD = pH + 0.4).³

For the irradiation a TLC lamp (Vilber Lourmat-6.LC, 365 nm) or a 150 W xenon lamp (Oriel GmbH & Co. KG), equipped with a 550 nm optical long-pass filter, was employed.

The NMR titrations were made by consecutive additions of a stock solution of CB7 (4 mM) to a solution of DTE 1 (400 μ M).

2. ¹H NMR spectra

Figure S1. ¹H NMR spectra (all at pD 5.4 in D_2O) of a) **10** in presence of CB8 (both at 200 μ M); b) **10** (200 μ M); c) **1c** (200 μ M; generated by irradiation of **10** at 365 nm for 15 min); d) **1c** in the presence of CB8 (both at 200 μ M).

Figure S2. ¹H NMR spectra (all at pD 5.4 in D_2O) of a) **GA** in presence of CB7 (both at 500 μ M); b) **GA** (500 μ M); c) **GA** in presence of CB8 (both at 500 μ M). x denotes a small solvent impurity (acetone).

Figure S3. ¹H NMR spectra (all at pD 5.4 in D_2O) of a) **DA** (500 μ M); b) **DA** in the presence of CB7 (both at 500 μ M). x denotes a small solvent impurity (acetone).

Figure S4. ¹H NMR spectra (all at pD 5.4 in D_2O) of a) **10** (300 μ M), **DA**, CB7 (both at 200 μ M); b) mixture a) after irradiation at 365 nm for 15 min. No release of **DA** was observed. x denotes a small solvent impurity (acetone); note that in spectrum b) the solvent impurity overlaps with one of the signals of **1c**.

Figure S5. a) ¹H NMR spectra of **DA**, CB7 (both at 200 μ M) and after addition of **GA** (200 μ M); b) ¹H NMR spectra **10** (300 μ M) **GA** and CB8 (both at 200 μ M) and after irradiation at 365 nm (yielding **1c**) for 15 min; all at pD 5.4 in D₂O. x denotes solvent impurities (acetone, diethylether).

Figure S6. ¹H NMR spectra (all at pD 5.4 in D₂O) of a) **GA**, CB8, **DA**, and CB7 (all at 200 μ M); b) **DA** in presence of CB7 (both at 500 μ M); c) **GA** in presence of CB8 (both at 500 μ M). x denotes a small solvent impurity (acetone).

3. NMR titration for binding of 10 and 1c by CB7

Figure S7. Selected ¹H NMR spectra (all at pD 5.4 in D_2O) for the titration of **10** (400 μ M) upon consecutive additions of a stock solution of CB7 (4 mM).

Figure S8. Fitting of the titration curve of 10 with CB7 according to a 1:1 binding model.

Figure S9. Selected ¹H NMR spectra (all at pD 5.4 in D_2O) for the titration of **1c** (400 μ M) upon consecutive additions of a CB7 stock solution (4 mM).

Figure S10. Fitting of the titration curve of 1c with CB7 according to a 1:1 binding model.

4. Speciation simulation

The algorithm used to simulate the speciation of the multicomponent system containing two hosts (CB7 and CB8) and 3 guests (DTE 10/1c, GA, and DA) was based on a system of 5 equations constructed from the mass balance and equilibrium expressions. This system of equations was then numerically solved using the Newton-Raphson algorithm implemented in a conventional spreadsheet software to calculate the equilibrium concentrations of all species from the binding constants and initial concentrations.

Considering the formation of 1:1 complexes, the following binding equilibria applies in a multicomponent mixture containing two hosts (H_1 and H_2) and three guests (G_1 , G_2 , and G_3).

$$H_{1} + G_{1} \xrightarrow{K_{11}} H_{1}G_{1} \qquad H_{2} + G_{1} \xrightarrow{K_{21}} H_{2}G_{1}$$

$$H_{1} + G_{2} \xrightarrow{K_{12}} H_{1}G_{2} \qquad H_{2} + G_{2} \xrightarrow{K_{22}} H_{2}G_{2}$$

$$H_{1} + G_{3} \xrightarrow{K_{13}} H_{1}G_{3} \qquad H_{2} + G_{3} \xrightarrow{K_{23}} H_{2}G_{3}$$

Scheme S1. Binding equilibria established in a multicomponent mixture containing two hosts and three guests.

$$[H_1]_0 = [H_1] + [H_1G_1] + [H_1G_2] + [H_1G_3]$$
(S1)

$$[H_2]_0 = [H_2] + [H_2G_1] + [H_2G_2] + [H_2G_3]$$
(S2)

$$[G_1]_0 = [G_1] + [H_1G_1] + [H_2G_1]$$
(S3)

$$[G_2]_0 = [G_2] + [H_1G_2] + [H_2G_2]$$
(S4)

$$[G_3]_0 = [G_3] + [H_1G_3] + [H_2G_3]$$
(S5)

Replacing the concentrations of the complexes by the product of the respective binding constant with the equilibrium concentrations of free host and guest (*i.e.*, $[H_iG_j] = K_{ij}[H_i][G_j]$) leads to a system of five equations and five unknowns:

$$[H_1] + K_{11}[H_1][G_1] + K_{12}[H_1][G_2] + K_{13}[H_1][G_3] - [H_1]_0 = 0$$
(S6)

$$[H_2] + K_{21}[H_2][G_1] + K_{22}[H_2][G_2] + K_{23}[H_2][G_3] - [H_2]_0 = 0$$
(S7)

$$[G_1] + K_{11}[H_1][G_1] + K_{21}[H_2][G_1] - [G_1]_0 = 0$$
(S8)

$$[G_2] + K_{12}[H_1][G_2] + K_{22}[H_2][G_2] - [G_2]_0 = 0$$
(S9)

$$[G_3] + K_{13}[H_1][G_3] + K_{23}[H_2][G_3] - [G_3]_0 = 0$$
(S10)

The solutions of this system of equations provides the equilibrium concentrations of all free species that can be inserted in the equilibrium equations (*i.e.*, $[H_iG_j] = K_{ij}[H_i][G_j]$) to calculate the concentration of the complexes and construct the speciation plots.

5. References

- [1] P. Máximo, M. Colaço, S. R. Pauleta, P. J. Costa, U. Pischel, A. J. Parola and N. Basílio, Org. Chem. Front., 2022, 9, 4238-4249.
- [2] C. Márquez, F. Huang and W. M. Nau, IEEE Trans. Nanobiosci., 2004, 3, 39-45.
- [3] P. K. Glasoe and F. A. Long, J. Phys. Chem., 1960, 64, 188-190.