Electronic Supporting Information (10 pages)

Abstract

Phototransduction in a supramolecular cascade: a mimic for essential features of the vision process

Jialei Chen Wu, ${ }^{\text {a }}$ Patrícia Máximo, ${ }^{\text {b }}$ Patricia Remón, ${ }^{\text {a }}$ A. Jorge Parola, ${ }^{\text {b }}$ Nuno Basílio, ${ }^{\text {b }}$ and Uwe Pischel*a
${ }^{[a]}$ CIQSO - Center for Research in Sustainable Chemistry, University of Huelva, Campus de El Carmen s/n, E-21007 Huelva, Spain.
${ }^{[b]}$ Laboratorio Associado para a Química Verde (LAQV) Rede de Química e Tecnología (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnología, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal

* Corresponding author: uwe.pischel@diq.uhu.es (U.P.)

Table of contents

1. General methods and materials	S2
2. ${ }^{1}$ H NMR spectra	S 3
3. NMR titration for binding of 10 and $\mathbf{1 c}$ by CB7	S 6
4. Simulation of speciation	S 8
5. References	S 10

1. General methods and materials

All chemicals (geranylamine - GA, dopamine - DA, cucurbit[8]uril - CB8, 3-amino-1adamantol), except 1 and cucurbit[7]uril (CB7), were commercially available from Sigma-Aldrich and used as received without further purification. The photoswitch $\mathbf{1}$ was available from a previous project ${ }^{1}$ and CB7 was prepared by following a published procedure. ${ }^{2}$ The water content of CB7 was determined to 27% by ${ }^{1} \mathrm{H}$ NMR spectroscopy, using malonic acid as internal standard.
${ }^{1} \mathrm{H}$ NMR measurements were done on a Bruker Advanced 500 MHz HPPR2 instrument. Deuterium oxide for NMR measurements ($\mathrm{D}_{2} \mathrm{O}, 99.6$ atom\% D) was purchased from Eurisotope. The residual solvent peak ($\delta=4.79 \mathrm{ppm}$) was used as reference signal for the ${ }^{1} \mathrm{H}$ NMR spectra. All measurements were done at room temperature and at pD 5.4. The pD was adjusted by addition of DCl or NaOD and corrected for isotope effects $(\mathrm{pD}$ $=\mathrm{pH}+0.4) .{ }^{3}$

For the irradiation a TLC lamp (Vilber Lourmat-6.LC, 365 nm) or a 150 W xenon lamp (Oriel $\mathrm{GmbH} \& \mathrm{Co} . \mathrm{KG}$), equipped with a 550 nm optical long-pass filter, was employed.

The NMR titrations were made by consecutive additions of a stock solution of CB7 (4 $\mathrm{mM})$ to a solution of DTE $\mathbf{1}(400 \mu \mathrm{M})$.

2. ${ }^{1} \mathrm{H}$ NMR spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra (all at pD 5.4 in $\mathrm{D}_{2} \mathrm{O}$) of a) $\mathbf{1 0}$ in presence of CB8 (both at $200 \mu \mathrm{M})$; b) $\mathbf{1 0}(200 \mu \mathrm{M})$; c) $\mathbf{1 c}(200 \mu \mathrm{M}$; generated by irradiation of $\mathbf{1 0}$ at 365 nm for 15 min); d) $\mathbf{1 c}$ in the presence of CB8 (both at $200 \mu \mathrm{M}$).
a)

b)

c)

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra (all at pD 5.4 in $\mathrm{D}_{2} \mathrm{O}$) of a) GA in presence of CB 7 (both at $500 \mu \mathrm{M})$; b) $\mathbf{G A}(500 \mu \mathrm{M}$); c) GA in presence of CB8 (both at $500 \mu \mathrm{M}$). x denotes a small solvent impurity (acetone).

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra (all at pD 5.4 in $\mathrm{D}_{2} \mathrm{O}$) of a) DA $(500 \mu \mathrm{M})$; b) DA in the presence of CB7 (both at $500 \mu \mathrm{M}$). x denotes a small solvent impurity (acetone).

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectra (all at pD 5.4 in $\left.\mathrm{D}_{2} \mathrm{O}\right)$ of a) $\mathbf{1 0}(300 \mu \mathrm{M}), \mathbf{D A}, \mathrm{CB} 7$ (both at $200 \mu \mathrm{M})$; b) mixture a) after irradiation at 365 nm for 15 min . No release of DA was observed. x denotes a small solvent impurity (acetone); note that in spectrum b) the solvent impurity overlaps with one of the signals of $\mathbf{1 c}$.

Figure S5. a) ${ }^{1} \mathrm{H}$ NMR spectra of DA, CB7 (both at $200 \mu \mathrm{M}$) and after addition of GA $(200 \mu \mathrm{M})$; b) ${ }^{1} \mathrm{H}$ NMR spectra $10(300 \mu \mathrm{M})$ GA and CB8 (both at $200 \mu \mathrm{M}$) and after irradiation at 365 nm (yielding 1c) for 15 min ; all at pD 5.4 in $\mathrm{D}_{2} \mathrm{O} . \mathrm{x}$ denotes solvent impurities (acetone, diethylether).

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra (all at pD 5.4 in $\mathrm{D}_{2} \mathrm{O}$) of a) GA, CB8, DA, and CB7 (all at $200 \mu \mathrm{M}$); b) DA in presence of CB7 (both at $500 \mu \mathrm{M}$); c) GA in presence of CB8 (both at $500 \mu \mathrm{M}$). x denotes a small solvent impurity (acetone).

3. NMR titration for binding of 10 and 1 c by CB7

Figure S7. Selected ${ }^{1} \mathrm{H}$ NMR spectra (all at pD 5.4 in $\mathrm{D}_{2} \mathrm{O}$) for the titration of $\mathbf{1 0}$ (400 $\mu \mathrm{M})$ upon consecutive additions of a stock solution of CB7 (4 mM).

Figure S8. Fitting of the titration curve of $\mathbf{1 0}$ with CB7 according to a $1: 1$ binding model.

Figure S9. Selected ${ }^{1} \mathrm{H}$ NMR spectra (all at pD 5.4 in $\mathrm{D}_{2} \mathrm{O}$) for the titration of $\mathbf{1 c}$ (400 $\mu \mathrm{M})$ upon consecutive additions of a CB7 stock solution (4 mM).

Figure S10. Fitting of the titration curve of 1c with CB7 according to a $1: 1$ binding model.

4. Speciation simulation

The algorithm used to simulate the speciation of the multicomponent system containing two hosts (CB7 and CB8) and 3 guests (DTE 1o/1c, GA, and DA) was based on a system of 5 equations constructed from the mass balance and equilibrium expressions. This system of equations was then numerically solved using the Newton-Raphson algorithm implemented in a conventional spreadsheet software to calculate the equilibrium concentrations of all species from the binding constants and initial concentrations.

Considering the formation of 1:1 complexes, the following binding equilibria applies in a multicomponent mixture containing two hosts $\left(\mathrm{H}_{1}\right.$ and $\left.\mathrm{H}_{2}\right)$ and three guests $\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right.$, and G_{3}).

$$
\begin{array}{ll}
\mathrm{H}_{1}+\mathrm{G}_{1} \stackrel{K_{11}}{\rightleftharpoons} \mathrm{H}_{1} \mathrm{G}_{1} & \mathrm{H}_{2}+\mathrm{G}_{1} \stackrel{K_{21}}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{G}_{1} \\
\mathrm{H}_{1}+\mathrm{G}_{2} \stackrel{K_{12}}{\rightleftharpoons} \mathrm{H}_{1} \mathrm{G}_{2} & \mathrm{H}_{2}+\mathrm{G}_{2} \stackrel{K_{22}}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{G}_{2} \\
\mathrm{H}_{1}+\mathrm{G}_{3} \stackrel{K_{13}}{\rightleftharpoons} \mathrm{H}_{1} \mathrm{G}_{3} & \mathrm{H}_{2}+\mathrm{G}_{3} \stackrel{K_{23}}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{G}_{3}
\end{array}
$$

Scheme S1. Binding equilibria established in a multicomponent mixture containing two hosts and three guests.

$$
\begin{align*}
& {\left[H_{1}\right]_{0}=\left[H_{1}\right]+\left[H_{1} G_{1}\right]+\left[H_{1} G_{2}\right]+\left[H_{1} G_{3}\right]} \tag{S1}\\
& {\left[H_{2}\right]_{0}=\left[H_{2}\right]+\left[H_{2} G_{1}\right]+\left[H_{2} G_{2}\right]+\left[H_{2} G_{3}\right]} \tag{S2}\\
& {\left[G_{1}\right]_{0}=\left[G_{1}\right]+\left[H_{1} G_{1}\right]+\left[H_{2} G_{1}\right]} \tag{S3}\\
& {\left[G_{2}\right]_{0}=\left[G_{2}\right]+\left[H_{1} G_{2}\right]+\left[H_{2} G_{2}\right]} \tag{S4}
\end{align*}
$$

$$
\begin{equation*}
\left[G_{3}\right]_{0}=\left[G_{3}\right]+\left[H_{1} G_{3}\right]+\left[H_{2} G_{3}\right] \tag{S5}
\end{equation*}
$$

Replacing the concentrations of the complexes by the product of the respective binding constant with the equilibrium concentrations of free host and guest (i.e., $\left[\mathrm{H}_{\mathrm{i}} \mathrm{G}_{\mathrm{j}}\right]=$ $K_{\mathrm{ij}}\left[\mathrm{H}_{\mathrm{i}}\right]\left[\mathrm{G}_{\mathrm{j}}\right]$) leads to a system of five equations and five unknowns:

$$
\begin{align*}
& {\left[H_{1}\right]+K_{11}\left[H_{1}\right]\left[G_{1}\right]+K_{12}\left[H_{1}\right]\left[G_{2}\right]+K_{13}\left[H_{1}\right]\left[G_{3}\right]-\left[H_{1}\right]_{0}=0} \tag{S6}\\
& {\left[H_{2}\right]+K_{21}\left[H_{2}\right]\left[G_{1}\right]+K_{22}\left[H_{2}\right]\left[G_{2}\right]+K_{23}\left[H_{2}\right]\left[G_{3}\right]-\left[H_{2}\right]_{0}=0} \tag{S7}\\
& {\left[G_{1}\right]+K_{11}\left[H_{1}\right]\left[G_{1}\right]+K_{21}\left[H_{2}\right]\left[G_{1}\right]-\left[G_{1}\right]_{0}=0} \tag{S8}\\
& {\left[G_{2}\right]+K_{12}\left[H_{1}\right]\left[G_{2}\right]+K_{22}\left[H_{2}\right]\left[G_{2}\right]-\left[G_{2}\right]_{0}=0} \tag{S9}\\
& {\left[G_{3}\right]+K_{13}\left[H_{1}\right]\left[G_{3}\right]+K_{23}\left[H_{2}\right]\left[G_{3}\right]-\left[G_{3}\right]_{0}=0} \tag{S10}
\end{align*}
$$

The solutions of this system of equations provides the equilibrium concentrations of all free species that can be inserted in the equilibrium equations (i.e., $\left[\mathrm{H}_{\mathrm{i}} \mathrm{G}_{\mathrm{j}}\right]=K_{\mathrm{ij}}\left[\mathrm{H}_{\mathrm{i}}\right]\left[\mathrm{G}_{\mathrm{j}}\right]$) to calculate the concentration of the complexes and construct the speciation plots.

5. References

[1] P. Máximo, M. Colaço, S. R. Pauleta, P. J. Costa, U. Pischel, A. J. Parola and N. Basílio, Org. Chem. Front., 2022, 9, 4238-4249.
[2] C. Márquez, F. Huang and W. M. Nau, IEEE Trans. Nanobiosci., 2004, 3, 39-45.
[3] P. K. Glasoe and F. A. Long, J. Phys. Chem., 1960, 64, 188-190.

