Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information for

Crystal structure engineering of metal halide perovskites for photocatalytic organic synthesis

Chunhua Wang,^a Yang Ding,^b Biao Liu,^c Bo Weng,*d Johan Hofkens,*ae Maarten B. J. Roeffaers*d

^aDepartment of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.

^bLaboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000, Namur, Belgium.

^cHunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, P. R. China.

^dcMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.

^eMax Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.

*Corresponding authors

Email: maarten.roeffaers@kuleuven.be; johan.hofkens@kuleuven.be; bo.weng@kuleuven.be

Table of Contents

1. Materials and reagents	3
2. Photocatalyst preparation	3
2.1 Preparation of Cs ₃ Bi ₂ Br ₉ and Cs ₃ BiBr ₆	3
2.2 Synthesis of palladium nanocubes	3
2.3 Synthesis of Pd/Cs ₃ Bi ₂ Br ₉ and Pd/Cs ₃ BiBr ₆ composites	3
3. Characterization	4
3.1 Instrumentations and methods	4
3.2 Density functional theory (DFT) calculations	4
3.3 Photocatalytic activity evaluation	5
4. Main text supporting characterization	6
5. References	17

1. Materials and reagents

Bismuth(III) bromide (BiBr₃), potassium bromide (KBr), potassium palladium(II) chloride (K_2 PdCl₄) and benzyl alcohol (C_6 H₅OH) were purchased from Sigma-Aldrich. Benzotrifluoride (BTF) and Dimethyl sulfoxide (DMSO) were purchased from Alfa Aesar. Bismuthiol I (1,3,4-thiadiazole-2,5-dithiol (C_2 H₂N₂S₃)) was supplied by Fluka. All chemicals were used without further purification.

2. Photocatalyst preparation

2.1 Preparation of Cs₃Bi₂Br₉ and Cs₃BiBr₆

Cs₃Bi₂Br₉ and Cs₃BiBr₆ materials were synthesized based on an anti-solvent precipitation method at room temperature. CsBr and BiBr₃ with a molar ratio of CsBr/BiBr₃=3:2 or CsBr/BiBr₃=3:1 was dissolved in DMSO at a concentration of 0.15 M to form the Cs₃Bi₂Br₉ and Cs₃BiBr₆ precursor solution, respectively. Then, the precursor solution was added to isopropanol to get the Cs₃Bi₂Br₉ or Cs₃BiBr₆ suspension. Finally, the products were dried at 60 °C in a vacuum oven overnight.

2.2 Synthesis of palladium nanocubes

Palladium nanocubes (Pd NCs) were synthesized based on the reported method.¹ In a typical experiment, 105 mg poly(vinyl pyrrolidone) (PVP), 600 mg potassium bromide (KBr) and 60 mg L-ascorbic acid (AA) were added in an 8 mL deionized water and stirred at 80 °C for 10 min. After that, 63 mg K₂PdCl₄ was dissolved in 3 mL deionized and added to the above solution, and the mixture was stirred at 80 °C for 3 h. Finally, the product was collected and washed with isopropanol several times before redispersion in the isopropanol solution.

2.3 Synthesis of Pd/Cs₃Bi₂Br₉ and Pd/Cs₃BiBr₆ composites

The 1 wt% Pd/Cs₃Bi₂Br₉ and 1 wt% Pd/Cs₃BiBr₆ composites were synthesized at room temperature through the above similar precipitation method. In a typical experiment (1% Pd/Cs₃Bi₂Br₉ and 1% Pd/Cs₃BiBr₆), 100 mg Cs₃Bi₂Br₉ or Cs₃BiBr₆ was first added in 15 mL isopropanol and kept stirring for 20 min. Then, 20 mL of isopropanol solution containing 1 mg Pd was added dropwise into the vigorously stirred Cs₃Bi₂Br₉ or Cs₃BiBr₆ suspension and kept stirring at room temperature for 12 h. Finally, the products were collected and dried in a vacuum oven at 60 °C.

3. Characterization

3.1 Instrumentations and methods

XRD patterns of the materials were measured using an X-ray diffractometer (Cu Kα1 radiation, λ =1.5406 Å) by scanning the samples in the 2 θ ranging from 10 to 70 degrees at a scan rate of 0.02°/s. Scanning electron micrographs (SEM) were recorded by scanning electron microscopy with a FEI-Q FEG250 system. The optical properties of the samples were obtained by UV-Vis diffuse reflectance spectroscopy (DRS, Lambda-950) in the wavelength of 300-800 nm. Steady-state photoluminescence was performed on an Edinburgh FLS980 with an excitation wavelength of 385 nm. Timeresolved PL spectra were recorded on a Leica DMi8 system with a pulsed white light laser (SuperK Extreme EXW-12, NKT Photonics) operating at 405 nm. X-ray photoelectron spectroscopy measurements were performed using a monochromatized Al Kα X-ray source, and the C 1s signal was set to a position of 284.6 eV. Photoelectrochemical measurements were performed with a standard three-electrode setup by using Ag/AgCl and platinum sheet electrode as the reference electrode, and counter electrode, respectively. Targeted material deposited on an indium tin oxide (ITO) substrate serves as the working electrode. Dichloromethane (DCM) solution containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) was used as the electrolyte. Photocurrent response measurements were performed under simulated solar light irradiation. Electrochemical impedance spectroscopy (EIS) was recorded at a frequency of 10 KHz-5 MHz under 0.2 V open circuit potential. Mott-Schottky measurements were performed in the dark at a frequency of 1 KHz. Surface charge transfer efficiency (η_t) of the materials was carried out using methylviologen dichloride (MVCl₂) as a fast electron scavenger.^{2, 3}

3.2 Density functional theory (DFT) calculations

Density functional theory (DFT) calculations were performed by the *Vienna ab initio* simulation package (VASP). The Perdew-Burke-Ernzerh (PBE) function is used for structural optimization and charge density. The plane waves cutoff energy is 400 eV. A mesh of $4\times4\times4$ and $6\times6\times6$ k-points was adopted for structural optimization and electronic calculation. The convergence tolerance of energy and the force are 1×10^{-4} eV and 1×10^{-2} eV/Å, respectively.

The carrier effective mass is simulated by the band edges of the band gap which can

be expressed by this formula:

$$m^* = \hbar^2 \frac{\partial \varepsilon^2 (k)}{\partial k^2} {}^{-1}$$
 (1)

where k is the wave vector, $\varepsilon(k)$ represents the eigenvalues of the energy band, and \hbar is reduced Planck's constant. In this work, we calculate the average effective mass in Γ point from X- Γ -Y in xy plane. The selected K-point coordinates are X (0.5 0 0), Y (0 0.5 0), and Γ (0 0 0). To ensure the accuracy of the calculation, we insert 80 k-points from X- Γ (X-vector direction) and Γ -Y (Y-vector direction).

The carrier mobility formula is

$$\mu_{3D} = \frac{(8\pi)^{\frac{1}{2}} \hbar^4 e c_{ii}}{3(m*)^{\frac{5}{2}} (k_B T)^{\frac{3}{2}} E_1^2}$$
(2)

where C_{ii} is 3D elastic constants, E_I is the deformation potential: $E_1 = \Delta E/(\Delta l/l_0)$, E is the energy of conduction (valence) band edges, l_0 is optimized lattice constants, e is the elementary charge, \hbar is reduced Planck's constant, and K_B is Boltzmann constant.

3.3 Photocatalytic activity evaluation

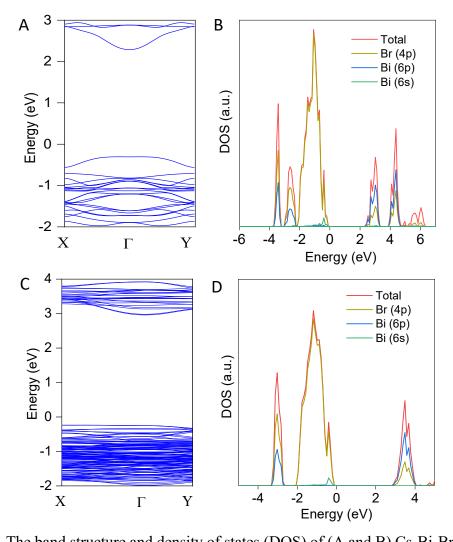
Photocatalytic reactions were conducted in a 25 mL quartz reactor under simulated solar light illumination (150 W Xe lamp). More specifically, 15 mg photocatalyst and 0.1 mmol benzyl alcohol (BA) were added to 2.5 mL benzotrifluoride with saturated molecular oxygen. Then, the mixture was irradiated for 6 h under magnetic stirring (600 rpm). Finally, the mixture was centrifuged, and the liquid was analyzed by GC (Shimadzu 2010). The conversion and selectivity of BA were defined as follows:

Conversion (%) =
$$[(C_0 - C_A)/C_0] \times 100\%$$

Selectivity (%) =
$$[C_B/(C_0-C_A)] \times 100\%$$

Where C_0 is the initial concentration of BA, C_A and C_B are the concentrations of the BA and benzaldehyde (BAD) after the reaction, respectively.

4. Main text supporting characterization


Table S1. Calculated lattice parameters (a, b, c, α , β , γ) for $Cs_3Bi_2Br_9$ and Cs_3BiBr_6 .

Parameter	Cs ₃ Bi ₂ Br ₉	Cs ₃ BiBr ₆
a (Å)	8.21	8.80
b (Å)	8.21	14.11
c (Å)	10.07	28.30
α (°)	90	90
β (°)	90	90
γ (°)	120	100.33

 $\textbf{Table S2.} \ \ Bond \ lengths \ (\text{\r{A}}) \ \ and \ angles \ (\text{\r{d}eg}) \ \ for \ \ Cs_3Bi_2Br_9 \ \ and \ \ Cs_3BiBr_6 \ compounds.$

	Bond lengths (Å)	Bi-Br1	3.02529(0)
		Bi-Br2	2.75916(0)
		Br1-Bi-Br2 (#1)	174.5991(0)
Cs ₃ Bi ₂ Br ₉		Br1-Bi-Br1	85.5220(0)
	Angles (deg.)	Br2-Bi-Br2	93.1931(0)
		Br1-Bi-Br2 (#3)	90.5166(0)
		Bi1-Br2	2.83499(0)
		Bi1-Br3	2.86845(0)
		Bi1-Br5	2.86144(0)
	Bond lengths (Å)	Bi1-Br6	2.85746(0)
		Bi2-Br1	2.84724(0)
		Bi2-Br4	2.86583(0)
		Bi1-Br7	2.82263(0)
		Br2-Bi1-Br2	93.8893(0)
		Br2-Bi1-Br3 (#1)	84.1987(0)
Cs ₃ BiBr ₆		Br2-Bi1-Br5	90.6999(0)
		Br2-Bi1-Br6	90.7180(0)
		Br2-Bi1-Br3 (#3)	178.0859(0)
	Angles (deg.)	Br1-Bi2-Br1	89.9542(0)
		Br1-Bi2-Br4 (#1)	92.6560(0)
		Br1-Bi2-Br7 (#1)	90.1820(0)
		Br1-Bi2-Br4 (#3)	176.5204(0)
		Br1-Bi2-Br7 (#2)	87.8212(0)
		Br4-Bi2-Br4	84.8307(0)
		Br7-Bi2-Br7	177.1777(0)

#n (n=1, 2, 3) represents the number of adjacent atoms.

Fig. S1. The band structure and density of states (DOS) of (A and B) $Cs_3Bi_2Br_9$ and (C and D) Cs_3BiBr_6 , respectively, where the selected K-point coordinates are X (0.5 0 0), Y (0 0.5 0), and Γ (0 0 0).

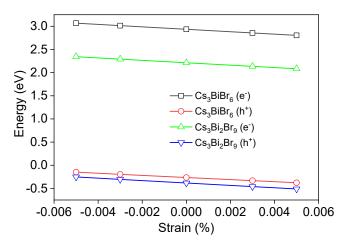
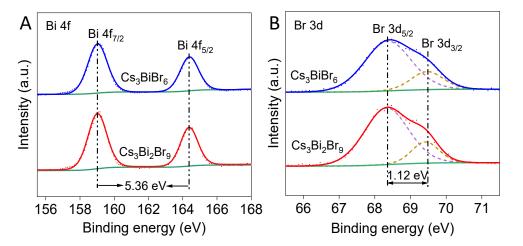
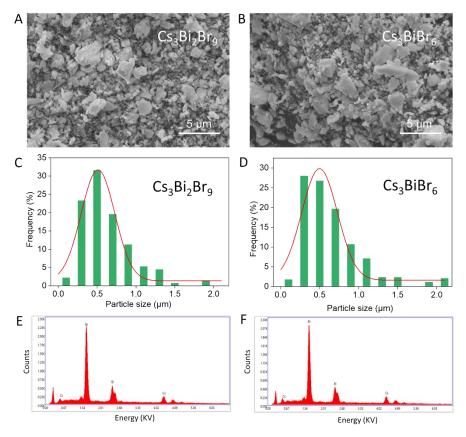
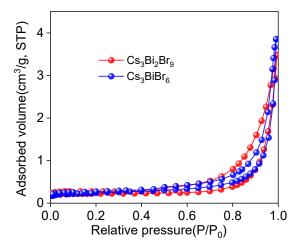


Fig. S2. Shifts of the conduction band and valence band under uniaxial strain. The deformation potential constants (the slope of the fitting lines) of $Cs_3Bi_2Br_9$ and Cs_3BiBr_6 are different, which is consistent with the results of carrier effective masses and carrier mobility (μ).


Fig. S3. High-resolution XPS spectra of (A) Bi 4f and (B) Br 3d core levels.

 $\textbf{Table S3.} \ Atomic \ ratios \ of \ Cs_3Bi_2Br_9 \ and \ Cs_3BiBr_6 \ deduced \ from \ XPS \ analysis.$

Element		Cs		Bi		Br		
Core level		Cs 3d _{5/2} Cs 3d _{3/2}		Bi 4f _{7/2}	Bi 4f _{5/2}	Br 3d _{5/2}	Br 3d _{3/2}	
Relative Se	nsitivity	23.76 16.46		13.90	10.93	1.68	1.16	
Factor (RSF)							
Cs ₃ Bi ₂ Br ₉	Area	12600.2	7970.8	6015.6	3419.2	3097.1	1469.9	
	Atom	Cs:Bi:Br=3:2.21:9.20						
	ratio							
	Area	11711.2	8275.3	2849.0	2190.6	2136.1	978.3	
Cs ₃ BiBr ₆	Atom	Cs:Bi:Br=3:1.22:6.37						
	ratio							

Fig. S4. (A-B) SEM images of (A) Cs₃Bi₂Br₉ and (B) Cs₃BiBr₆ materials. (C-D) Particle size distribution (C) Cs₃Bi₂Br₉ and (D) Cs₃BiBr₆. (E-F) EDS spectra recorded for (E) Cs₃Bi₂Br₉ and (F) Cs₃BiBr₆.

Fig. S5. Nitrogen adsorption-desorption isotherms of Cs₃Bi₂Br₉ and Cs₃BiBr₆ materials.

Table S4. BET surface areas, pore size and pore volume of Cs₃Bi₂Br₉ and Cs₃BiBr₆ samples.

Material	SBET (m ² /g)	pore size (nm)	pore volume (cm ³ /g)
Cs ₃ Bi ₂ Br ₉	1.53	2.13	0.017
Cs_3BiBr_6	1.47	2.05	0.016

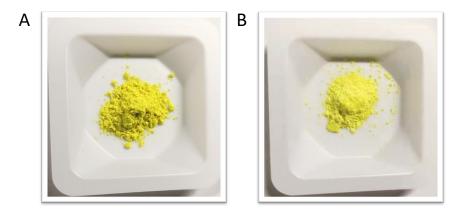


Fig. S6. The digital photographs of (A) Cs₃Bi₂Br₉ and (B) Cs₃BiBr₆ materials.

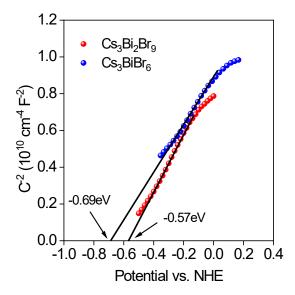


Fig. S7. Mott-Schottky plots of Cs₃Bi₂Br₉ and Cs₃BiBr₆.

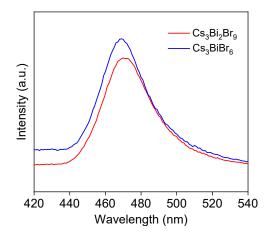


Fig. S8. Steady-state PL spectra of Cs₃Bi₂Br₉ and Cs₃BiBr₆ materials.

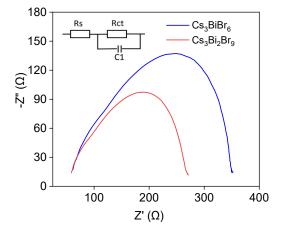
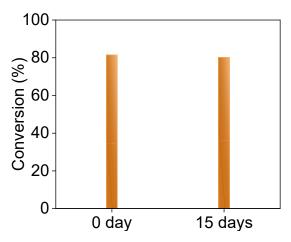
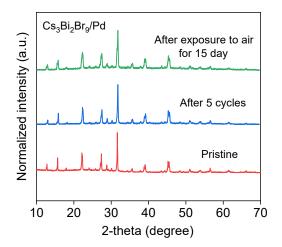
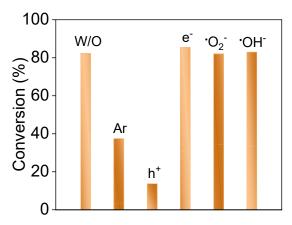


Fig. S9. EIS Nyquist plots of Cs₃Bi₂Br₉ and Cs₃BiBr₆ materials.

Table S5. Comparison of Selective Photocatalytic Oxidation of Benzyl Alcohol (BA) to Benzaldehyde (BAD) over MHP-based and Other Photocatalysts.

Catalyst	Light	Solvent	T	Conversion	Selectivity	Production	Ref.
	source		$(^{\circ}C)$	(%)	(%)	rate (mmol	
						g-1 h-1)	

Cs ₃ Bi ₂ Br ₉ /TiO ₂	Xe lamp (150W, >420 nm)	Toluene	25	73	97.7	0.91	4
$Cs_3Sb_2Br_9$	Xe lamp (150W, AM1.5G)	Toluene	70	47	83	0.29	5
CsPbBr ₃ /TiO ₂	Xe lamp (300W, >420 nm)	Toluene	80	50	90	0.5	6
FAPbBr ₃ / TiO ₂	Xe lamp (150W, AM1.5G)	Toluene	25	63	99	0.8	7
CsPbX ₃ / W ₁₈ O ₄₉	Xe lamp (150W, AM1.5G)	Hexene	25	72	>99	1.5	8
NiO _x /FAPbBr ₃ /TiO ₂	Xe lamp (150W, AM1.5G)	Toluene	25	/	/	3.8	9
TiO ₂ /CeO ₂	Xe lamp (300W, >420 nm)	H ₂ O	25	34	39	0.006	10
Cu@NALC/ TiO ₂ /AC	Xe lamp (100 mW/cm ²)	MeCN	25	100	>99	0.02	11
F-WO ₃	Xe lamp (500W, 320-780 nm)	H ₂ O	25	57	99	0.04	12
Bi-TATB MOF	Xe lamp (300W)	Hexene	15	38	100	0.08	13
CdS/g-C ₃ N ₄	(300W) Xe lamp (300W, >420 nm)	Benzotrif luoride	60	48	99	0.4	14
$g-C_3N_4$	Xe lamp (300W, >420 nm)	Benzotrif luoride	100	23	98	1.2	15
$\begin{array}{c} g\text{-}C_{3}N_{4}/\\ W_{18}O_{49} \end{array}$	Xe lamp (500W, 320-780 nm)	H ₂ O	25	40	99.8	2.2	16
$CdS@MoS_2$	Xe lamp (300 W,	MeCN	25	95	99	2.3	17
Cs ₃ Bi ₂ Br ₉ /Pd	>420 nm) Xe lamp (150W, AM1.5G)	Benzotrif luoride	25	82.3	>99	9.1	This work

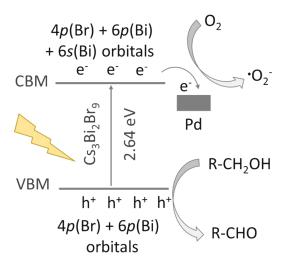

Fig. S10. Stability test of Pd/Cs₃Bi₂Br₉ composite after exposure to air for 15 days.

Fig. S11. XRD patterns of Cs₃Bi₂Br₉/Pd composite before and after 5 cycles and exposed to air for 15 days.

Fig. 12. Effects of radical scavengers on the photocatalytic performance of BA oxidation over Cs₃Bi₂Br₉/Pd composite, where W/O means without scavengers, Ar represents the oxygen is replaced by argon gas, e⁻, h⁺, 'O₂⁻ and 'OH⁻ denote the reaction system with potassium persulfate, ammonium oxalate, 1,4-benzoquinone and t-butanol additives, respectively. Reaction conditions: 0.1 mmol BA in 2.5 mL molecular oxygen saturated benzotrifluoride, 15 mg catalyst, simulated solar light (AM 1.5G, 150 W Xe lamp), reaction time (6 h).

Fig. S13. Schematic illustration of the photocatalytic BA oxidation over Pd/Cs₃Bi₂Br₉ photocatalyst.

Scheme S1. The proposed reaction equations for the photocatalytic oxidation of BA to BAD over Pd/Cs₃Bi₂Br₉ composite.

$$Cs_3Bi_2Br_9 + hv \rightarrow h^+ + e^- \tag{1}$$

$$O_2 + e^- \rightarrow {}^{\bullet}O_2^- \tag{2}$$

$$C_6H_5CH_2OH + h^+ \rightarrow C_6H_5CHOH \cdot * + H^+$$
 (3)

$$C_6H_5CHOH \cdot * + h^+ \rightarrow C_6H_5CHO + H^+$$
 (4)

$$2 H^{+} + 2 \cdot O_{2}^{-} \rightarrow H_{2}O + 3/2 O_{2}$$
 (5)

5. References

- 1 B. Weng, Q. Quan and Y.-J. Xu, J. Mater. Chem.A, 2016, 4, 18366-18377.
- 2 C. Feng, L. Tang, Y. Deng, J. Wang, Y. Liu, X. Ouyang, H. Yang, J. Yu and J. Wang, Appl. Catal. B: Environ., 2021, 281, 119539.
- 3 C. Feng, L. Tang, Y. Deng, J. Wang, J. Luo, Y. Liu, X. Ouyang, H. Yang, J. Yu and J. Wang, Adv. Funct. Mater., 2020, 30, 2001922.
- 4 Q. Sun, W. Ye, J. Wei, L. Li, J. Wang, J.-H. He and J.-M. Lu, *J. Alloys Compd.*, 2022, **893**, 162326.
- 4 D. Wu, W. Sang, B. Huo, J. Wang, X. Wang, C. Chen, Q. Huang and X. Tang, *J. Catal.*, 2022, **408**, 36-42.
- 6 S. Schünemann, M. van Gastel and H. Tüysüz, ChemSusChem, 2018, 11, 2057-2061.
- 7 H. Huang, H. Yuan, K. P. F. Janssen, G. Solís-Fernández, Y. Wang, C. Y. X. Tan, D. Jonckheere, E. Debroye, J. Long, J. Hendrix, J. Hofkens, J. A. Steele and M. B. J. Roeffaers, *ACS Energy Lett.*, 2018, **3**, 755-759.
- 8 R. Cheng, J. A. Steele, M. B. Roeffaers, J. Hofkens and E. Debroye, *ACS Appl. Energy Mater.*, 2021, 4, 3460-3468.
- 9 H. Huang, H. Yuan, J. Zhao, G. Solís-Fernández, C. Zhou, J. W. Seo, J. Hendrix, E. Debroye, J. A. Steele, J. Hofkens, J. Long and M. B. J. Roeffaers, *ACS Energy Lett.*, 2018, **4**, 203-208.
- 10 S. Li, J. Cai, X. Wu, B. Liu, Q. Chen, Y. Li and F. Zheng, *J. Hazard. Mater.*, 2018, **346**, 52-61.
- 11 M. Farrag and R. Yahya, J. Photochem. Photobiol. A: Chem., 2020, 396, 112527.
- 12 Y. Su, Z. Han, L. Zhang, W. Wang, M. Duan, X. Li, Y. Zheng, Y. Wang and X. Lei,

- Appl. Catal. B: Environ., 2017, 217, 108-114.
- 13 R. Zhang, Y. Liu, Z. Wang, P. Wang, Z. Zheng, X. Qin, X. Zhang, Y. Dai, M.-H. Whangbo and B. Huang, *Appl. Catal. B: Environ.*, 2019, **254**, 463-470.
- 14 X. Dai, M. Xie, S. Meng, X. Fu and S. Chen, *Appl. Catal. B: Environ.*, 2014, **158**, 382-390.
- 15 L. Zhang, D. Liu, J. Guan, X. Chen, X. Guo, F. Zhao, T. Hou and X. Mu, *Mater. Res. Bull.*, 2014, **59**, 84-92.
- 16 C. Xiao, L. Zhang, H. Hao and W. Wang, ACS Sustain. Chem. Eng., 2019, 7, 7268-7276.
- 17 P. Li, H. Zhao, X. Yan, X. Yang, J. Li, S. Gao and R. Cao, *Sci. China Mater.*, 2020, 63, 2239-2250.