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S1. Experimental Section 

S1.1 Materials and Reagents

All reagents of analytical grade were used without further purification. (4-

Ethoxycarbonylphenyl) boronic acid, 1-(4-bromophenyl)-1,2,2-triphenylethylene, 

Tetrakis(triphenylphosphine)palladium, 1-(4-carboxyphenyl)-1,2,2-triphenylethene, 

triethylamine (NEt3), 1-hydroxybenzotriazole (HOBT), and N, N′-

dicyclohexylcarbodiimide (DCC) were purchased from Energy Chemical. K2CO3 

(>98%), KOH (>99%), AgNO3 (>99%) and Na2SO4 (>99%) were purchased from 

Sinopharm Chemical Reagent Co., Ltd. L- and D-Cysteine ethyl ester hydrochloride 

(L-/D-CysOEt·HCl) were obtained from GL Biochem (Shanghai, China). 

S1.2 Physical Measurements and Instruments 

1H NMR and 13C NMR spectra were recorded on a Bruker Ascend III NMR 

Spectrometer (600 or 850 MHz) using Si(CH3)4 as an internal standard. High-

resolution mass spectrometry (HRMS) data were acquired on a Bruker Impact II 

spectrometer and Bruker autoflex maX MALDI-TOF MS, UV-Vis absorption spectra 

were collected on Varian Cary 300 UV spectrophotometer. CD spectrometry was 

conducted on JASCO J-810 Circular Dichroism Chiroptical Spectrometer. Emission 

spectra were obtained from a HITACHI F-4500 spectrofluorometer. Dynamic light 

scattering (DLS) data were collected on a Malvern Nano S90 Malvern Zetasizer Nano 

ZS. TEM images were taken on a JEM 1400 Transmission Electron Microscope with 

an accelerating voltage of 100 kV. Scanning electron microscopy (SEM) images were 

obtained using a Hitachi S-4800 microscope.

S2. Synthetic Details

S2.1 Synthesis

Synthesis of compound TPE-Ph-COOH. This was synthesized according to a 

modified procedure described in the literature for a related compound.1,2 Briefly, 1-(4-
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bromophenyl)-1,2,2-triphenylethylene (1.23 g, 3 mmol), (4-ethoxycarbonylphenyl)-

boronic acid (0.63 g, 3 mmol), K2CO3 (0.84 g, 9 mmol), and dry toluene (25 mL) 

were added to a 100 mL 2-necked round flask. The mixture was bubbled with 

nitrogen for 30 min and equipped with a water condenser. 

Tetrakis(triphenylphosphine)palladium (0.03 g) was then added to the reaction 

mixture and stirred at 80 oC for 24 h under nitrogen. After the completion of reaction, 

monitored by TLC, the precipitates were removed and filtrate was collected. The 

obtained crude product was purified by silica gel column chromatography eluting 

with 3:1 (v/v) petroleum ether/dichloromethane to afford a bright yellow solid (0.94 g, 

75%). The target molecule was obtained by hydrolyzing of the ethyl eater group. 

Then the ester was dissolved in THF (20 mL) and H2O (20 mL) containing KOH 

(4.45 g) and the solution was refluxed for 4 h. After cooling, the solvent was 

evaporated and water (10 mL) and 5 N HCl solution were added to adjust solution pH 

to 3. The precipitate was filtered, washed with water, and dried to give the product 

TPE-Ph-COOH (96%, 1.03 g). 1H NMR (600 MHz, DMSO-d6, 298 K): δ (ppm) = 

12.96 (s, 1H), 7.97 (d, J = 8.3 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.3 Hz, 

2H), 7.20 - 6.96 (m, 17H). 13C NMR (151 MHz, DMSO-d6, 298 K): δ (ppm) = 167.16 

(s), 143.52 (s), 143.33 (s), 143.26 - 142.97 (m), 141.11 (s), 140.02 (s), 136.77 (s), 

131.48 (s), 130.89 - 130.55 (m), 130.03 (s), 129.59 (s), 128.14 - 127.79 (m), 126.92 - 

126.64 (m), 126.54 (s), 126.30 (s), 54.98 (s). HRMS (ESI-): calcd. for [M-H]-, 

451.1704. Found: 451.1707.

Synthesis of compound L-1 or D-1: 1.03 g TPE-Ph-COOH was dispersed in 

CHCl3 under an ice bath, to which 2.5 mL triethylamine, 1-hydroxybenzotriazole 

(0.32 g, 2.4 mmol) and N, N′-dicyclohexylcarbodiimide (0.49 g, 2.4 mmol) were 

added and the mixture was stirred at 0°C for 40 min. A CHCl3 solution (10 mL) of L- 

or D-cysteine ethyl ester hydrochloride (0.37 g, 2.0 mmol) was then added dropwise 

and the resultant solution was stirred at room temperature for 8 h. The solvent was 

removed by rotary evaporation, leading to an oily liquid. A saturated aqueous 

NaHCO3 solution (30 mL) was added and the mixture was extracted with CH2Cl2 
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(DCM, 3×25 mL). The combined organic layers were dried over anhydrous Na2SO4, 

filtered and concentrated. The crude product was purified by column chromatography 

on silica gel, leading to a bright yellow solid. 

L-1: Yield: 979 mg (1.68 mmol, 74 %). 1H NMR (600 MHz, DMSO-d6, 298 K): δ 

(ppm) = 8.82 (d, J = 7.6 Hz, 1H), 7.95 (d, J = 8.2 Hz, 2H), 7.76 (d, J = 8.2 Hz, 2H), 

7.56 (d, J = 8.2 Hz, 2H), 7.19 - 6.98 (m, 17H), 4.64 - 4.47 (m, 1H), 4.14 (ddd, J = 9.9, 

7.5, 3.3 Hz, 2H), 3.05 - 2.96 (m, 1H), 2.95 - 2.86 (m, 1H), 2.68 (t, J = 8.5 Hz, 1H), 

1.20 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz, DMSO-d6, 298 K): δ (ppm) = 170.41 

(s), 166.22 (s), 143.29 - 142.94 (m), 142.27 (s), 140.96 (s), 139.98 (s), 136.80 (s), 

132.31 (s), 131.39 (s), 130.88 - 130.49 (m), 128.15 (s), 128.07 - 127.72 (m), 126.89 - 

126.36 (m), 126.19 (d, J = 8.4 Hz), 60.82 (s), 55.67 (s), 25.00 (s), 14.07 (s). HRMS 

(ESI+): calcd. for [M+H]+, 584.2254, [M+Na]+, 606.2073. Found: 584.2255; 

606.2077.

D-1: Yield: 913 mg (1.56 mmol, 69%). 1H NMR (600 MHz, DMSO-d6, 298 K): δ 

(ppm) = 8.83 (d, J = 7.5 Hz, 1H), 7.97 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 8.2 Hz, 2H), 

7.56 (d, J = 8.1 Hz, 2H), 7.17 - 6.98 (m, 17H), 4.59 (dd, J = 12.8, 8.2 Hz, 1H), 4.14 

(dd, J = 6.9, 4.6 Hz, 2H), 3.05 - 2.98 (m, 1H), 2.92 (dd, J = 22.3, 8.7 Hz, 1H), 2.68 (t, 

J = 8.5 Hz, 1H), 1.20 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz, DMSO-d6, 298 K): δ 

(ppm) = 170.41 (s), 166.23 (s), 143.09 (s), 142.28 (s), 140.96 (s), 139.98 (s), 136.81 

(s), 132.32 (s), 131.40 (s), 130.89 - 130.50 (m), 128.16 (s), 128.07 - 127.66 (m), 

126.89 - 126.35 (m), 126.19 (d, J = 8.7 Hz), 60.83 (s), 55.68 (s), 39.52 (s), 26.34 (s), 

25.02 (s), 14.07 (s). HRMS (ESI+): calcd. for [M+H]+, 584.2254, [M+Na]+, 606.2073. 

Found: 584.2256; 606.2080.
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Scheme S1. Synthesis of compounds L-1 and D-1.

Synthesis of compound L-2: 1-(4-carboxyphenyl)-1,2,2-triphenylethene (0.72 g, 

2.00 mmol) and triethylamine (2.5 mL) were added into CHCl3 suspension (20 mL). 

The reaction mixture was cooled down to 0 oC, then, 1-hydroxybenzotriazole (0.32 g, 

2.4 mmol) and N, N′-dicyclohexylcarbodiimide (0.49 g, 2.4 mmol) were added. After 

the addition was complete, the mixture was stirred at 0°C for 40 min. Then, the 

mixture was added dropwise a CHCl3 solution (10 mL) of L-cysteine ethyl ester 

hydrochloride (0.37 g, 2.00 mmol). After being stirred at room temperature for 8 h, 

the mixture was washed with diluted brine and saturated NaHCO3, and dried over 

anhydrous Na2SO4. The solvent was evaporated under reduced pressure and then 

purified by column chromatography on silica gel using dichloromethane- methanol 

(100:1, v/v) as eluent. A white solid was obtained after solvent removal under reduced 

pressure. Yield: 775 mg (1.52 mmol, 76%). 1H NMR (600 MHz, DMSO-d6, 298 K): 

δ (ppm) = 8.70 (d, J = 6.8 Hz, 1H), 7.67 (d, J = 7.3 Hz, 2H), 7.19 - 6.97 (m, 17H), 

4.52 (d, J = 3.3 Hz, 1H), 4.19 - 4.07 (m, 2H), 3.02 - 2.83 (m, 2H), 2.66 (t, J = 8.1 Hz, 

1H), 1.19 (t, J = 6.4 Hz, 3H). 13C NMR (151 MHz, DMSO-d6, 298 K): δ (ppm) = 

170.38 (s), 166.21 (s), 146.66 (s), 142.79 (d, J = 19.6 Hz), 141.54 (s), 139.76 (s), 

131.44 (s), 130.62 (d, J = 9.7 Hz), 128.21 - 127.71 (m), 127.12 (s), 126.80 (d, J = 19.0 

Hz), 60.81 (s), 55.65 (s), 39.52 (s), 24.94 (s), 14.06 (s). HRMS (ESI+): calcd. for 

[M+H]+, 508.1941, [M+Na]+, 530.1760. Found: 508.1944; 530.1762.
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Scheme S2. Synthesis of L-2.

S2.2 References
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S3. Additional Data

S3.1 Experimental Data
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Fig. S1 Plots of absorbance at 350 nm (a) and CD signals at 350 nm (b) and 295 nm 

(c) of D-1 in THF in the presence of Ag+ of increasing concentration. [D-1] = 25 

µM, [Ag+] = 0 - 75 µM.
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Fig. S4 SEM (a, b) and TEM (c, d) images of supramolecular structures formed in 

THF solution of L-1 (a), D-1 (b), Ag+-L-1 (c) and Ag+-D-1 (d).

Fig. S5 Partial 1H NMR spectra of L-1 in THF-d8 in the presence of Ag+. [L-1] = 25 

μM, [Ag+] = 0 - 30 μM. 
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Fig. S6 (a) Fluorescence spectra of D-1 in THF upon titration by Ag+ and (b) plots of 
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25 µM, [Ag+] = 0 - 75 µM. 
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Fig. S8 Plots of enhancement in absorbance (a) and CD signal (b) of D-1 at 350 nm in 

THF against concentration of Ag+. [D-1] = 5 µM, 15 µM, 25 µM, [Ag+] = 0 - 75 µM.
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Fig. S10 Enhancement of fluorescence intensity at 490 nm of D-1 in THF by Ag+ of 

increasing concentration. [D-1] = 5 µM, 15 µM, 25 µM, [Ag+] = 0 - 75 µM.
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Fig. S12 CD signals at 272 nm and 350 nm of Ag+-L-1 (a) and Ag+-D-1 (b) in THF 

containing increasing water content. [Ag+-L-1] = [Ag+-D-1] = 25 µM.
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Fig. S13 Traces of CD spectra of Ag+-L-1 (a) and Ag+-D-1 (b) coordination polymers 
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Fig. S15 SEM images of Ag+-D-1 coordination polymers formed in H2O/THF of 

increasing water volume fraction. [Ag+-D-1] = 25 µM. 
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Fig. S25 Plots of CD signals at 295 nm and 350 nm of Ag+-L-1 coordination 

polymers in THF against temperature. [Ag+] = [L-1] = 25 µM.
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Fig. S26 Temperature-dependent fluorescence spectra of Ag+-L-1 coordination 

polymers in THF upon heating (a) and later cooling (b). λex = 350 nm, [Ag+] = [L-1] 

= 25 µM.
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Fig. S27 Plots of emission intensity at 490 nm of Ag+-L-1 coordination polymers in 

THF against temperature. λex = 350 nm, [Ag+] = [L-1] = 25 µM.
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Fig. S28 Temperature-dependent CD spectra of Ag+-D-1 coordination polymers in 3:7 

(v/v) THF/H2O upon heating (a) and later cooling (b). [Ag+] = [D-1] = 25 µM.
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Fig. S29 Plots of CD signals at 260 nm and 335 nm of Ag+-D-1 coordination polymers 

in 3:7 (v/v) THF/H2O against temperature. [Ag+] = [D-1] = 25 µM.
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Fig. S30 Temperature-dependent fluorescence spectra of Ag+-L-1 coordination 

polymers in 3:7 (v/v) THF/H2O upon heating (a) and later cooling (b). λex = 350 nm, 

[Ag+] = [L-1] = 25 µM.
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Fig. S31 Plots of emission intensity at 484 nm of Ag+-L-1 coordination polymers in 

3:7 (v/v) THF/H2O against temperature. λex = 350 nm, [Ag+] = [L-1] = 25 µM.
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Fig. S32 Absorption (a) and CD (b) spectra of Ag+-L-1 (red) and Ag+-D-1 (blue) 

coordination polymers in THF. [Ag+] = [L-/D-1] = 25 µM.
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Fig. S33 (a) CD spectra of Ag+-1 coordination polymers in CH3CN of varying ee of 1 

and (b) plots of CD signals at 295 nm and 350 nm versus ee. [Ag+] = 25 µM, [L-1] + 

[D-1] = 25 µM.
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Fig. S34 (a) CD spectra of Ag+-1 coordination polymers in CH3OH of varying ee of 1 

and (b) plots of CD signals at 295 nm and 350 nm versus ee. [Ag+] = 25 µM, [L-1] + 

[D-1] = 25 µM.
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Fig. S35 (a) CD spectra of Ag+-1 coordination polymers in C2H5OH of varying ee of 

1 and (b) plots of CD signals at 295 nm and 350 nm versus ee. [Ag+] = 25 µM, [L-1] + 

[D-1] = 25 µM.
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S3.2 1H NMR and 13C NMR Spectra and HRMS of New Compounds

Fig. S36 1H NMR (600 MHz, DMSO-d6) spectrum of TPE-Ph-COOH.

Fig. S37 13C NMR (151 MHz, DMSO-d6) spectrum of TPE-Ph-COOH.
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Fig. S38 HRMS of TPE-Ph-COOH.

Fig. S39 1H NMR (600 MHz, DMSO-d6) spectrum of L-1.
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Fig. S40 13C NMR (151 MHz, DMSO-d6) spectrum of L-1.
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Fig. S41 HRMS of L-1.
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Fig. S42 1H NMR (600 MHz, DMSO-d6) spectrum of D-1.

Fig. S43 13C NMR (151 MHz, DMSO-d6) spectrum of D-1.
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Fig. S44 HRMS of D-1.

Fig. S45 MALDI-TOF MS of Ag+-L-1 coordination polymer.


