Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

Dearomative Cyclization of Pyridines/Isoquinolines with Cyclopropenones: Access to Indolizinones and Benzo-Fused Indolizinones

Xiang Liu,^a Xiaotian Shi,^a Jinlei Zhou,^a Changfeng Huang,^a Yu Lin,^a Chen Zhang,^{a,b} and Hua Cao*^a

^aSchool of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China ^bSchool of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

E-mail: caohua@gdpu.edu.cn

Table of Contents:

1. General considerations	S-2
2. Experimental procedures and characterization data	S-3
2.1 Experimental procedures	S-3
2.2 Plausible mechanistic pathway	S-5
2.3 DFT calculations	S-6
2.4 Characterization data	S-16
3. NMR spectra for new compounds	S-26
4. X-ray crystallographic data	S-56
5. References	S-59

1. General considerations

Unless otherwise noted, commercial reagents were purchased from Adamas, Alfa, Aladdin, TCI, *J&K* or Macklin and used without further purification. All reactions were carried out using oven-dried glassware and all reactions proceeded without special care. Column chromatography was performed on 200-300 mesh silica gel (Huanghai, China).

¹H, ¹⁹F and ¹³C{¹H} NMR spectra were recorded on an Bruker Ascend 400 MHz spectrometer at ambient temperature. ¹H NMR spectra are referred to the TMS signal ($\delta = 0$ ppm) and ¹³C NMR spectra are referred to the residual solvent signal ($\delta = 77.16$ ppm). Data for ¹H NMR are reported as follows: chemical shifts (δ ppm), multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz), integration.

The data of HRMS was carried out on a waters G2-XS high-resolution mass spectrometer (HR-ESI-MS), or Thermo Fisher Scientific LTQ FTICR-MS, or Agilent 7250 GC/QTOF. Melting point were recorded using a SGW X-4 Melting Point Apparatus. X-ray diffraction data were collected on SuperNova, Dual, Cu at zero, AtlasS2.

2. Experimental procedures and characterization data

2.1 Experimental procedures

Synthesis of compounds 2 according to the following procedure¹:

To an oven-dried Schlenk tube containing a stir bar was added NaI (1.65 g, 11 mmol, 2.2 equiv). A solution of diphenylacetylene (5.0 mmol, 1.0 equiv) in anhydrous THF (10.0 mL) was then added against positive N₂ flow. Trifluoromethyltrimethylsilane (1.42 g, 10.0 mmol, 2 equiv) was added, and the Schlenk tube was sealed. The reaction was stirred vigorously at 100 °C with a heating mantle for 6 h, then diluted with H₂O (10.0 mL) and stirred at room temperature for 12 h. The mixtures were extracted with CH₂Cl₂ (3 x 10 mL) and the combined organic layers were dried over MgSO₄ and filtered. The filtrate was concentrated in vacuo, and the residue was purified by flash column chromatography (petroleum ether: ethyl acetate = 5: 1) to give 2,3-diphenyl-2-cyclopropen-1-one as a yellow solid.

Compounds **2** were known compounds and synthesized according to the known procedures, and their NMR data were in agreement with those described in the literature.¹

Synthesis of products 1 and 5 according to the following procedure²:

As exemplified for 1d:

A pressure tube was charged with 2-ethynylpyridine (309.1 mg, 3.0 mmol, 1.0 equiv), 1-iodo-2methoxybenzene (772.0 mg, 3.3 mmol, 1.1 equiv), CuI (57.0 mg, 0.3 mmol, 10 mol%), Pd(PPh₃)₄ (346.3 mg, 0.3 mmol, 10 mol%) and Et₃N (10.0 mL). The mixtures were stirred at room temperature for 12 h. The solution was concentrated in vacuo, and the residue was purified by flash column chromatography (petroleum ether: ethyl acetate = 20: 1) to give product **1d** in 78% yield (489.3 mg).

Compounds 1 and 5 were known compounds and synthesized according to the known procedures, and their NMR data were in agreement with those described in the literature.²

Synthesis of products 3 according to the following procedure:

As exemplified for **3a**:

A pressure tube was charged with 2-ethynylpyridine (30.9 mg, 0.30 mmol, 1.0 equiv), 2,3-diphenyl-2cyclopropen-1-one (61.8 mg, 0.30 mmol, 1.0 equiv) and DCM (3.0 mL). The mixtures were heated with a heating mantle at 120 °C for 12 h, then cooled to room temperature. The solution was concentrated in vacuo, and the residue was purified by flash column chromatography (petroleum ether: ethyl acetate = 7: 1) to give product **3a** in 80% yield (74.2 mg).

Synthesis of products 6 according to the following procedure:

As exemplified for **6a**:

A pressure tube was charged with 1-methylisoquinoline (42.9 mg, 0.30 mmol, 1.0 equiv), 2,3-diphenyl-2cyclopropen-1-one (61.8 mg, 0.30 mmol, 1.0 equiv) and DCM (3.0 mL). The mixtures were allowed to stir at 120 °C with a heating mantle for 12 h, then cooled to room temperature. The solution was concentrated in vacuo, and the residue was purified by flash column chromatography (petroleum ether: ethyl acetate = 1: 1) to give product **6a** in 78% yield (81.7 mg).

Synthesis of products 8 according to the following procedure:

As exemplified for 8a:

A pressure tube was charged with a stirring bar, 2-phenylindolizine (57.9 mg, 0.30 mmol, 1.0 equiv), AcONa (61.5 mg, 075. mmol, 2.5 equiv), RB (6.1 mg, 0.006 mmol, 2 mol%) and MeCN (2.0 ml) : MeOH (2,0 ml) were added. The reaction was stirred at room temperature under irradiation of blue LED for 12 h. The solution was concentrated in vacuo, and the residue was purified by flash column chromatography (petroleum ether: ethyl acetate = 7: 1) to give product **7'a** in 75% yield.³

A pressure tube with 3.0 mL DCM was charged with a stirring bar, methyl (*Z*)-2-phenyl-3-(pyridin-2-yl)acrylate (71.1 mg, 0.30 mmol, 1.0 equiv), 2,3-diphenyl-2-cyclopropen-1-one (67.9 mg, 0.33 mmol, 1.1 equiv) were added. The reaction was heated with a heating mantle at 120 °C for 12 h, then cooled to room temperature. The solution was concentrated in vacuo, and the residue was purified by flash column chromatography (petroleum ether: ethyl acetate = 7: 1) to give product **8a** in 70% yield (85.7 mg).

2.2 Plausible mechanistic pathway

Figure S1 Plausible mechanistic pathway

2.3 DFT calculations

Computational methods

All calculations were conducted with Gaussian 03, Revision E.01 package.⁴ Each structure was optimized in gas phase at the M062X/6-31G* level of theory. Analytical frequency calculations were performed at the same level of theory to ensure that all stationary points were either intermediates without any imaginary frequencies or transition states possessing only one

imaginary frequency. The Gibbs free energy was then refined based on single point calculations at the same functional, which was conducted in the presence of solvent through the SMD⁵ method with dichloroethane. All listed energies are free energies at a concentration of 1 M. All three-dimensional structures of the species were generated using Molecular Operating Environment (MOE 2008.10) program.

Reactant

E = -976.554664 a.u.

С	0.04799900	-0.01846900	1.37979700
С	-1.25259000	0.34539500	1.23246000
С	-0.35765600	1.25854000	1.86766100
0	-0.10484400	2.32036600	2.39102200
С	1.10316600	-0.95023400	1.02927100
С	2.39179800	-0.73198000	1.52787400
С	3.43444100	-1.57155200	1.15179300
С	3.19681000	-2.62318400	0.26914800
С	1.91468300	-2.84027600	-0.23739600
С	0.86892300	-2.00857500	0.14099900
С	-2.54096200	-0.00127200	0.65897400
С	-3.43693700	1.01868000	0.32335500
С	-4.64627900	0.70571000	-0.28688900
С	-4.97622800	-0.62402700	-0.54367900
С	-4.09554200	-1.64591100	-0.18771400
С	-2.87895800	-1.33634500	0.40737900
Н	2.56043700	0.10544400	2.19898900
Н	4.43359900	-1.40305300	1.54153600
Н	4.01265500	-3.27604200	-0.02667600
Н	1.73504900	-3.65471400	-0.93243900
Н	-0.12480000	-2.14144000	-0.27685700
Н	-3.16185400	2.04915000	0.52658300
Н	-5.33469300	1.49929800	-0.55975400

Н	-5.92432400	-0.86555900	-1.01463200
Н	-4.35900500	-2.68220400	-0.37595900
Н	-2.18714100	-2.12406200	0.69287000
С	3.34368300	0.91487600	-1.39178100
С	2.19502500	0.36312700	-1.94334600
С	0.96033800	0.92443100	-1.60001700
Ν	0.83100600	1.97326600	-0.77575400
С	1.94254900	2.48370500	-0.24882900
С	3.21931000	1.99485800	-0.52382200
С	-0.26740900	0.33656500	-2.07697600
С	-1.30346200	-0.16873600	-2.43238500
Н	4.31882000	0.49746100	-1.62420200
Н	2.23225300	-0.49501100	-2.60515700
Н	1.79580200	3.30823600	0.44435200
Н	4.08847400	2.44818000	-0.05924100
Н	-2.23976200	-0.59341200	-2.72258200

Transition State A (Transition State A')

E = -976.512380 a.u.

С	2.48589700	-3.47477100	-0.72358400
С	2.60469700	-2.99538800	0.57605400
С	1.93422400	-1.83443100	0.92748400
Ν	1.17565100	-1.16885200	0.03911700
С	1.03696600	-1.62133400	-1.22732600
С	1.69287700	-2.78449300	-1.63055700
С	-0.99546700	-0.03576100	0.95480900
С	0.42278400	0.10385800	0.61558500
С	-0.14199700	-0.21774200	1.98017100
0	0.26213100	-0.48931700	3.11409500
С	0.21028400	-0.90908700	-2.14885000
С	-0.46771600	-0.40352300	-3.00657300

С	-2.36260900	0.06194700	0.48732100
С	-3.39197200	-0.43344600	1.30553700
С	-4.72135900	-0.33759500	0.91585700
С	-5.06054400	0.24943600	-0.30250700
С	-4.04987800	0.74913800	-1.11993000
С	-2.71864600	0.66099900	-0.72893500
С	1.23280200	1.31184800	0.25008100
С	2.37011200	1.62207900	1.00553600
С	3.13059700	2.75046300	0.71540100
С	2.76035700	3.58937000	-0.33351000
С	1.62202000	3.29951600	-1.08085700
С	0.86503400	2.16827800	-0.78998600
Н	2.99977400	-4.38025000	-1.02898300
Н	3.20167100	-3.50851100	1.32027800
Н	1.93164000	-1.42105600	1.93319600
Н	1.56476700	-3.12337300	-2.65153600
Н	-1.08872100	0.06031000	-3.74205600
Н	-3.12639900	-0.89189200	2.25395700
Н	-5.49937100	-0.72590000	1.56699900
Н	-6.09995100	0.32272700	-0.60708100
Н	-4.30140100	1.22368500	-2.06485800
Н	-1.94079800	1.07484800	-1.36126000
Н	2.63145200	0.98869400	1.84990200
Н	4.00446000	2.98387900	1.31633100
Н	3.35038400	4.47230600	-0.55997600
Н	1.32051900	3.95783200	-1.89023300
Н	-0.02542200	1.94704200	-1.36859400
T () ·		I (D)	

Intermediate B (Intermediate B')

E = -976.531283 a.u.

S-8

С	3.01419000	-2.37622300	0.68380300
С	1.79299200	-1.71780100	0.53630800
N	1.73881500	-0.41899200	0.01723000
С	2.95893700	0.19715800	-0.22597200
С	4.15889400	-0.42800100	-0.02922500
С	-0.57245300	-0.54726300	-0.80555900
С	0.55640500	0.23140100	-0.26877000
С	-0.27479700	-1.13815200	-1.96054200
0	0.06818900	-1.67260900	-2.93735400
С	0.59829700	-2.32130900	1.00798700
С	-0.38771200	-2.85058300	1.46206100
С	-1.92707200	-0.62187400	-0.22336100
С	-2.16761900	-0.07459700	1.04102900
С	-3.43458800	-0.14892400	1.61099600
С	-4.47960800	-0.77325800	0.93516800
С	-4.24627200	-1.31909700	-0.32600300
С	-2.98549400	-1.23760900	-0.90325200
С	0.45144700	1.68369500	-0.16123800
С	1.18263200	2.42751000	0.78969000
С	0.99185000	3.79328900	0.93525100
С	0.05797600	4.46782200	0.14909800
С	-0.68795600	3.74628300	-0.77861600
С	-0.49810900	2.37829200	-0.93272300
Н	5.16313300	-2.26959300	0.54776800
Н	2.97084800	-3.38945500	1.06775600
Н	2.88403000	1.19048800	-0.64390500
Н	5.05908300	0.12747500	-0.26891300
Н	-1.28169300	-3.28566500	1.85125300
Н	-1.35124700	0.40213400	1.57557100
Н	-3.60297400	0.28464900	2.59245100

Н	-5.46657200	-0.83211100	1.38309300
Н	-5.05173700	-1.80809300	-0.86592300
Н	-2.82012400	-1.66002000	-1.89279700
Н	1.89547000	1.92035000	1.43534600
Н	1.56806400	4.33447000	1.68028400
Н	-0.09091400	5.53638200	0.26622800
Н	-1.42688700	4.25197100	-1.39333800
Н	-1.09181200	1.82873600	-1.65661000

Transition State C

E = -976.516999 a.u.

С	4.42163700	0.19245700	-1.08791000
С	3.87983400	-0.86244800	-0.41194000
С	2.62251900	-0.76729300	0.23648300
Ν	1.82436400	0.38830500	-0.01036700
С	2.50210900	1.54525800	-0.45398200
С	3.73150500	1.44097800	-1.00751800
С	-0.12577000	-1.01356100	-0.06028200
С	0.48962500	0.27906400	0.02393400
С	0.57536500	-2.16000000	-0.28273500
0	0.83033300	-3.28479400	-0.43468300
С	2.36486200	-1.48309000	1.43599600
С	2.10920800	-2.11412700	2.43744600
С	-1.60446600	-1.21522700	-0.10065700
С	-2.41161800	-0.68089200	0.91155900
С	-3.78708600	-0.87537600	0.89017500
С	-4.37794000	-1.62372000	-0.12668300
С	-3.58096400	-2.17086500	-1.12699700
С	-2.20476100	-1.96083100	-1.12003400
С	-0.33522100	1.50760500	0.04941600
С	-0.17262100	2.44589100	1.07593700

С	-0.95359000	3.59652800	1.10819200
С	-1.90758500	3.81976600	0.11747800
С	-2.07532200	2.88997800	-0.90621200
С	-1.29560800	1.73949800	-0.94122800
Н	5.37838400	0.11783400	-1.58895100
Н	4.41579400	-1.79911700	-0.29077300
Н	1.94604600	2.46940400	-0.39779600
Н	4.19071400	2.34973600	-1.38250700
Н	1.91691900	-2.65008200	3.33903100
Н	-1.95157400	-0.10836000	1.71170500
Н	-4.39978300	-0.44883300	1.67867600
Н	-5.45214800	-1.77925500	-0.13683200
Н	-4.03026000	-2.75447900	-1.92483000
Н	-1.58854300	-2.37525900	-1.91379100
Н	0.56719100	2.26148300	1.85125900
Н	-0.82210000	4.31554400	1.91077900
Н	-2.52004900	4.71563100	0.14435800
Н	-2.81717600	3.05961500	-1.68010200
Н	-1.43130000	1.00880200	-1.73280500

Product 3a

E = -976.578441 a.u.

С	3.99252000	-0.09430500	-1.37023900
С	3.27960800	-1.13721600	-0.93041100
С	2.21902400	-0.91482200	0.11837000
Ν	1.68213000	0.44914300	0.06115600
С	2.50412400	1.50658200	-0.32261900
С	3.66877000	1.26485200	-0.94952800
С	-0.19789100	-0.86915900	-0.02074100
С	0.30079000	0.40650000	0.01754600
С	0.94419700	-1.78382300	-0.09580500

0	0.98416600	-2.97907100	-0.27198300
С	2.74226100	-1.21179800	1.46484200
С	3.18016200	-1.48296000	2.55298700
С	-1.60103900	-1.30886400	-0.00576500
С	-2.56794500	-0.63902800	0.75771500
С	-3.88736800	-1.07421700	0.76836300
С	-4.26429200	-2.19297700	0.02798000
С	-3.30786100	-2.87529100	-0.71838700
С	-1.98627800	-2.44074100	-0.73689700
С	-0.46485500	1.66995900	-0.00432700
С	-0.25088200	2.64501400	0.97489700
С	-0.99837700	3.81860400	0.96404800
С	-1.95458200	4.02676200	-0.02742100
С	-2.16691300	3.05777900	-1.00610300
С	-1.42902900	1.87979100	-0.99403700
Н	4.79036600	-0.24047400	-2.09209100
Н	3.43463700	-2.16350400	-1.24675100
Н	2.13582500	2.50148100	-0.10224700
Н	4.31966600	2.09100300	-1.20665000
Н	3.56685000	-1.72072800	3.51871000
Н	-2.27761900	0.22086800	1.35422600
Н	-4.62222200	-0.54341800	1.36631300
Н	-5.29483800	-2.53446000	0.04074200
Н	-3.58944500	-3.75351600	-1.29153600
Н	-1.24051000	-2.98181600	-1.30824500
Н	0.48852600	2.46925000	1.75227900
Н	-0.83668800	4.56866800	1.73171900
Н	-2.53669400	4.94294800	-0.03553200
Н	-2.91293800	3.21734800	-1.77792800
Н	-1.59799700	1.11106900	-1.74205300

Transition State C'

E = -976.514602 a.u.

С	-3.904714	-2.177852	-0.877354
С	-3.973711	-0.912860	-0.327297
С	-2.830292	-0.187570	0.042704
Ν	-1.542234	-0.698624	-0.251224
С	-1.488960	-2.010452	-0.736839
С	-2.614797	-2.714469	-1.065842
С	0.722420	-0.964212	0.430177
С	-0.354691	-0.050441	0.042931
С	0.235594	-2.044041	1.049227
0	-0.285079	-3.008285	1.462885
С	-2.974662	0.987284	0.810953
С	-3.195347	1.973202	1.481107
С	2.162631	-0.870469	0.095092
С	2.583357	-0.178711	-1.052936
С	3.935877	-0.115994	-1.382981
С	4.891981	-0.747926	-0.584815
С	4.482368	-1.437488	0.558075
С	3.133167	-1.487386	0.902792
С	-0.182646	1.395868	0.022416
С	-0.831957	2.212963	-0.931796
С	-0.562873	3.574816	-1.011694
С	0.359944	4.170628	-0.147062
С	1.012404	3.377854	0.800181
С	0.748929	2.014035	0.884928
Н	-4.797372	-2.737713	-1.130083
Н	-4.928118	-0.447865	-0.103389
Н	-0.518289	-2.368414	-1.029256
Н	-2.477393	-3.700912	-1.498192

Н	-3.346094	2.839589	2.083690
Н	1.845997	0.309295	-1.682060
Н	4.242694	0.427199	-2.273048
Н	5.945266	-0.696932	-0.846418
Н	5.216248	-1.925977	1.193828
Н	2.826362	-1.998086	1.812840
Н	-1.541839	1.768644	-1.623645
Н	-1.074968	4.175210	-1.759602
Н	0.567904	5.235002	-0.212579
Н	1.731186	3.824930	1.482434
Н	1.260557	1.412001	1.629169
Н	1.260557	1.412001	1.62916

Product 3a'

E = -976.584595 a.u.

С	-3.256246	-2.538664	1.006725
С	-3.731995	-1.285745	0.450680
С	-2.869782	-0.426332	-0.169763
Ν	-1.524969	-0.839928	-0.289962
С	-1.259956	-2.273370	-0.379017
С	-2.055296	-3.030177	0.643229
С	0.774030	-0.957107	-0.195483
С	-0.341867	-0.134668	-0.175322
С	0.317150	-2.342228	-0.261300
0	0.934669	-3.393682	-0.240669
С	-3.300498	0.805543	-0.739164
С	-3.724749	1.825284	-1.233799
С	2.195539	-0.594059	-0.030204
С	3.177002	-1.340692	-0.708900
С	4.530011	-1.037532	-0.568946
С	4.937126	0.013520	0.254343
С	3.975594	0.752377	0.946084

С	2.621941	0.449591	0.811324
С	-0.348867	1.341052	-0.032720
С	0.255401	2.143374	-1.010422
С	0.272404	3.529563	-0.867096
С	-0.298769	4.125623	0.259502
С	-0.890937	3.330579	1.242689
С	-0.921967	1.944681	1.096440
Н	-3.891466	-3.073893	1.707396
Н	-4.779954	-1.016674	0.515914
Н	-1.496665	-2.631920	-1.397247
Н	-1.647718	-3.964281	1.018489
Н	-4.073939	2.735123	-1.666648
Н	2.871543	-2.169877	-1.336882
Н	5.268675	-1.627729	-1.105303
Н	5.992604	0.248859	0.363200
Н	4.279342	1.563327	1.603325
Н	1.891059	1.020200	1.373956
Н	0.708373	1.676026	-1.879324
Н	0.737705	4.144121	-1.632764
Н	-0.278027	5.206163	0.373087
Н	-1.331410	3.789060	2.123732
Н	-1.384306	1.326765	1.860886

2.4 Characterization data

8A-ethynyl-2,3-diphenylindolizin-1(8aH)-one (3a)

Flash column chromatography on silica gel (eluent: PE/EA = 7/1, v/v) to afford **3a**. Yellow solid (74.2 mg, 80%), mp 188.2-189.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.43 (m, 3H), 7.37 (d, *J* = 6.7 Hz, 2H), 7.19 – 7.09 (m, 5H), 6.38 (d, *J* = 7.3 Hz, 1H), 6.13 – 6.02 (m, 2H), 5.45 (ddd, *J* = 7.0, 5.4, 1.2 Hz, 1H), 2.62 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 169.2, 130.7, 130.1, 129.1, 128.9, 128.8, 128.5, 127.9, 126.3, 124.1, 123.6, 119.7, 110.4, 108.9, 79.8, 73.7, 62.3. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₂₂H₁₅NO, 309.1154; found 309.1146.

2,3-Diphenyl-8a-((trimethylsilyl)ethynyl)indolizin-1(8aH)-one (3b)

2,3-Diphenyl-8a-(phenylethynyl)indolizin-1(8aH)-one (3c)

Flash column chromatography on silica gel (eluent: PE/EA = 10/1, v/v) to afford **3c**. Yellow solid (88.1 mg, 77%), mp 198.3-198.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.39 (m, 7H), 7.27 (d, J = 6.7 Hz, 3H), 7.17 (d, J = 4.3 Hz, 4H), 7.13 – 7.09 (m, 1H), 6.40 (d, J = 7.2 Hz, 1H), 6.15 – 6.07 (m, 2H), 5.46 (ddd, J = 7.0, 4.3, 2.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 169.2, 132.1, 130.7, 130.4, 129.1, 128.9, 128.8, 128.7, 128.6, 128.1, 127.9, 126.2, 123.8, 123.7, 122.1, 120.1, 110.3, 109.1, 85.5, 85.1, 63.1. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₂₈H₁₉NO, 385.1467; found 385.1457.

8A-((2-methoxyphenyl)ethynyl)-2,3-diphenylindolizin-1(8aH)-one (3d)

Flash column chromatography on silica gel (eluent: PE/EA = 8/1, v/v) to afford **3d**. Yellow solid (105.0 mg, 75%), mp 205.8-206.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.38 (m, 6H), 7.27 – 7.25 (m, 1H), 7.16 (d, J = 4.4 Hz, 4H), 7.12 – 7.09 (m, 1H), 6.87 – 6.79 (m, 2H), 6.39 (d, J = 7.2 Hz, 1H), 6.18 – 6.06 (m, 2H), 5.46 (ddd, J = 6.8, 5.3, 1.3 Hz, 1H),
3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 169.0, 160.4, 134.0, 130.7, 130.6, 130.1, 129.1, 129.0,
128.9, 128.8, 128.7, 127.9, 126.1, 123.7, 120.3, 120.2, 111.5, 110.9, 110.2, 109.0, 88.9, 82.1, 63.3, 55.9.
HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₂₉H₂₁NO₂, 415.1572; found 415.1572.

2,3-Diphenyl-8a-(*m*-tolylethynyl)indolizin-1(8a*H*)-one (3e)

Flash column chromatography on silica gel (eluent: PE/EA = 10/1, v/v) to afford **3e**. Yellow solid (88.3 mg, 77%), mp 208.9-209.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.40 (m, 5H), 7.29 – 7.25 (m, 3H), 7.19 – 7.11 (m, 7H), 6.40 (d, J = 7.2 Hz, 1H), 6.11 (d, J = 3.5 Hz, 2H), 5.46 (ddd, J = 7.0, 4.1, 2.6

Hz, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 169.1, 137.8, 132.7, 130.6, 130.4, 129.5, 129.2, 129.1, 128.9, 128.8, 128.7, 128.0, 127.9, 126.2, 123.7, 121.9, 120.2, 110.2, 109.0, 85.6, 84.7, 63.1, 21.1. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₂₉H₂₁NO, 399.1623; found 399.1617.

8A-((3-chlorophenyl)ethynyl)-2,3-diphenylindolizin-1(8aH)-one (3f)

Flash column chromatography on silica gel (eluent: PE/EA = 10/1, v/v) to afford **3f**. Yellow solid (106.4 mg, 70%), mp 190.5-191.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.39 (m, 6H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.29 – 7.26 (m, 1H), 7.22 (d, *J* = 7.8 Hz, 1H), 7.19 – 7.10 (m, 5H), 6.41 (d, *J* = 7.2 Hz, 1H),

6.11 (d, J = 5.0 Hz, 2H), 5.46 (ddd, J = 6.9, 4.7, 1.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 169.3, 134.0, 131.9, 130.7, 130.3, 130.2, 129.4, 129.1, 128.9, 128.8, 128.6, 127.9, 126.3, 124.0, 123.8, 123.7, 119.8, 110.4, 109.1, 86.3, 84.0, 62.9. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₂₈H₁₈ClNO, 419.1077; found 419.1087.

8A-((4-fluorophenyl)ethynyl)-2,3-diphenylindolizin-1(8aH)-one (3g)

Flash column chromatography on silica gel (eluent: PE/EA = 10/1, v/v) to afford **3g**. Yellow solid (93.8 mg, 67%), mp 158.6-159.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.44 (m, 3H), 7.42 – 7.36 (m, 4H), 7.24 (d, *J* = 1.9 Hz, 1H), 7.18 – 7.12 (m, 5H), 6.41 (d, *J* = 7.2 Hz, 1H), 6.15 – 6.04 (m, 2H), 5.46 (ddd, *J* = 7.0, 4.3, 2.3 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃) δ 194.7, 169.3, 134.7, 133.3, 130.7, 130.3, 129.1, 128.9, 128.8, 128.6, 128.5, 127.9, 126.3, 123.8 (d, *J* = 16.2 Hz), 120.6, 119.9, 110.3, 109.1, 86.0, 84.3, 63.0. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₂₈H₁₈FNO, 403.1372; found 403.1369.

2,3-Diphenyl-8a-(p-tolylethynyl)indolizin-1(8aH)-one (3h)

Flash column chromatography on silica gel (eluent: PE/EA = 10/1, v/v) to afford **3h**. Yellow solid (100.2 mg, 73%), mp 212.6-213.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.39 (m, 6H), 7.35 (d, *J* = 7.8 Hz, 2H), 7.19 – 7.16 (m, 4H), 7.08 (d, *J* = 8.0 Hz, 2H), 6.41 (d, *J* = 7.2 Hz, 1H), 6.11 (d, *J* = 4.7 Hz, 2H),

5.46 (ddd, *J* = 7.0, 4.6, 2.0 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (400 MHz, CDCl₃) δ 195.0, 169.2, 138.8, 132.0, 130.6, 130.5, 129.1, 128.9, 128.8, 128.7, 127.9, 126.2, 123.8, 123.7, 120.3, 119.0, 110.2, 109.1, 85.7, 84.4, 63.1, 21.5. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₂₉H₂₁NO, 399.1632; found 399.1629.

8-Methyl-2,3-diphenyl-8a-(phenylethynyl)indolizin-1(8aH)-one (3i)

Flash column chromatography on silica gel (eluent: PE/EA = 10/1, v/v) to afford **3i**. Yellow solid (86.0 mg, 72%), mp 210.2-211.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.43 (m, 5H), 7.42 – 7.38 (m, 2H), 7.32 – 7.27 (m, 3H), 7.19 – 7.07 (m, 5H), 6.29 (d, *J* = 7.2 Hz, 1H), 5.76 (dd, *J* = 5.8, 1.7 Hz, 1H), 5.44 – 5.39 (m, 1H), 2.29 (d,

J = 1.6 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ 193.3, 168.4, 132.2, 131.7, 130.6, 130.5, 129.0, 128.9, 128.6, 128.1, 127.9, 126.1, 122.3, 121.5, 120.5, 110.3, 109.4, 85.4, 84.6, 65.2, 17.5. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₂₉H₂₁NO, 399.1623; found 399.1614.

2,3-Diphenyl-8a-(thiophen-2-ylethynyl)indolizin-1(8aH)-one (3j)

Flash column chromatography on silica gel (eluent: PE/EA = 10/1, v/v) to afford **3j**. Yellow solid (76.3 mg, 65%), mp 193.4-194.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (td, *J* = 8.5, 4.4 Hz, 3H), 7.39 (d, *J* = 7.2 Hz, 2H), 7.25 – 7.22 (m, 2H), 7.18 –

7.11 (m, 5H), 6.96 - 6.90 (m, 1H), 6.39 (d, J = 7.2 Hz, 1H), 6.14 - 6.06 (m, 2H), 5.45 (ddd, J = 7.0, 4.4, 2.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 194.5, 169.3, 133.2, 130.7, 130.3, 129.1, 128.9, 128.8, 128.6, 127.9, 127.8, 126.9, 126.3, 124.0, 123.8, 122.0, 119.8, 110.3, 109.1, 88.7, 79.0, 63.2. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₂₆H₁₇NOS, 391.1031; found 391.1030.

8A-(naphthalen-2-ylethynyl)-2,3-diphenylindolizin-1(8aH)-one (3k)

Flash column chromatography on silica gel (eluent: PE/EA = 10/1, v/v) to afford 3k. Yellow solid (90.5 mg, 70%), mp 202.4-203.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8.3 Hz, 1H), 7.82 (d, *J* = 8.1 Hz, 2H), 7.69 (d, *J* = 6.3 Hz, 1H), 7.56 – 7.39 (m, 9H), 7.20 (d, J = 4.3 Hz, 4H), 6.48 (d, J = 7.2 Hz, 1H), 6.25 – 6.15 (m, 2H), 5.53 (ddd, J = 7.0, 5.3, 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 194.8, 169.1, 133.4, 133.0, 131.5, 130.9, 130.7, 130.4, 129.2, 129.1, 128.9, 128.7, 128.2, 128.0, 127.0, 126.4, 126.3, 126.1, 125.0, 124.0, 123.7, 120.2, 119.7, 110.5,

109.1, 90.0, 83.9, 63.4. HRMS (GC/QTOF) m/z: [M] + calcd for C₃₂H₂₁NO, 435.1623; found 435.1632.

2,3-Di-m-tolyl-8a-((trimethylsilyl)ethynyl)indolizin-1(8aH)-one (3l)

Flash column chromatography on silica gel (eluent: PE/EA = 10/1, v/v) to afford **31**. Yellow solid (123.9 mg, 68%), mp 220.8-231.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.33 (m, 2H), 7.31 (s, 1H), 7.25 (s, 1H), 7.19 (d, J = 7.2 Hz, 1H), 7.14 (s, 1H), 7.07 (d, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.90 (d, *J* = 7.7 Hz, 1H),

6.40 (d, J = 7.2 Hz, 1H), 6.10 - 6.03 (m, 2H), 5.45 (t, J = 6.1 Hz, 1H), 2.42 (s, 3H), 2.27 (s, 3H), 0.21 (s, 9H).¹³C NMR (400 MHz, CDCl₃) δ 194.9, 169.6, 139.0, 137.4, 131.4, 130.5, 129.5, 129.1, 129.0, 128.8, 127.8, 127.0, 126.1, 125.9, 123.9, 123.6, 120.5, 110.2, 108.9, 63.3, 21.5, 21.5, 0.0. HRMS (GC/QTOF) m/z: [M] + calcd for C₂₇H₂₇NOSi, 409.1862; found 409.1864.

8A-ethynyl-2,3-di(thiophen-2-yl)indolizin-1(8aH)-one (3m)

Flash column chromatography on silica gel (eluent: PE/EA = 10/1, v/v) to afford **3m**. Yellow solid (74.4 mg, 63%), mp 231.2-231.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 3.9 Hz, 1H), 7.35 (d, J = 3.7 Hz, 1H), 7.24 (dd, J = 5.0, 3.7 Hz, 1H), 7.17 (dd, J = 3.6, 1.1 Hz, 1H), 7.13 (d, J = 5.1 Hz, 1H), 6.94 - 6.91 (m, 1H), 6.46 (d, J = 7.2 Hz,

1H), 6.11 (dd, J = 9.0, 5.5 Hz, 1H), 6.02 (d, J = 9.1 Hz, 1H), 5.57 – 5.50 (m, 1H), 2.64 (s, 1H). ¹³C NMR (400 MHz, CDCl₃) δ 192.8, 160.5, 131.3, 131.2, 130.6, 128.1, 126.9, 126.6, 125.7, 124.5, 124.4, 123.5, 119.7, 109.6, 107.3, 79.2, 74.3, 62.1. HRMS (GC/QTOF) m/z: [M] + calcd for C₁₈H₁₁NOS₂, 321.0282; found 321.0275.

8a-(oct-1-yn-1-yl)-2,3-diphenylindolizin-1(8aH)-one (3n)

Flash column chromatography on silica gel (eluent: PE/EA = 10/1, v/v) to afford **3n**. Yellow solid (96.6 mg, 82%), mp 221.2-225.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (q, *J* = 7.5, 6.2 Hz, 3H), 7.39 - 7.33 (m, 2H), 7.19 -

7.09 (m, 5H), 6.34 (d, J = 7.2 Hz, 1H), 6.03 (d, J = 3.3 Hz, 2H), 5.41 (dt, J = 6.9, 3.3 Hz, 1H), 2.21 (t, J = 7.2 Hz, 2H), 1.49 (q, J = 7.3 Hz, 2H), 1.33 – 1.22 (m, 6H), 0.86 (t, J = 6.8 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ 195.5, 168.7, 130.6, 130.5, 129.1, 128.0, 128.9, 128.8, 127.9, 126.1, 123.5, 123.1, 120.8, 110.0, 108.8, 86.8, 62.8, 31.2, 28.4, 28.2, 22.5, 19.0, 14.0. HRMS (ESI): calculated C₂₈H₂₇NaNO [M+Na] ⁺: 416.1990; found 416.1991.

2,3,8a-triphenylindolizin-1(8aH)-one (4a)

Flash column chromatography on silica gel (eluent: PE/EA = 10/1, v/v) to afford **4a**. Ph Yellow solid (21.6 mg, 20%), mp 243.2-244.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.6 Hz, 2H), 7.53 – 7.46 (m, 5H), 7.36 (t, J = 7.5 Hz, 2H), 7.31 – 7.25 (m, 2H), 7.14 – 7.10 (m, 4H), 6.53 (d, J = 7.2 Hz, 1H), 6.42 (d, J = 9.2 Hz, 1H), 6.07 (dd, J = 9.2, 5.5 Hz, 1H), 5.34 (t, J = 6.4 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃) δ 198.8, 169.5, 140.6, 130.6, 129.2, 129.1, 128.9, 128.7, 127.9, 127.8, 126.0, 124.4, 124.2, 123.1, 122.9, 110.7, 109.1. HRMS (ESI): calculated C₂₆H₂₀NO [M+H] ⁺: 362.1545; found 362.1541.

10B-methyl-2,3-diphenylpyrrolo[2,1-*a*]isoquinolin-1(10b*H*)-one (6a)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **6a**. Yellow solid (81.7mg, 78%), mp 206.7-207.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.31 – 8.24 (m, 1H), 7.48 – 7.42 (m, 3H), 7.34 (d, *J* = 6.2 Hz, 2H), 7.23 (dd, *J* = 5.2, 3.0 Hz, 2H), 7.16 (d, *J* = 4.4 Hz, 4H), 7.11 – 7.04 (m, 2H), 6.47 (d, *J* = 7.4 Hz, 1H), 5.88 (d, *J* = 7.4 Hz, 1H), 1.71 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 166.0, 133.2, 130.9, 130.8, 130.3, 129.2, 129.1, 128.9, 128.8, 127.9, 127.7, 126.8, 126.0, 125.8, 123.8, 122.2, 111.7, 110.9, 66.4, 28.5. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₂₅H₁₉NO, 349.1467; found 349.1474.

2,3,10B-triphenylpyrrolo[2,1-*a*]isoquinolin-1(10b*H*)-one (6b)

Flash column chromatography on silica gel (eluent: PE/EA = 5/1, v/v) to afford **6b**. Yellow solid (109.1 mg, 69%), mp 245.3-245.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 7.7 Hz, 1H), 7.51 – 7.40 (m, 7H), 7.36 (d, *J* = 7.7 Hz, 1H), 7.28 (t, *J* = 7.2 Hz, 3H), 7.22 (d, *J* = 7.2 Hz, 1H), 7.15 – 7.05 (m, 6H), 6.59 (d, *J* = 7.3 Hz, 1H), 5.85

(d, J = 7.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 167.6, 139.1, 132.0, 131.3, 130.7, 130.6, 129.2, 129.1, 128.9, 128.9, 128.6, 128.1, 127.9, 127.8, 126.6, 126.2, 126.1, 125.4, 125.3, 122.9, 112.0, 111.9, 70.8. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₃₀H₂₁NO, 411.1623; found 411.1631.

2,3-Diphenyl-10b-(p-tolyl)pyrrolo[2,1-a]isoquinolin-1(10bH)-one (6c)

Flash column chromatography on silica gel (eluent: PE/EA = 5/1, v/v) to afford 6c. Yellow solid (114.4 mg, 67%), mp 245.3-245.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, J = 8.0 Hz, 1H), 7.51 – 7.42 (m, 5H), 7.32 – 7.26 (m, 3H), 7.14 – 7.05 (m, 7H), 6.58 (d, J = 7.3 Hz, 1H), 5.85 (d, J = 7.3 Hz, 1H), 2.26 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 196.6, 167.5, 137.6, 136.3, 132.0, 131.5, 130.6, 130.5, 129.3, 129.2, 129.1, 129.0, 128.9, 128.1, 127.9, 126.6, 126.2, 126.1, 125.3, 125.2, 122.8, 111.9, 70.7, 21.0. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₃₁H₂₃NO, 425.1780; found 425.1789.

10B-(4-methoxyphenyl)-2,3-diphenylpyrrolo[2,1-a]isoquinolin-1(10bH)-one (6d)

Flash column chromatography on silica gel (eluent: PE/EA= 5/1, v/v) to afford 6d. Yellow solid (121.2 mg, 62%), mp 243.2-244.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, J = 7.7 Hz, 1H), 7.52 – 7.42 (m, 5H), 7.35 – 7.26 (m, 4H), 7.16 – 7.05 (m, 6H), 6.85 – 6.78 (m, 2H), 6.57 (d, J = 7.3 Hz, 1H), 5.86 (d, J =

7.3 Hz, 1H), 3.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.9, 167.5, 159.2, 132.0, 131.5, 131.4, 130.7, 130.6, 129.2, 129.1, 128.9, 128.1, 127.9, 126.7, 126.6, 126.2, 126.1, 125.2, 122.8, 114.0, 112.0, 111.9, 70.4, 55.3. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₃₁H₂₃NO₂, 441.1729; found 441.1738.

10B-methyl-2,3-di-m-tolylpyrrolo[2,1-a]isoquinolin-1(10bH)-one (6e)

Flash column chromatography on silica gel (eluent: PE/EA= 5/1, v/v) to afford **6e**. Yellow solid (99.6 mg, 65%), mp 243.2-244.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 3.6 Hz, 1H), 7.30 (dd, J = 14.8, 7.5 Hz, 2H), 7.23 – 7.20 (m, 2H), 7.15 (d, J = 5.7 Hz, 2H), 7.11 (d, J = 7.2 Hz, 1H), 7.06 – 6.99 (m, 2H), 6.90 (d, J = 7.6 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 6.46 (d, J = 7.4 Hz, 1H), 5.86 (d, J = 7.4 Hz, 1H), 2.35 (s, 3H), 2.22 (s, 3H), 1.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.1, 166.3, 138.9, 137.3, 133.3, 131.1, 130.9, 130.8, 129.5, 129.2, 129.1, 129.0, 127.8, 127.7, 127.5, 126.9, 126.8, 126.0, 125.8, 125.7, 123.8, 122.4, 111.6, 110.7, 66.3, 28.6, 21.5. HRMS (ESI): calculated C₂₇H₂₄NO [M+H] +: 377.1780, found 378.1855.

10B-methyl-2,3-di(thiophen-2-yl)pyrrolo[2,1-a]isoquinolin-1(10bH)-one (6f)

Flash column chromatography on silica gel (eluent: PE/EA = 5/1, v/v) to afford **6f**. Yellow solid (78.9 mg, 60%), mp 234.8-235.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 5.0 Hz, 1H), 7.46 (d, *J* = 3.8 Hz, 1H), 7.24 (dd, *J* = 5.1, 1.1 Hz, 1H), 7.21 – 7.15 (m, 2H), 7.10 – 7.04 (m, 2H), 6.96 (d, *J* = 7.4 Hz, 1H), 6.92 – 6.85 (m, 2H), 6.79 (d, *J* =

7.8 Hz, 1H), 6.12 (d, J = 7.3 Hz, 1H), 1.73 (s, 3H). ¹³C NMR (100 MHz, CD₂Cl₂) δ 167.3, 149.0, 137.9, 136.1, 133.9, 132.9, 131.8, 131.1, 130.8, 130.7, 130.0, 129.8, 129.5, 129.1, 128.9, 128.6, 125.3, 122.8, 115.0, 67.4, 29.2. HRMS GC/QTOF (m/z): [M] ⁺ calcd for C₂₁H₁₅NOS₂, 361.0595; found: 361.0599.

2,3-Bis(4-fluorophenyl)-10b-methylpyrrolo[2,1-a]isoquinolin-1(10bH)-one (6g)

Flash column chromatography on silica gel (eluent: PE/EA = 10/1, v/v) to afford 6g. Yellow solid (112.0 mg, 57%), mp 243.4-244.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.30 – 8.17 (m, 1H), 7.34 (dd, J = 8.3, 5.3 Hz, 2H), 7.27 – 7.23 (m, 3H), 7.17 (t, J = 8.4 Hz, 2H), 7.13 – 7.04 (m, 3H), 6.94 – 6.84 (m, 2H), 6.45 (d, J = 7.3 Hz, 1H), 5.92 (d, J = 7.4 Hz, 1H), 1.70 (s, 3H). ¹³C NMR (400 MHz, CDCl₃) δ

198.7, 164.8, 133.2, 131.0 (d, J = 8.6 Hz), 130.6, 130.5, 130.4, 127.8, 127.0, 125.9, 123.7, 121.9, 116.6 (d, J = 21.9 Hz), 115.1 (d, J = 21.3 Hz), 111.4, 111.1, 66.6, 28.4. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₂₅H₁₇F₂NO, 385.1278; found 385.1268.

2,3-Diphenyl-10b-(phenylethynyl)pyrrolo[2,1-*a*]isoquinolin-1(10b*H*)-one (6h)

Flash column chromatography on silica gel (eluent: PE/EA = 10/1, v/v) to afford **6h**. Yellow solid (103.7 mg, 73%), mp 252.3-253.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.46 – 8.37 (m, 1H), 7.46 – 7.31 (m, 7H), 7.30 – 7.24 (m, 2H), 7.22 – 7.12 (m, 7H), 7.12 – 7.06 (m, 2H), 6.48 (d, J = 7.3 Hz, 1H), 5.98 (d, J = 7.3 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃) δ 193.1, 167.7, 132.2, 131.2, 130.7, 130.5, 130.3, 129.2, 129.1, 128.9, 128.8, 128.7, 128.2, 128.0, 127.4, 126.4, 126.2, 124.5, 122.7, 122.1, 112.1, 111.7, 86.6, 84.7, 62.2. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₃₂H₂₁NO, 435.1623; found 435.1618.

10B-((4-pentylphenyl)ethynyl)-2,3-diphenylpyrrolo[2,1-a]isoquinolin-1(10bH)-one (6i)

Flash column chromatography on silica gel (eluent: PE/EA = 10/1, v/v) to afford **6i**. Yellow solid (92.3 mg, 65%), mp 265.2-266.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.46 – 8.35 (m, 1H), 7.47 (q, *J* = 7.3, 6.1 Hz, 3H), 7.40 (d, *J* = 7.1 Hz, 2H), 7.31 (d, *J* = 8.3 Hz, 4H), 7.19 (d, *J* = 4.3 Hz,

4H), 7.15 – 7.11 (m, 2H), 7.06 (d, J = 7.9 Hz, 2H), 6.52 (d, J = 7.4 Hz, 1H), 6.01 (d, J = 7.4 Hz, 1H), 2.55 (t, J = 7.7 Hz, 2H), 1.60 – 1.51 (m, 2H), 1.32 – 1.24 (m, 4H), 0.87 (t, J = 6.9 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ 193.2, 167.5, 143.8, 132.0, 131.1, 130.6, 130.5, 130.4, 129.1, 129.0, 128.9, 128.8, 128.5, 128.2, 127.9, 127.3, 126.2, 126.0, 124.5, 122.6, 119.2, 111.9, 111.6, 85.8, 77.2, 62.2, 35.8, 31.3, 30.9, 22.5, 14.0. HRMS (ESI): calculated C₃₇H₃₂NO [M+H] +: 506.2485, found 506.2481.

10b-((4-fluorophenyl)ethynyl)-2,3-diphenylpyrrolo[2,1-a]isoquinolin-1(10bH)-one (6j)

Flash column chromatography on silica gel (eluent: PE/EA = 10/1, v/v) to afford 6j. Yellow solid (112.5 mg, 70%), mp 220.4-221.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.43 – 8.36 (m, 1H), 7.48 (q, *J* = 7.2, 6.1 Hz, 3H), 7.42 – 7.36 (m, 4H), 7.34 – 7.30 (m, 2H), 7.19 (d, *J* = 4.3 Hz, 4H), 7.16 – 7.12 (m, 2H), 6.94 (t, *J* =

8.5 Hz, 2H), 6.53 (d, *J* = 7.3 Hz, 1H), 6.02 (d, *J* = 7.3 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃) δ 193.0, 167.7, 134.1 (d, *J* = 8.5 Hz), 131.1, 130.7, 130.4, 130.1, 129.1, 129.0, 128.9, 128.7, 128.6, 128.0, 127.4, 126.2 (d, *J* = 19.4 Hz), 124.4, 122.6, 115.5, 115.3, 112.0, 111.6, 86.2, 83.5, 62.0. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₃₂H₂₀FNO, 435.1529; found 435.1519.

10B-((4-methoxyphenyl)ethynyl)-2,3-diphenylpyrrolo[2,1-a]isoquinolin-1(10bH)-one (6k)

Flash column chromatography on silica gel (eluent: PE/EA = 10/1, v/v) to afford **6k**. Yellow solid (103.6 mg, 68%), mp 245.2-246.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 7.0 Hz, 1H), 7.52 – 7.46 (m, 3H), 7.43 (d,

J = 7.1 Hz, 2H), 7.39 – 7.33 (m, 4H), 7.30 – 7.21 (m, 5H), 7.18 (d, J = 6.6 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 6.57 (d, J = 7.4 Hz, 1H), 6.06 (d, J = 7.4 Hz, 1H), 3.76 (s, 3H). ¹³C NMR (400 MHz, CDCl₃) δ 193.3, 167.6, 133.7, 131.1, 130.6, 130.5, 130.4, 129.1, 129.0, 128.9, 128.8, 128.5, 128.0, 127.3, 126.3, 126.1, 124.5, 122.7, 114.2, 113.7, 112.0, 111.5, 85.2, 84.6, 55.3. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₃₃H₂₃NO₂, 465.1729; found 465.1725.

Methyl (E)-3-(1-oxo-2,3-diphenylindolizin-8a(1H)-yl)-2-phenylacrylate (8a)

Flash column chromatography on silica gel (eluent: PE/EA = 7/1, v/v) to afford 8a.
Yellow solid (85.7 mg, 70%), mp 234.8-235.2 °C. ¹H NMR (400 MHz, CDCl₃) δ
7.50 (d, J = 8.0 Hz, 2H), 7.37 (dd, J = 18.8, 7.5 Hz, 3H), 7.20 - 7.11 (m, 5H), 7.09
- 7.03 (m, 2H), 6.91 (s, 1H), 6.72 (d, J = 7.6 Hz, 2H), 6.02 - 5.88 (m, 3H), 5.35

(ddd, *J* = 6.8, 5.2, 1.3 Hz, 1H), 3.68 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 196.0, 170.1, 166.9, 140.7, 133.7, 131.6, 131.5, 130.7, 130.6, 130.3, 129.0, 128.9, 128.8, 128.0, 126.3, 124.9, 123.4, 122.3, 121.4, 110.8, 110.0, 70.6, 52.6. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₃₀H₂₃NO₃, 445.1678; found 445.1684.

Methyl (E)-3-(1-oxo-2,3-diphenylindolizin-8a(1H)-yl)-2-(p-tolyl)acrylate (8b)

Flash column chromatography on silica gel (eluent: PE/EA = 5/1, v/v) to afford **8b**. Yellow solid (114.1 mg, 65%), mp 234.8-235.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.34 (m, 1H), 7.25 (d, *J* = 1.6 Hz, 2H), 7.14 (ddd, *J* = 17.4, 7.4, 2.3 Hz, 7H), 7.08 – 7.04 (m, 2H), 6.88 (s, 1H), 6.66 (d, *J* = 7.6 Hz, 2H), 6.00 –

5.90 (m, 3H), 5.37 – 5.31 (m, 1H), 3.67 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 170.2, 167.6, 139.4, 137.6, 132.3, 131.7, 131.5, 130.6, 130.4, 129.7, 129.1, 128.8, 128.4, 128.3, 128.2, 127.9, 126.2, 125.0, 123.3, 121.7, 110.5, 110.0, 70.7, 52.5, 21.3. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₃₁H₂₅NO₃, 459.1834; found 459.1836.

Methyl (E)-2-(4-methoxyphenyl)-3-(1-oxo-2,3-diphenylindolizin-8a(1H)-yl)acrylate (8c)

Flash column chromatography on silica gel (eluent: PE/EA = 5/1, v/v) to afford **8c**. Brown solid (95.3 mg, 64%), mp 247.5-247.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (t, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.7 Hz, 2H), 7.20 – 7.04 (m, 8H), 6.90 – 6.85 (m, 3H), 6.84 – 6.78 (m, 2H), 5.99 (d, *J* = 7.2 Hz, 1H), 5.91 (d, *J* = 4.6 Hz, 2H), 5.33 (ddd, *J* = 6.9, 4.5, 2.0 Hz, 1H), 3.83 (s, 3H), 3.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 168.9, 166.6, 158.3, 139.1, 131.7, 130.0, 129.5, 129.4, 128.0, 127.9, 127.7, 127.5, 127.2, 126.9, 125.8, 125.1, 123.7, 122.1, 120.7, 111.9, 109.7, 108.9, 69.7, 54.2, 51.4. HRMS (GC/QTOF) m/z: [M] ⁺ calcd for C₃₁H₂₅NO₄, 475.1784; found 475.1781.

Methyl (E)-2-(4-bromophenyl)-3-(1-oxo-2,3-diphenylindolizin-8a(1H)-yl)acrylate (8d)

Flash column chromatography on silica gel (eluent: PE/EA = 5/1, v/v) to afford 8d.
Brown solid (115.8 mg, 62%), mp 252.3-253.0 °C. ¹H NMR (400 MHz, CDCl₃) δ
7.50 (d, J = 8.0 Hz, 2H), 7.42 - 7.31 (m, 4H), 7.20 - 7.11 (m, 6H), 7.08 - 7.04 (m, 2H), 6.91 (s, 1H), 6.72 (d, J = 7.6 Hz, 2H), 5.99 - 5.88 (m, 3H), 5.35 (dd, J = 7.0, 100 - 10

5.4 Hz, 1H), 3.68 (d, J = 1.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.0, 170.1, 166.9, 140.7, 133.6, 131.6, 131.5, 130.7, 130.6, 130.3, 128.9, 128.9, 128.8, 128.1, 128.0, 127.9, 126.3, 124.9, 123.5, 122.3, 121.4, 110.8, 110.0, 70.7, 52.6. HRMS (ESI): calculated C₃₀H₂₂BrNaNO₃ [M+Na] +: 546.0681, found 546.0676.

3. NMR spectra for new compounds

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of compound **3a**

 ^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectrum of compound 3b

110 100 f1 (ppm) -10

 1 H NMR (400 MHz, CDCl₃) and 13 C NMR (100 MHz, CDCl₃) spectrum of compound **3c**

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectrum of compound 3d

S-32

 ^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectrum of compound 3j

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of compound **3n**

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of compound **6a**

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectrum of compound **6d**

 ^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectrum of compound 6e

f1 (ppm) -10

 1 H NMR (400 MHz, CD₂Cl₂) and 13 C NMR (100 MHz, CD₂Cl₂) spectrum of compound **6g**

 1 H NMR (400 MHz, CDCl₃) and 13 C NMR (100 MHz, CDCl₃) spectrum of compound **6**k

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectrum of compound 8d

4. X-ray crystallographic data

Figure S2 X-ray single crystal structure of 8d (displacement ellipsoids are drawn at the 50% probability level)

Single crystals of **8d** were grown by slow evaporation of its EA/PE solution. The crystal was kept at 149.99 K during data collection. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC 2227171).

<i>Table S1</i> Crystal data and structure refinement for 8d.	
Identification code	2-297
Empirical formula	C ₃₀ H ₂₂ BrNO ₃
Formula weight	524.39
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	9.5059(4)
b/Å	10.6245(4)

24.3428(16)
90
100.388(5)
90
2418.2(2)
4
1.440
2.580
1072.0
0.14 imes 0.11 imes 0.09
Cu Ka ($\lambda = 1.54184$)
7.384 to 133.178
$-10 \le h \le 11, -8 \le k \le 12, -28 \le l \le 28$
8406
4271 [$R_{int} = 0.0495$, $R_{sigma} = 0.0584$]
4271/9/328
1.165
$R_1 = 0.1253, wR_2 = 0.2837$
$R_1 = 0.1331, wR_2 = 0.2876$
1.28/-0.89

Table S2 Bond Lengths for 8d

ioic 52 Done	a Lenguis for ou	8			
Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br1	C24	1.900(6)	C9	C27	1.505(8)
Br2	C24	1.946(10)	C10	C11	1.466(8)
01	C8	1.213(6)	C11	C12	1.383(8)
O2	C19	1.201(7)	C11	C16	1.394(8)
O3	C19	1.335(7)	C12	C13	1.382(8)
O3	C20	1.449(7)	C13	C14	1.414(9)
N1	C9	1.468(6)	C14	C15	1.342(9)
N1	C10	1.388(7)	C15	C16	1.396(8)
N1	C30	1.394(7)	C17	C18	1.345(8)
C1	C2	1.367(8)	C18	C19	1.520(7)
C1	C6	1.414(9)	C18	C21	1.482(7)
C1	C7	1.458(8)	C21	C22	1.371(7)
C2	C3	1.406(9)	C21	C26	1.408(8)
C3	C4	1.355(11)	C22	C23	1.378(9)
C4	C5	1.417(10)	C23	C24	1.362(9)
C5	C6	1.362(9)	C24	C25	1.376(8)
C7	C8	1.444(8)	C25	C26	1.388(8)
C7	C10	1.387(7)	C27	C28	1.337(8)
C8	C9	1.548(7)	C28	C29	1.453(9)
C9	C17	1.517(7)	C29	C30	1.317(10)

Table S3 Bond Angles for 8d

Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O3	C20	114.3(5)	C16	C11	C10	119.8(5)
N1	С9	110.3(4)	C13	C12	C11	121.7(6)
N1	C30	125.1(5)	C12	C13	C14	118.1(6)
N1	С9	119.3(5)	C15	C14	C13	120.2(6)
C1	C6	116.9(5)	C14	C15	C16	121.9(6)
C1	C7	121.1(5)	C11	C16	C15	118.7(5)
	Atom O3 N1 N1 N1 C1 C1 C1	Atom Atom O3 C20 N1 C9 N1 C30 N1 C9 C1 C6 C1 C7	AtomAngle/°O3C20114.3(5)N1C9110.3(4)N1C30125.1(5)N1C9119.3(5)C1C6116.9(5)C1C7121.1(5)	AtomAngle/°AtomO3C20114.3(5)C16N1C9110.3(4)C13N1C30125.1(5)C12N1C9119.3(5)C15C1C6116.9(5)C14C1C7121.1(5)C11	AtomAngle/°AtomAtomO3C20114.3(5)C16C11N1C9110.3(4)C13C12N1C30125.1(5)C12C13N1C9119.3(5)C15C14C1C6116.9(5)C14C15C1C7121.1(5)C11C16	AtomAtomAngle/°AtomAtomAtomO3C20114.3(5)C16C11C10N1C9110.3(4)C13C12C11N1C30125.1(5)C12C13C14N1C9119.3(5)C15C14C13C1C6116.9(5)C14C15C16C1C7121.1(5)C11C16C15

C6	C1	C7	121.9(5)	C18	C17	C9	130.7(5)
C1	C2	C3	122.6(6)	C17	C18	C19	115.6(5)
C4	C3	C2	119.1(6)	C17	C18	C21	127.5(5)
C3	C4	C5	120.2(6)	C21	C18	C19	116.9(4)
C6	C5	C4	119.4(7)	O2	C19	O3	124.8(5)
C5	C6	C1	121.8(6)	O2	C19	C18	124.0(5)
C8	C7	C1	124.5(4)	O3	C19	C18	111.2(5)
C10	C7	C1	127.7(5)	C22	C21	C18	122.1(5)
C10	C7	C8	107.8(5)	C22	C21	C26	118.5(5)
01	C8	C7	130.6(5)	C26	C21	C18	119.2(4)
01	C8	C9	121.8(5)	C21	C22	C23	120.9(5)
C7	C8	С9	107.7(4)	C24	C23	C22	120.7(5)
N1	С9	C8	102.2(4)	C23	C24	Br1	121.4(4)
N1	С9	C17	115.6(4)	C23	C24	Br2	103.9(5)
N1	С9	C27	111.0(4)	C23	C24	C25	119.9(6)
C17	С9	C8	110.2(4)	C25	C24	Br1	118.4(5)
C27	С9	C8	112.3(4)	C25	C24	Br2	136.2(6)
C27	С9	C17	105.7(5)	C24	C25	C26	120.1(6)
N1	C10	C11	120.9(4)	C25	C26	C21	119.8(5)
C7	C10	N1	111.9(5)	C28	C27	C9	118.2(5)
C7	C10	C11	127.2(5)	C27	C28	C29	121.4(6)
C12	C11	C10	121.1(5)	C30	C29	C28	119.5(6)
C12	C11	C16	119.1(5)	C29	C30	N1	120.4(6)

5. References

1. a) C. M. Vanos, T. H. Lambert, Angew. Chem. Int. Ed., 2011, **50**, 12222-12226. b) A. P. Patricia, J. D, Tovar, J. Org. Chem., 2010, **75**, 5689-5696.

2. S. Prateeptongkum, K. Driller, R. Jackstell, A. Spannenberg, M. Beller, Efficient Synthesis of Biologically Interesting 3,4-Diaryl-Substituted Succinimides and Maleimides: Application of Iron-Catalyzed Carbonylations., *Chem. Eur. J.*, 2010, **16**, 9606-9615.

3. J. Tian, Z. Zhang, X. Yang, H. Fun, J. Xu, J. Org. Chem., 2001, 66, 8230-8235.

4. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, O.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision E.01; Gaussian, Inc.: Pittsburgh PA, 2004.

5. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem., B 2009, 113, 6378-6396.