Supporting Information

Azofuran activation for annulative rearrangement enabled by gold(I)/Brønsted

acid relay catalysis

Qian Rao,^{a,1} Yin Zhang,^{a,1} Yin-Ping Liu,^a Bo Jiang,^{a,*} Xiang Wang,^b Shu-Jiang Tu,^{a,*} Wen-Juan Hao^{a,*}

^aSchool of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China. E-mail: jiangchem@jsnu.edu.cn (BJ); laotu@jsnu.edu.cn (SJT); wjhao@jsnu.edu.cn (WJH)

^bSchool of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, People's Republic of China ¹These author contributed equally

Table of Contents

General Information	.S2
Optimization Conditions for Forming 3a	.S2-S4
Atropisomerism of Product 3a	.S4
The ORTEP Drawing of 3e	.S4
Control Experiments	. S5
Synthesis of Substrates 1 and 2	.\$5-\$6
Application of 2 <i>H</i> -Pyrrolone-Based Cyclic Products	.S7-S8
Mechanism Details	.S8-S10
Preparation of 2 <i>H</i> -Pyrrolone-Based Cyclic Products 3a-3bb	S11-S21
Preparation of 2 <i>H</i> -Pyrrolone-Based Cyclic Products 5a-5i	.S22-S26
References	.S27
Copies of ¹ H and ¹³ C NMR of 3 , 5 and 6	.S28-S100

General Information

¹H NMR (13 C NMR) spectra were measured on a Bruker DPX 400 MHz spectrometer in CDCl₃ (DMSO-*d*₆) with chemical shift (δ) given in ppm relative to TMS as internal standard [(s = singlet, d = doublet, t = triplet, brs = broad singlet, m = multiple), coupling constant (*Hz*)]. HRMS (ESI) was determined by using microTOF-QII HRMS/MS instrument (BRUKER). X-Ray crystallographic analysis was performed with a Siemens SMART CCD and a Siemens P4 diffractometer.

Table S1. Optimization Conditions for Forming 3a ^a			
Me HO PI	⁺ Ph <mark>N</mark> ₂BF₄ h	[Au] solvent, base, r.t. Ph Ph NH	
1a	2a	3a	

entry	[Au] (5.0 mol %)	solvent	base	yield ^b (%)
1	JohnPhosAu(MeCN)SbF ₆	DCE	-	50
2	XphosAu(TA-H)OTf	DCE	-	45
3	PPh ₃ AuNTf ₂	DCE	-	43
4	IPrAuNTf ₂	DCE	-	trace
5	AuCl	DCE	-	trace
6	JohnPhosAu(MeCN)SbF ₆	1,4-dioxane	-	trace
7	JohnPhosAu(MeCN)SbF ₆	DMF	-	trace
8	JohnPhosAu(MeCN)SbF ₆	THF	-	trace
9	JohnPhosAu(MeCN)SbF ₆	toluene	-	trace
10	JohnPhosAu(MeCN)SbF ₆	acetone	-	trace
11	JohnPhosAu(MeCN)SbF ₆	DCM	-	45
12	JohnPhosAu(MeCN)SbF ₆	dry DCE	-	55
13	JohnPhosAu(MeCN)SbF ₆	dry DCE	-	32°
14	JohnPhosAu(MeCN)SbF ₆	dry DCE	NaHCO ₃	69
15	JohnPhosAu(MeCN)SbF ₆	dry DCE	Na ₂ CO ₃	59
16	JohnPhosAu(MeCN)SbF ₆	dry DCE	K ₂ CO ₃	55
17	JohnPhosAu(MeCN)SbF ₆	dry DCE	NaOAc	58
18	JohnPhosAu(MeCN)SbF ₆	dry DCE	K ₃ PO ₄	56
19	JohnPhosAu(MeCN)SbF ₆	dry DCE	Et ₃ N	N. R.

20	JohnPhosAu(MeCN)SbF ₆	dry DCE	pyridine	trace
21	JohnPhosAu(MeCN)SbF ₆	dry DCE	DBU	trace
22	JohnPhosAu(MeCN)SbF ₆	dry DCE	NaHCO ₃	67 ^d
23	JohnPhosAu(MeCN)SbF ₆	dry DCE	NaHCO ₃	60 ^e

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.1 mmol), base (0.05 mmol, 0.5 equiv), solvent (2.0 mL), room temperature for 12 h; ^{*b*}Isolated yield. ^{*c*}4 Å molecular sieve (50 mg). ^{*d*}use of NaHCO₃ (0.6 equiv). ^{*e*}use of NaHCO₃ (0.9 equiv).

At the outset of the investigations, 3-yne-1,2-diol 1a and phenyldiazonium tetrafluoroborate 2a were selected as model substrates for the parameter optimization, as depicted in Table S1. The reaction of 1a with 2a in a 2:1 mol ratio worked readily in 1,2-dichloroethane (DCE) at room temperature by using JohnPhosAu(MeCN)SbF₆ (5.0 mol %) as a catalyst, and an unexpected furan-2-yl-substituted pyrrol-2-one product 3a was obtained in 50% yield (Table S1, entry S1). Several other gold catalysts often used in catalytic transformations, such as XphosAu(TA-H)OTf, PPh₃AuNTf₂, AuCl, and IPrAuNTf₂, were then investigated. The results revealed that the former two could drive the conversion of 1a with 2a into 3a, but both demonstrated lower catalytic capabilities and thus provided lower yields compared with JohnPhosAu(MeCN)SbF₆ (entries S2-S3 vs entry S1); in contrast, the (entries latter two completely suppressed the generation of 3a S4-S5). Taking JohnPhosAu(MeCN)SbF₆ as the catalyst, the effect of solvents was then examined and several other aprotic solvents such as 1,4-dioxane, N,N-dimethylformamide (DMF), tetrahydrofuran (THF), toluene, acetone, and dichloromethane (DCM) were screened (entries S6-S11). However, the desired product 3a was hardly detected when the former five solvents were independently employed in this reaction. In another case of DCM, the reaction gave product **3a** in 45%, which is less than DCE (entry S12). Notably, dry DCE as the solvent ameliorated the reaction, leading to a 55% yield of **3a**. The use of a 4 Å molecular sieve (MS) as a water absorbent was unfavorable for this transformation, probably because the presence of some amount of water could accelerate the dissolution of diazonium salts. Considering the release of stoichiometric amounts of HBF4 as a strong Brønsted acid that could decompose the furan ring in the reaction system, the removal of excess HBF₄ to a catalytic dosage may improve the efficiency of the reaction. Along this line, a number of bases, such as NaHCO₃, Na₂CO₃, K₂CO₃, NaOAc, K₃PO₄, Et₃N, pyridine, and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), were next screened for this transformation (entries S14–S21): inorganic bases proved to be beneficial

to this reaction (entries S14–S18); in contrast, organic bases were found to be ineffective, and their use in fact completely inhibited the target (entries S19–S21); and of these inorganic bases, the use of 0.5 equiv of NaHCO₃ made this reaction work more efficiently, furnishing product **3a** in a higher yield of 69% (entry S14). Further increasing the amount of NaHCO₃ resulted in reduced yields (entries S22-S23). From these results, a catalytic amount of HBF₄ is believed to favor azofuran activation for 1,6-addition and subsequent rearrangement.

Figure S1. Atropisomerism of Product 3a

Obvious atropisomerism is observed in this protocol, which is caused by steric repulsion of the nonsymmetric furan ring, and its rotation around a single $C(sp^3)-C(sp^2)$ bond is restricted by the arylamino group and the phenyl ring (Figure S1). This could be supported by the crystal structure of **3e** determined by X-ray diffraction analysis (Figure S2)

Figure S2. The ORTEP Drawing of 3e (The ellipsoid contour 30% probability levels)

A single crystal **3e** was obtained by slowly evaporating dichloromethane solvent at room temperature under the air conditions.

Scheme S1. Control Experiments

Synthesis of Substrates 1 and 2

Preparation of Alkynyl-1,2-diols 1

Alkynyl-1,2-diols **1a-1k** were prepared according to the reported procedures.¹⁻³ and their characterization data are in agreement with the literature.

Figure S3. Substrate Scope of Alkynyl-1,2-diols 1

Figure S4. Synthesis of Compounds 1a-1n

Alkynyl-1,2-diols II were prepared based on the reported procedures.⁴

Step: A solution of alkyne (19.23 mmol of 1-hexyne, phenylacetylene, cyclopropylacetylene, ethynyltrimethylsilane) in anhydrous THF (3 mL) was added dropwise under nitrogen to a stirred, cooled (-40 °C) mixture of BuLi (12.1 mL of a 1.6 M solution in hexanes, 19.35 mmol) in anhydrous THF (9 mL) and anhydrous hexane (14 mL). To the resulting mixture, maintained at -40 °C, was added, with stirring, a solution of LiBr (0.68 g, 7.8 mmol) in THF (3 mL). After 0.5 h, the corresponding I (7.34 mmol of α -hydroxyacetophenone or α -hydroxyacetone), diluted in anhydrous THF (3 mL), was slowly added under nitrogen at the same temperature. The resulting mixture was stirred for additional 2 h and then allowed to warm up to room temperature. After quenching with a saturated solution of NH₄Cl, the mixture was extracted with Et₂O (x3). The combined organic layers were washed with water and then dried over MgSO₄. After filtration, the solvent was evaporated to obtain crude that was purified by column chromatography on silica gel. Analytical samples of compounds II, 1a-1k were obtained after column chromatography.

Preparation of Aryldiazonium Salts 2

Aryldiazonium salts 2a-2q were prepared based on the reported procedures.⁵

Figure S5. Substrate Scope of Aryldiazonium salts 2

Application of 2H-Pyrrolone-Based Cyclic Products

Gram-Scale Experiment for the Synthesis of Product 3h

Figure S6. Gram-Scale Synthesis of Compounds 3h

To a 100-mL pressure tube under air conditions, 2-methyl-4-phenylbut-3-yne-1,2-diol (**1a**, 6 mmol, 2 equiv, 0.94 g), benzenediazonium tetrafluoroborate (**2h**, 3 mmol, 1 equiv, 0.57 g), NaHCO₃ (0.05 mmol, 0.5 equiv, 0.13 g), JohnPhosAu(MeCN)SbF₆ (2.0 mol%, 46.32 mg), dry 1,2-dichloroethane (40 mL) were successively added. The mixture was stirred at room temperature for about 6 hours. After the reaction was completed (indicated by TLC, petroleum ether : ethyl acetate = 5:1), the reaction mixture was concentrated by vacuum distillation and was purified by flash column chromatography to afford the desired pure product (**3h**, 1.04 g, 75% yield) as white solid.

General Procedure for the Synthesis of Product 6

Figure S7. Synthesis of Compound 6

To a solution of 1-((4-chlorophenyl)amino)-3-methyl-5-(3-methyl-5-phenylfuran-2-yl)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (**3h**, 0.2 mmol, 1 equiv, 91.2 mg) in THF (2 mL) at 0 °C, NaH (0.4 mmol, 2 equiv, 9.6 mg) was added. The reaction mixture was stirred for 0.5 hours at room temperature. The solution was added with CH₃I (0.4 mmol, 2.0 equiv, 56.78 2mg) and stirred for 12 hours. The reaction mixture was then quenched with saturated aq. NH₄Cl and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography (eluent, petroleum ether/ethyl acetate =8:1) on silica gel to afford **6** (78.4 mg, 85% yield).

1-((4-chlorophenyl)(methyl)amino)-3-methyl-5-(3-methyl-5-phenylfuran-2-yl)-5-phenyl-1,5dihydro-2H-pyrrol-2-one (6)

white solid (39.9 mg, 85% yield); mp:160-162 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.63 (d, J = 7.2 Hz, 1H), 7.51 (d, J = 6.4 Hz, 1H), 7.41 (d, J = 9.2 Hz, 5H), 7.42-730 (m, 2H), 7.25 (s, 1H), 7.05 (s, 1H), 6.98-6.93 (m, 2H), 6.54 (s, 1H), 6.44 (d, J = 6.4 Hz, 2H), 6.33 (s, 1H), 3.27 (s, 1H), 3.16 (s, 2H), 2.10 (s, 3H), 1.74 (s, 2H), 1.55 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 170.2, 152.3, 151.9, 148.2, 144.0, 143.8, 137.2, 131.0, 130.4, 128.9, 128.7, 128.6, 128.4, 127.7, 127.6, 124.3, 123.9, 122.5, 114.9, 110.0, 70.9, 41.6, 11.8, 11.5; IR (KBr, *v*, cm⁻¹): 2958, 1698, 1597, 1490, 1447, 760, 692; HRMS (ESI -TOF) *m/z*: [M+H]⁺ Calcd for C₂₉H₂₆ClN₂O₂ 469.1683; Found 469.1698.

Mechanism Details

Control Experiment A

To a 10-mL pressure tube under air conditions, 4-methyl-2-phenylfuran⁶ (7, 0.1 mmol, 1 equiv, 15.8 mg), benzenediazonium tetrafluoroborate (**2a**, 0.1 mmol, 1 equiv, 19.2 mg), NaHCO₃ (0.05 mmol, 0.5 equiv, 4.2 mg), JohnPhosAu(MeCN)SbF₆ (2 mol%, 1.54 mg), dry 1,2-dichloroethane (2.0 mL) were successively added. The mixture was stirred at room temperature for about 0.5 hours. After the reaction was completed (indicated by TLC, petroleum ether : ethyl acetate = 50:1), the reaction mixture was concentrated by vacuum distillation and was purified by flash column chromatography to afford the desired pure product (**4**, 15.5 mg, 55% yield) as orange solid.

Control Experiment B

Figure S9. Control Experiment B

To a 10-mL pressure tube under air conditions, 4-methyl-2-phenylfuran (7, 0.1 mmol, 1 equiv, 15.8 mg), benzenediazonium tetrafluoroborate (**2a**, 0.1 mmol, 1 equiv, 19.2 mg), (0.05 mmol, NaHCO₃ (0.05 mmol, 0.5 equiv, 4.2 mg), dry 1,2-dichloroethane (2.0 mL) were successively added. The mixture was stirred at room temperature for about 0.5 hours. After the reaction was completed (indicated by TLC, petroleum ether : ethyl acetate = 50:1), the reaction mixture was concentrated by vacuum distillation and was purified by flash column chromatography to afford the desired pure product (**4**, 12.9 mg, 46% yield) as orange solid.

Control Experiment C

Figure S10. Control Experiment C

To a 10-mL pressure tube under air conditions, 4-methyl-2-phenylfuran (7, 0.1 mmol, 1 equiv, 15.8 mg), benzenediazonium tetrafluoroborate (**2a**, 0.1 mmol, 1 equiv, 19.2 mg), dry 1,2-dichloroethane (2.0 mL) were successively added. The mixture was stirred at room temperature for about 0.5 hours. The desired product **4** was not detected by TLC.

Control Experiment D

Figure S11. Control Experiment D

To a 10-mL pressure tube under air conditions, 4-methyl-2-phenylfuran (7, 0.1 mmol, 1 equiv, 15.8 mg), (*E*)-1-(3-methyl-5-phenylfuran-2-yl)-2-phenyldiazene (4, 0.1 mmol, 1 equiv, 26.2 mg), CF₃COOH (0.1 mmol, 1 equiv, 11.4 mg), dry 1,2-dichloroethane (2.0 mL) were successively added. The mixture was stirred at room temperature for about 2 hours. After the reaction was completed (indicated by TLC, petroleum ether : ethyl acetate = 5:1), the reaction mixture was concentrated by vacuum distillation and was purified by flash column chromatography to afford the desired pure product (**3a**, 28.1 g, 67% yield) as white solid.

Control Experiment E

Ph
$$\xrightarrow{\text{Me}}$$
 + 4 [Au], without CF₃COOH
dry DCE, r.t. 3a (0%)

Figure S12. Control Experiment E

To a 10-mL pressure tube under air conditions, 4-methyl-2-phenylfuran (**1a**, 0.1 mmol, 1 equiv, 15.8 mg), (*E*)-1-(3-methyl-5-phenylfuran-2-yl)-2-phenyldiazene (**4**, 0.1 mmol, 1 equiv, 26.2 mg), JohnPhosAu(MeCN)SbF₆ (5.0 mol%, 3.86 mg), dry 1,2-dichloroethane (2.0 mL) were successively added. The desired product **3a** was not detected by TLC.

Preparation of 2H-Pyrrolone-Based Cyclic Products

General Procedure for the Synthesis of Products 3a-3bb

Figure S13. Synthesis of Compounds 3

To a 10-mL pressure tube under air conditions, 2-methyl-4-phenylbut-3-yne-1,2-diol (**1a**, 0.2 mmol, 2.0 equiv, 31.2 mg), benzenediazonium tetrafluoroborate (**2a**, 0.1 mmol, 1 equiv, 19.2 mg), NaHCO₃ (0.05 mmol, 0.5 equiv, 4.2 mg), JohnPhosAu(MeCN)SbF₆ (5.0 mol%, 3.86 mg), dry 1,2-dichloroethane (2.0 mL) were successively added. The mixture was stirred at room temperature for about 12 hours. After the reaction was completed (indicated by TLC, petroleum ether : ethyl acetate = 5:1), the reaction mixture was concentrated by vacuum distillation and was purified by flash column chromatography to afford the desired pure product (**3a**, 29.0 mg, 69% yield) as white solid.

3-methyl-5-(3-methyl-5-phenylfuran-2-yl)-5-phenyl-1-(phenylamino)-1,5-dihydro-2H-pyrrol-2one (3a)

white solid (29.0mg, 69% yield); mp: 205-206 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.53 (d, J = 6.8 Hz, 2H), 7.36 (s, 5H), 7.29 (s, 2H), 7.28 (s, 1H), 7.08 (s, 1H), 6.96-6.92 (m, 2H), 6.70-6.66 (m,

1H), 6.40 (d, J = 7.6 Hz, 2H), 6.36 (s, 1H), 6.22 (s, 1H), 2.07 (s, 3H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 170.7, 152.0, 146.6, 144.5, 143.7, 137.4, 130.4, 129.1, 128.7, 128.6, 128.4, 127.5, 126.9, 123.8, 120.5, 112.9, 110. 0, 71.0, 11.6, 11.2; IR (KBr, *v*, cm⁻¹): 3268, 3029, 1698, 1602, 1496, 1447, 762, 692; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₂₈H₂₃N₂O₂ 419.1760; Found 419.1765.

3-methyl-5-(3-methyl-5-phenylfuran-2-yl)-5-phenyl-1-(p-tolylamino)-1,5-dihydro-2H-pyrrol-2one (3b)

white solid (21.6 mg, 60% yield); mp: 202-204 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.52 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 7.6 Hz, 5H), 7.34 (s, 2H), 7.28 (s, 1H), 7.06 (s, 1H), 6.75 (d, J = 8.0 Hz, 2H), 6.38 (s, 1H), 6.31 (d, J = 8.0 Hz, 2H), 6.00 (s, 1H), 2.11 (s, 3H), 2.04 (s, 3H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.8, 152.0, 144.8, 144.5, 143.4, 137.6, 130.5, 129.8, 129.3, 129.1, 128.7, 128.4, 127.6, 127.0, 123.8, 113.3, 110.1, 71.1, 20.5, 11.6, 11.2; IR (KBr, *v*, cm⁻¹): 3266, 2985, 1700, 1598, 1512, 1447, 761, 693; HRMS (ESI -TOF) *m/z*: [M-H]⁻Calcd for C₂₉H₂₅N₂O₂ 433.1916; Found 433.1919.

3-methyl-5-(3-methyl-5-phenylfuran-2-yl)-5-phenyl-1-(m-tolylamino)-1,5-dihydro-2H-pyrrol-2one (3c)

white solid (25.2 mg, 58% yield); mp: 210-211 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.53 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 7.2 Hz, 5H), 7.35 (s, 2H), 7.28 (s, 1H), 7.24 (s, 1H), 7.06 (s, 1H), 6.86–6.82 (m, 1H), 6.49 (d, J = 7.6 Hz, 1H), 6.36 (s, 1H), 6.24 (d, J = 8.4 Hz, 1H), 6.12 (s, 1H), 2.07 (s, 3H), 1.97 (s, 3H), 1.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.7, 152.0, 146.7, 144.6, 143.5, 138.5, 137.6, 131.5, 130.5, 129.2, 128.7, 128.5, 128.4, 127.6, 126.9, 123.8, 121.4, 113.6, 110.3,

110.0, 71.1, 21.4, 11.6, 11.3; IR (KBr, *v*, cm⁻¹): 3263, 2895, 1697, 1654, 1595, 1458, 760, 692; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₂₉H₂₅N₂O₂ 433.1916; Found 433.1922.

3-methyl-5-(3-methyl-5-phenylfuran-2-yl)-5-phenyl-1-(o-tolylamino)-1,5-dihydro-2H-pyrrol-2one (3d)

white solid (24.0 mg, 55% yield); mp: 170-171 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.50 (d, J = 7.6 Hz, 2H), 7.37 (s, 5H), 7.34 (s, 2H), 7.28 (s, 1H), 7.08 (s, 1H), 6.89 (d, J = 7.2 Hz, 1H), 6.71-6.68 (m, 1H), 6.62-659 (m, 1H), 6.31 (s, 1H), 6.13 (d, J = 8.0 Hz, 1H), 6.03 (s, 1H), 2.10 (s, 3H), 2.08 (s, 3H), 1.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.8, 151.9, 148.2, 144.6, 144.2, 137.7, 134.1, 131.5, 130.5, 130.0, 129.1, 128.7, 128.3, 127.5, 127.2, 126.8, 126.5, 123.8, 120.2, 111.9, 110.0, 71.2, 17.0, 11.6, 11.0; IR (KBr, *v*, cm⁻¹): 3274, 2924, 1763, 1697, 1484, 1447, 748, 695; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₂₉H₂₅N₂O₂ 433.1916; Found 433.1919.

1-((4-ethylphenyl)amino)-3-methyl-5-(3-methyl-5-phenylfuran-2-yl)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (3e)

white solid (27.7 mg, 62% yield); mp: 215-216 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.57 (d, J = 7.6 Hz, 2H), 7.42 (d, J = 7.2 Hz, 5H), 7.40 (s, 2H), 7.33 (s, 1H), 7.31-7.24 (m, 1H), 7.12 (s, 1H), 6.83 (d, J = 7.6 Hz, 2H), 6.42 (d, J = 6.4 Hz, 2H), 6.39 (s, 1H), 2.50-2.44 (m, 2H), 2.11 (s, 3H), 1.66 (s, 3H), 1.14-1..10 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 170.8, 152.0, 144.7, 144.6,143.4, 137.6, 136.3, 131.6, 130.5, 129.1, 128.7, 128.4, 128.1, 127.5, 127.0, 126.7, 123.8, 113.3, 110.1, 71.1, 28.0, 15.8, 11.6, 11.3; IR (KBr, *v*, cm⁻¹): 3269, 2962, 1698, 1513, 1446, 1262, 742, 668; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₃₀H₂₇N₂O₂ 447.2073; Found 447.2077.

1-((4-(tert-butyl)phenyl)amino)-3-methyl-5-(3-methyl-5-phenylfuran-2-yl)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (3f)

white solid (28.6 mg, 60% yield); mp: 220-221 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.48 (d, J = 7.6 Hz, 2H), 7.35 (d, J = 6.0 Hz, 5H), 7.32 (s, 2H), 7.24 (d, J = 7.2 Hz, 1H), 7.06 (s, 1H), 6.95 (d, J = 8.0 Hz, 2H), 6.37 (s, 1H), 6.35 (d, J = 2.8 Hz, 2H), 2.06 (s, 3H), 1.63 (s, 3H), 1.14 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.9, 152.1, 144.6, 144.2, 143.4, 143.2, 137.6, 131.6, 130.5, 129.1, 128.7, 128.4, 127.5, 127.0, 125.5, 123.8, 122.3, 113.0, 110.0, 71.1, 33.9, 31.5, 11.6, 11.4; IR (KBr, *v*, cm⁻¹): 3256, 2960, 1696, 1611, 1508, 1484, 761, 693; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₃₂H₃₁N₂O₂ 475.2386; Found 475.2391.

1-((4-fluorophenyl)amino)-3-methyl-5-(3-methyl-5-phenylfuran-2-yl)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (3g)

white solid (31.5 mg, 72% yield); mp: 161-163 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.51 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 6.8 Hz, 2H), 7.35 (d, J = 7.2 Hz, 5H), 7.22 (s, 1H), 7.07 (s, 1H), 6.65-6.59 (m, 2H), 6.36 (s, 1H), 6.35-6.32 (m, 2H), 6.20 (d, J = 4.8 Hz, 1H), 2.06 (s, 3H), 1.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 170.8, 157.5 (J_{CF}^{1} = 236.2 Hz), 152.1, 151.4, 144.5, 143.6, 142.8 (J_{CF}^{4} = 2.5 Hz), 137.4, 131.5, 130.4, 129.2, 128.8, 128.5, 127.7, 126.9, 123.8, 115.2 (J_{CF}^{2} = 27.7 Hz), 114.3 (J_{CF}^{3} = 7.9 Hz), 110.0, 71.1, 11.6, 11.2; ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm): -124.6; IR (KBr, ν , cm⁻¹): 3265, 2960, 1697, 1507, 1490, 1447, 760, 691; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₂₈H₂₂FN₂O₂ 437.1665; Found 437.1669.

1-((4-chlorophenyl)amino)-3-methyl-5-(3-methyl-5-phenylfuran-2-yl)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (3h)

white solid (36.0 mg, 79% yield); mp: 189-190 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.51 (d, J = 7.6 Hz, 2H), 7.38-7.33 (m, 5H), 7.33 (s, 1H), 7.29 (s, 1H), 7.25 (s, 1H), 7.07 (s, 1H), 6.88 (d, J =

7.6 Hz, 2H), 6.38 (s, 1H), 6.30 (d, J = 8.4 Hz, 2H), 6.21 (s, 1H), 2.06 (s, 3H), 1.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.8, 152.1, 145.6, 144.4, 143.9, 137.3, 130.4, 129.2, 128.8, 128.6, , 128.5, 127.7, 126.9, 125.0, 123.8, 122.6, 114.1, 110.1, 71.1, 11.6, 11.2; IR (KBr, *ν*, cm⁻¹): 3260, 2958, 1698, 1597, 1490, 1447, 760, 692; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₂₈H₂₂ClN₂O₂ 453.1370; Found 453.1375.

1-((3-chlorophenyl)amino)-3-methyl-5-(3-methyl-5-phenylfuran-2-yl)-5-phenyl-1,5-dihydro-2Hpyrrol-2-one (3i)

white solid (34.7 mg, 76% yield); mp: 206-207 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.51 (d, J = 7.6 Hz, 2H), 7.36 (d, J = 6.4 Hz, 5H), 7.33 (s, 2H), 7.24 (s, 1H), 7.08 (s, 1H), 6.81 (m, 1H), 6.61 (d, J = 8.0 Hz, 1H), 6.40 (s, 1H), 6.37 (s, 1H), 6.31 (s, 1H), 6.27 (d, J = 8.2 Hz, 1H), 2.08 (s, 3H), 1.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 170.7, 152.3, 148.1, 144.2, 143.8, 137.2, 134.5, 130.4, 129.7, 129.2, 128.7, 128.6, 127.7, 126.9, 123.9, 120.40, 120.37, 113.0, 111.1, 110.0, 71.1, 11.6, 11.3; IR (KBr, *v*, cm⁻¹): 3256, 2987, 1698, 1596, 1480, 1446, 759, 690; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₂₈H₂₂ClN₂O₂ 453.1370; Found 453.1375.

1-((2-chlorophenyl)amino)-3-methyl-5-(3-methyl-5-phenylfuran-2-yl)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (3j)

white solid (34.2 mg, 75% yield); mp: 190-191 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.52 (d, J = 6.4 Hz, 2H), 7.37 (s, 5H), 7.35 (s, 2H), 7.28 (s, 1H), 7.10 (d, J = 9.2Hz, 2H), 6.74-6.70 (m, 1H), 6.59 (d, J = 7.6 Hz, 1H), 6.57-6.52 (m, 1H), 6.34 (s, 1H), 6.16 (s, 1H), 2.08 (s, 3H), 1.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 170.4, 152.2, 144.4, 143.6, 142.3, 137.2, 131.6, 130.4, 129.3, 129.0, 128.8, 128.6, 127.7, 127.3, 126.8, 123.8, 120.6, 118.5, 113.3, 110.0, 71.1, 11.6, 11.2; IR (KBr, *v*, cm⁻¹): 3268, 3010, 1701, 1593, 1447, 1265, 759, 745; HRMS (ESI -TOF) *m/z*: [M-H]⁻Calcd for C₂₈H₂₂ClN₂O₂ 453.1370; Found 453.1374.

1-((3,4-dichlorophenyl)amino)-3-methyl-5-(3-methyl-5-phenylfuran-2-yl)-5-phenyl-1,5-dihydro-

2H-pyrrol-2-one (3k)

white solid (34.3 mg, 70% yield); mp: 239-240 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.50 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 6.0 Hz, 5H), 7.33 (s, 2H), 7.28 (s, 1H), 7.08 (s, 1H), 6.93 (d, J = 8.8 Hz, 1H), 6.39 (s, 1H), 6.37 (s, 2H), 6.22 (d, J = 8.8 Hz, 1H), 2.06 (s, 3H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.6, 152.4, 146.5, 144.1, 137.0, 132.6, 130.24, 130.16, 129.3, 128.8, 127.8, 126.9, 126.5, 123.9, 123.2, 114.6, 112.5, 110.0, 100.0, 71.0, 11.6, 11.3; IR (KBr, *v*, cm⁻¹): 3266, 2987, 1700, 1593, 1448, 1264, 866, 745; HRMS (ESI -TOF) *m/z*: [M-H]⁻Calcd for C₂₈H₂₁Cl₂N₂O₂ 487.0987; Found 487.0981.

1-((4-bromophenyl)amino)-3-methyl-5-(3-methyl-5-phenylfuran-2-yl)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (3l)

white solid (35.4 mg, 71% yield); mp: 201-202 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.50 (d, J = 7.6 Hz, 2H), 7.38-7.35 (m, 5H), 7.32 (s, 1H), 7.29 (s, 1H), 7.26 (s, 1H), 7.08 (s, 1H), 7.02 (d, J = 8.4 Hz, 2H), 6.38 (s, 1H), 6.26 (d, J = 8.4 Hz, 2H), 6.15 (s, 1H), 2.05 (s, 3H), 1.58 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.7, 152.2, 146.0, 144.4, 137.2, 131.5, 130.3, 129.2, 128.8, 128.6, 127.7, 126.9, 123.8, 114.7, 112.5, 110.1, 71.0, 11.6, 11.2; IR (KBr, *v*, cm⁻¹): 3284, 3008, 1689, 1586, 1448, 1264, 745, 693; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₂₈H₂₂BrN₂O₂ 497.0865; Found 497.0871.

(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl 4-((4-methyl-2-(3-methyl-5-phenylfuran-2-yl)-5-oxo-2-phenyl-2,5-dihydro-1H-pyrrol-1-yl)amino)benzoate (3n)

white solid (43.3 mg, 72% yield); mp: 202-203 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.66 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 6.8 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.34 (s, 4H), 7.28 (s, 1H), 7.24 (s, 1H), 7.11 (s, 1H), 6.49 (s, 1H), 6.39 (d, J = 7.2 Hz, 3H), 4.84-4.78 (m, 1H), 2.08 (s, 3H), 2.04 (d, J = 12.4 Hz, 1H), 1.87 (d, J = 6.8 Hz, 1H), 1.69 (d, J = 11.2 Hz, 2H), 1.60 (d, J = 7.2 Hz, 3H), 1.49-1.43 (m, 2H), 1.11-1.00(m, 2H), 0.91-0.86 (m, 6H), 0.74 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 170.5, 166.0, 152.3, 150.9, 144.3, 131.0, 130.3, 129.3, 128.8, 128.7, 127.7, 123.9, 123.8, 122.6, 111.9, 110.1, 74.1, 47.3, 41.1, 34.5, 31.5, 26.5, 23.8, 22.2, 20.9, 16.7, 11.6, 11.3; IR (KBr, *v*, cm⁻¹): 3262, 2969, 1698, 1597, 1490, 1448,760, 693; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₃₉H₄₁N₂O₄ 601.3066; Found 601.3066.

(1S,2R)-2-(prop-1-en-2-yl)cyclohexyl 4-((4-methyl-2-(3-methyl-5-phenylfuran-2-yl)-5-oxo-2phenyl-2,5-dihydro-1H-pyrrol-1-yl)amino)benzoate (30)

white solid (42.1 mg, 70% yield); mp: 218-219 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.61 (d, J = 8.4 Hz, 2H), 7.49 (s, 2H), 7.37 (s, 1H), 7.34 (d, J = 5.6 Hz, 5H), 7.28 (s, 1H), 7.25 (s, 1H), 7.10 (s, 1H), 6.46 (s, 1H), 6.38-6.35(m, 3H), 4.89 (s, 1H), 4.70-4.60 (m, 2H), 2.23-2.17 (m, 1H), 2.07 (s, 3H), 1.74-1.68 (m, 2H), 1.63 (s, 3H), 1.57 (s, 3H), 1.47-1.39 (m, 1H), 1.08-0.99 (m, 2H), 0.94 (s, 2H), 0.92 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 170.5, 166.0, 152.3, 150.8, 146.4, 144.3, 130.9, 130.3, 129.3, 128.8, 127.7, 123.8, 122.7, 111.8, 110.1, 73.8, 50.9, 40.6, 34.3, 31.5, 30.6, 22.1, 19.6, 11.6; IR (KBr, *v*, cm⁻¹): 3268, 2954, 1702, 1606, 1487, 1448,761, 693; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₃₉H₃₉N₂O₄ 599.2910; Found 599.2913.

(1R,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 4-((4-methyl-2-(3-methyl-5-phenylfuran-2yl)-5-oxo-2-phenyl-2,5-dihydro-1H-pyrrol-1-yl)amino)benzoate (3p)

white solid (45.1 mg, 75% yield); mp: 223-225 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.66 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 6.8 Hz, 2H), 7.38 (s, 1H), 7.35 (d, J = 5.6 Hz, 5H), 7.28 (s, 1H), 7.12 (s, 1H), 6.61 (s, 1H), 6.42-6.37 (m, 3H), 5.00 (d, J = 9.6 Hz, 1H), 2.42-2.38 (m, 1H), 2.09 (s, 3H), 2.01 (s, 1H), 1.76 (s, 1H), 1.70 (s, 1H), 1.60 (s, 3H), 1.33-1.21 (m, 2H), 1.03 (d, J = 14 Hz, 1H), 0.94 (s, 3H), 0.90 (s, 3H), 0.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.5, 166.8, 152.3, 150.9, 144.2, 130.8, 130.3, 129.3, 128.8, 127.7, 123.9, 122.6, 111.9, 110.1, 79.8, 49.1, 47.9, 45.1, 37.0, 28.1, 27.4, 19.8, 19.0, 13.7, 11.6; IR (KBr, ν, cm⁻¹): 3268, 2925, 1703, 1606, 1486, 1448,761, 693; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₃₉H₃₉N₂O₄ 599.2910; Found 599.2909.

(3s,5s,7s)-adamantan-1-yl 4-((4-methyl-2-(3-methyl-5-phenylfuran-2-yl)-5-oxo-2-phenyl-2,5dihydro-1H-pyrrol-1-yl)amino)benzoate (3q)

white solid (46.7 mg, 78% yield); mp:244-246 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.58 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 6.8 Hz, 2H), 7.38 (s, 1H), 7.35 (d, J = 7.6 Hz, 5H), 7.28 (s, 1H), 7.25 (s, 1H), 7.09 (s, 1H), 6.53 (s, 1H), 6.35 (d, J = 8.4 Hz, 3H), 2.17 (s, 9H), 2.07 (s, 3H), 1.68 (s, 6H), 1.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.5, 166.8, 152.3, 150.9, 144.2, 130.8, 130.3, 129.3, 128.8, 127.7, 123.8, 122.62, 122.57, 111.9, 110.1, 79.8, 49.1, 47.9, 45.1, 37.0, 28.1, 27.4, 19.8, 19.0, 13.8, 11.6, 11.2; IR (KBr, *v*, cm⁻¹): 3266, 2953, 1702, 1606, 1486, 1448, 761, 692; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₃₉H₃₇N₂O₄ 597.2753; Found 597.2751.

1-((4-chlorophenyl)amino)-3-methyl-5-(3-methyl-5-(p-tolyl)furan-2-yl)-5-(p-tolyl)-1,5-dihydro-2H-pyrrol-2-one (3r)

white solid (33.7 mg, 70% yield); mp: 171-172 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.42 (d, J = 7.6 Hz, 2H), 7.21 (s, 2H), 7.18 (d, J = 5.2 Hz, 4H), 7.07 (s, 1H), 6.87 (s, 1H), 6.85 (s, 1H), 6.42 (s, 1H), 6.31 (s, 2H), 6.28 (s, 1H), 2.38 (s, 3H), 2.36 (s, 3H), 2.07 (s, 3H), 1.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.8, 152.3, 145.7, 144.1, 138.4, 137.6, 134.2, 129.9, 129.5, 129.3, 128.6, 127.77, 127.75, 126.8, 125.0, 123.8, 114.2, 109.4, 71.0, 21.4, 21.2, 11.6, 11.3; IR (KBr, *v*, cm⁻¹): 3260, 2920, 1698, 1595, 1446, 1260, 761, 691; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₃₀H₂₆ClN₂O₂ 481.1683; Found 481.1680.

1-((4-chlorophenyl)amino)-3-methyl-5-(3-methyl-5-(m-tolyl)furan-2-yl)-5-(m-tolyl)-1,5-dihydro-2H-pyrrol-2-one (3s)

white solid (28.9 mg, 60% yield); mp: 196-198 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.31 (d, J = 7.6 Hz, 2H), 7.28 (s, 1H), 7.24 (d, J = 7.6 Hz, 2H), 7.15 (d, J = 6.8 Hz, 1H), 7.08 (d, J = 8.8 Hz, 4H), 6.88 (d, J = 8.0 Hz, 2H), 6.34 (d, J = 6.8 Hz, 2H), 6.31 (s, 1H), 2.37 (s, 3H), 2.33 (s, 3H), 2.06 (s, 3H), 1.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): δ 170.6, 152.4, 145.5, 144.3, 143.9, 139.1, 138.4, 137.2, 130.3, 129.3, 129.1, 128.7, 128.6, 128.5, 127.1, 125.1, 124.4, 124.0, 121.1, 114.2, 110.0, 71.1, 21.63, 21.58, 11.6, 11.3; IR (KBr, *v*, cm⁻¹): 3263, 2910, 1704, 1557, 1505, 1455, 749, 674; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₃₀H₂₆ClN₂O₂ 481.1683; Found 481.1680.

1-((4-chlorophenyl)amino)-3-methyl-5-(3-methyl-5-(o-tolyl)furan-2-yl)-5-(o-tolyl)-1,5-dihydro-2H-pyrrol-2-one (3t)

white solid (28.0 mg, 58% yield); mp: 130-132 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.71 (d, J = 7.6 Hz, 1H), 7.31 (s, 1H), 7.29 (s, 2H), 7.24 (d, J = 4.8 Hz, 2H), 7.22 (s, 1H), 7.19-7.15 (m, 1H), 7.03 (d, J = 8.4 Hz, 2H), 6.69 (s, 1H), 6.56 (d, J = 8.4 Hz, 2H), 6.40 (s, 1H), 5.62 (s, 1H), 2.54 (s, 3H), 2.40 (s, 3H), 2.20 (s, 3H), 1.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 178.7, 151.6, 145.6, 145.0, 143.9, 137.5, 134.5, 131.3, 130.3, 130.2, 130.0, 129.6, 129.4, 129.0, 127.5, 126.9, 126.1, 125.7, 118.2, 114.7, 113.77, 113.75, 111.8, 71.0, 22.12, 22.08, 20.2, 11.1; IR (KBr, *v*, cm⁻¹): 3262, 2921, 1698, 1598, 1490, 1455, 784, 695; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₃₀H₂₆ClN₂O₂ 481.1683; Found 481.1692.

1-((4-chlorophenyl)amino)-5-(4-ethylphenyl)-5-(5-(4-ethylphenyl)-3-methylfuran-2-yl)-3-methyl-1,5-dihydro-2H-pyrrol-2-one (3u)

white solid (33.2 mg, 65% yield); mp: 175-176 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.42 (d, J = 8.0 Hz, 2H), 7.20 (s, 4H), 7.17 (s, 2H), 7.06 (s, 1H), 6.87 (d, J = 8.4 Hz, 2H), 6.31 (s, 2H), 6.29 (s, 1H), 6.23 (s, 1H), 2.70-2.63 (m, 4H), 1.59 (s, 3H), 1.27 (d, J = 7.6 Hz, 3H), 1.23 (d, J = 8.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.7, 152.4, 145.6, 144.7, 144.1, 144.0, 134.4, 128.63, 128.57, 128.3, 128.0, 126.8, 125.0, 123.9, 114.2, 109.4, 70.9, 28.8, 28.5, 15.7, 15.5, 11.6, 11.3; IR (KBr, *v*, cm⁻¹): 3272, 2941, 1715, 1599, 1490, 1456,818, 761; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₃₂H₃₀ClN₂O₂ 509.1996; Found 509.2003.

5-(4-chlorophenyl)-5-(5-(4-chlorophenyl)-3-methylfuran-2-yl)-1-((4 chlorophenyl)amino)-3methyl-1,5-dihydro-2H-pyrrol-2-one (3v)

white solid (39.2 mg, 75% yield); mp: 137-138 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.40 (d, J = 8.0 Hz, 2H), 7.34-7.31 (m, 4H), 7.24 (s, 1H), 7.20-7.17 (m, 1H), 7.03 (s, 1H), 6.87 (d, J = 8.0 Hz,

2H), 6.36 (s, 2H), 6.27 (d, J = 8.0 Hz, 2H), 2.06 (s, 3H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.5, 151.3, 145.3, 144.3, 135.8, 134.6, 133.5, 129.4, 129.2, 129.0, 128.9, 128.7, 128.3, 125.4, 125.0, 124.9, 114.9, 110.5, 70.5, 11.6, 11.2; IR (KBr, *ν*, cm⁻¹): 3263, 2965, 1699, 1597, 1491, 1417,817, 763; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₂₈H₂₀Cl₃N₂O₂ 521.0590; Found 521.0599.

5-(3-chlorophenyl)-5-(5-(3-chlorophenyl)-3-methylfuran-2-yl)-1-((4-chlorophenyl)amino)-3methyl-1,5-dihydro-2H-pyrrol-2-one (3w)

white solid (33.9 mg, 65% yield); mp: 165-167 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.36 (s, 1H), 7.33 (d, J = 6.8 Hz, 2H), 7.29 (d, J = 7.2 Hz, 2H), 7.24 (d, J = 8.0 Hz, 1H), 7.18 (d, J = 6.4 Hz, 1H), 7.04 (s, 1H), 6.88 (d, J = 8.0 Hz, 2H), 6.39 (s, 2H), 6.29 (d, J = 8.4 Hz, 2H), 2.08 (s, 3H), 1.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.4, 151.0, 145.1, 144.4, 142.9, 139.4, 135.2, 134.8, 132.1, 131.8, 130.4, 130.0, 128.7, 128.6, 127.7, 126.8, 125.4, 125.0, 123.7, 122.8, 121.9, 114.1, 111.1, 70.5, 11.6, 11.2; IR (KBr, *v*, cm⁻¹): 3259, 2913, 1700, 1565, 1490, 1404,816, 743; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₂₈H₂₀Cl₃N₂O₂ 521.0590; Found 521.0590.

5-(4-bromophenyl)-5-(5-(4-bromophenyl)-3-methylfuran-2-yl)-1-((4-chlorophenyl)amino)-3methyl-1,5-dihydro-2H-pyrrol-2-one (3x)

white solid (44.7 mg, 73% yield); mp: 176-178 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.51 (d, J = 7.6 Hz, 2H), 7.38 (s, 1H), 7.36-7.34 (m, 4H), 7.33 (s, 2H), 7.29 (s, 1H), 7.08 (s, 1H), 6.87 (d, J = 8.4 Hz, 2H), 6.37 (s, 1H), 6.30 (d, J = 8.4 Hz, 3H), 2.06 (s, 3H), 1.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.7, 152.2, 144.5, 144.4, 143.7, 137.3, 130.4, 129.2, 128.8, 128.63, 128.57, 127.7, 126.9, 125.2, 123.8, 123.8, 114.2, 110.1, 71.1, 11.6, 11.2; IR (KBr, *v*, cm⁻¹): 3258, 2910, 1703, 1594,

1490, 1404,783, 769; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₂₈H₂₀Br₂ClN₂O₂ 610.9560; Found 610.9568.

1-((4-chlorophenyl)amino)-3-ethyl-5-(3-ethyl-5-phenylfuran-2-yl)-5-phenyl-1,5-dihydro-2Hpyrrol-2-one (3aa)

white solid (29.0 mg, 62% yield); mp: 188-190 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.51 (d, J = 7.6 Hz, 2H), 7.38-7.34 (m, 5H), 7.29 (s, 2H), 7.29 (s, 1H), 7.02 (s, 1H), 6.85 (d, J = 8.4 Hz, 2H), 6.49 (s, 1H), 6.37 (s, 1H), 6.27 (d, J = 8.4 Hz, 2H), 2.51-2.42 (m, 2H), 2.00-1.93 (m, 2H), 1.28-1.24 (m, 3H), 0.88-0.85 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.4, 152.4, 145.6, 143.8, 142.2, 137.6, 130.4, 129.1, 128.8, 128.6, 128.5, 127.7, 126.8, 125.1, 123.8, 123.8, 114.2, 107.9, 71.2, 19.3, 18.5, 13.9, 11.7; IR (KBr, ν, cm⁻¹): 3259, 2912, 1698, 1597, 1490, 1448,760, 692; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₃₀H₂₆ClN₂O₂ 481.1683; Found 481.1686.

1-((4-chlorophenyl)amino)-5-phenyl-5-(5-phenyl-3-propylfuran-2-yl)-3-propyl-1,5-dihydro-2H-pyrrol-2-one (3bb)

white solid (33.1 mg, 60% yield); mp: 204-205 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.48 (d, J = 7.6 Hz, 2H), 7.36 (d, J = 6.4 Hz, 5H), 7.33 (s, 2H), 7.27 (d, J = 5.4 Hz, 1H), 7.02 (s, 1H), 6.87 (d, J = 7.6 Hz, 2H), 6.46 (s, 1H), 6.29 (d, J = 8.0 Hz, 2H), 6.20 (s, 1H), 2.46-2.36 (m, 2H), 1.92 (s, 2H), 1.74-1.65 (m, 2H), 1.37-1.27 (m, 2H), 1.04-1.00 (mz, 3H), 0.73-0.69 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.4, 152.3, 145.6, 144.1, 142.8, 137.5, 135.7, 130.3, 129.0, 128.7, 128.6, 128.5, 127.6, 127.3, 126.9, 125.1, 123.7, 114.2, 108.2, 71.1, 27.8, 27.2, 22.7, 20.6, 14.0, 13.8; IR (KBr, *v*, cm⁻¹): 3271, 2965, 1668, 1602, 1495, 1448,748, 690; HRMS (ESI -TOF) *m/z*: [M-H]⁻Calcd for C₃₂H₃₀ClN₂O₂ 509.1996; Found 509.1999.

General Procedure for the Synthesis of Products 5a-5i

Figure S13. Synthesis of Compounds 5

To a 10-mL pressure tube under air conditions, 2-methyl-4-(p-tolyl)but-3-yne-1,2-diol (**1b**, 0.1 mmol, 2 equiv, 38.0 mg), (*E*)-1-(3-methyl-5-phenylfuran-2-yl)-2-phenyldiazene (**4**, 0.1 mmol, 1 equiv, 26.2 mg), CF₃COOH (0.03 mmol, 0.3 equiv, 3.4 mg), JohnPhosAu(MeCN)SbF₆ (5.0 mol%, 3.86 mg), dry 1,2-dichloroethane (2.0 mL) were successively added. The mixture was stirred at room temperature for about 12 hours. After the reaction was completed (indicated by TLC, petroleum ether : ethyl acetate = 5:1), the reaction mixture was concentrated by vacuum distillation and was purified by flash column chromatography to afford the desired pure product (**5a**, 28.2 mg, 65% yield) as white solid.

(E)-1-(3-methyl-5-phenylfuran-2-yl)-2-phenyldiazene (4)

orange solid (15.7 mg, 60% yield); mp: 98-99 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (δ, ppm): 7.87-7.84 (m, 4H), 7.58-7.48 (m, 5H), 7.46-7.42 (m, 1H), 7.32 (s, 1H), 2.47 (s, 3H), ¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm): 155.4, 154.0, 153.6, 130.8, 130.0, 129.9, 129.7, 129.3, 125.3, 122.5, 113.1, 11.0. IR (KBr, *v*, cm⁻¹): 2913, 1615, 1565, 1490, 1404, 761, 693; HRMS (ESI -TOF) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₃N₂O 263.1184; Found 263.1191.

3-methyl-5-(3-methyl-5-(p-tolyl)furan-2-yl)-5-phenyl-1-(phenylamino)-1,5-dihydro-2H-pyrrol-2one (5a)

white solid (28.2 mg, 65% yield); mp:189-191 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.43 (d, J = 8.0 Hz, 2H), 7.36 (s, 5H), 7.18 (d, J = 8.0 Hz, 2H), 7.09 (s, 1H), 6.97-6.93 (m, 2H), 6.70-6.67 (m,

1H), 6.41 (d, J = 8.0 Hz, 2H), 6.31 (s, 2H), 2.39 (s, 3H), 2.09 (s, 3H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.8, 152.3, 146.8, 144.2, 143.7, 137.6, 137.5, 131.5, 129.4, 129.1, 128.7, 128.4, 127.9, 127.0, 123.8, 122.4, 120.4, 113.0, 109.4, 71.1, 21.4, 11.6, 11.3; IR (KBr, *ν*, cm⁻¹): 3266, 2909, 1698, 1605, 1486, 1447,740, 692; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₂₉H₂₅N₂O₂ 433.1916; Found 433.1922.

5-(5-(4-ethylphenyl)-3-methylfuran-2-yl)-3-methyl-5-phenyl-1-(phenylamino)-1,5-dihydro-2Hpyrrol-2-one (5b)

white solid (28.2 mg, 63% yield); mp: 199-201 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.44 (d, J = 8.0 Hz, 2H), 7.35 (s, 5H), 7.20 (d, J = 8.0 Hz, 2H), 7.07 (s, 1H), 6.97-6.93 (m, 2H), 6.70-6.66 (m, 1H), 6.40 (d, J = 8.0 Hz, 2H), 6.30 (s, 1H), 6.13 (s, 1H), 2.67-2.64 (m, 2H), 2.06 (s, 3H), 1.58 (s, 3H), 1.28-1.24 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.8, 152.3, 146.8, 144.2, 143.9, 137.6, 129.1, 128.7, 128.4, 128.2, 128.1, 127.0, 123.9, 120.5, 113.0, 109.4, 71.1, 28.8, 15.6, 11.6, 11.2; IR (KBr, *v*, cm⁻¹): 3266, 2945, 1698, 1603, 1497, 1398,747, 690; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₃₀H₂₇N₂O₂ 447.2073; Found 447.2081.

5-(5-(4-chlorophenyl)-3-methylfuran-2-yl)-3-methyl-5-phenyl-1-(phenylamino)-1,5-dihydro-2Hpyrrol-2-one (5c)

white solid (34.1 mg, 75% yield); mp:180-181 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.40 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 6.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 5H), 7.06 (s, 1H), 6.95-6.92 (m, 2H), 6.69-6.66 (m, 1H), 6.39 (d, J = 8.0 Hz, 2H), 6.34 (s, 1H), 6.19 (s, 1H), 2.07 (s, 3H), 1.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.7, 151.1, 146.7, 145.0, 143.4, 137.4, 133.2, 129.2, 129.0,

128.9, 128.7, 128.5, 126.9, 125.0, 123.8, 122.5, 120.5, 113.0, 110.5, 71.0, 11.6, 11.3; IR (KBr, *v*, cm⁻¹): 3270, 2920, 1699, 1595, 1496, 1456,746, 693; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₂₈H₂₂N₂O₂ 453.1370; Found 453.1375.

5-(5-(3-chlorophenyl)-3-methylfuran-2-yl)-3-methyl-5-phenyl-1-(phenylamino)-1,5-dihydro-2Hpyrrol-2-one (5d)

white solid (30.9 mg, 68% yield); mp:205-206 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm):δ 7.43 (s, 1H), 7.38-7.34 (m, 4H), 7.30 (d, J = 8.0 Hz, 3H), 7.25-7.20 (m, 1H), 7.06 (s, 1H), 6.96-6.93 (m, 2H), 6.70-6.66(m, 1H), 6.41-6.37 (m, 3H), 6.10 (s, 1H), 2.07 (s, 3H), 1.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.8, 152.1, 145.6, 144.5, 143.9, 137.3, 131.4, 130.4, 129.2, 128.81, 128.79, 128.6, 128.5, 127.7, 126.9, 125.0, 123.8, 114.1, 110.1, 71.1, 11.6, 11.3; ;IR (KBr, *v*, cm⁻¹): 3271, 2922, 1699, 1601, 1496, 1447,747, 692; HRMS (ESI -TOF) *m/z*: [M-H]⁻Calcd for C₂₈H₂₂N₂O₂ 453.1370; Found 453.1379.

5-(5-(4-bromophenyl)-3-methylfuran-2-yl)-3-methyl-5-phenyl-1-(phenylamino)-1,5-dihydro-2Hpyrrol-2-one (5e)

white solid (35.9 mg, 72% yield); mp: 203-204 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.57 (d, J = 7.6 Hz, 2H), 7.43 (s, 2H), 7.41 (s, 5H), 7.13 (s, 1H), 7.01-6.98 (m, 2H), 6.75-6.71 (m, 1H), 6.46 (d, J = 8.0 Hz, 2H), 6.41 (s, 1H), 6.19 (s, 1H), 2.12 (s, 3H), 1.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 169.7, 151.1, 145.7, 143.6, 142.5, 136.5, 130.8, 130.6, 129.5, 128.1, 127.73, 127.68, 127.4, 126.6, 125.9, 122.8, 119.5, 112.0, 109.0, 70.1, 10.6, 10.2; IR (KBr, *v*, cm⁻¹): 3269, 2965, 1699, 1602,

1496, 1448,748, 692; HRMS (ESI -TOF) *m/z*: [M-H]⁻Calcd for C₂₈H₂₂BrN₂O₂ 497.0865; Found 497.0873.

5-(3-ethyl-5-phenylfuran-2-yl)-3-methyl-5-phenyl-1-(phenylamino)-1,5-dihydro-2H-pyrrol-2-one (5f)

white solid (26.5 mg, 61% yield); mp:198-200 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.55 (d, J = 7.6 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.36 (s, 5H), 7.29 (s, 1H), 7.08 (s, 1H), 6.96-6.92 (m, 2H), 6.69-6.66 (m, 1H), 6.48 (s, 1H), 6.40 (d, J = 8.0 Hz, 2H), 6.29 (s, 1H), 2.08 (s, 3H), 2.01-1.94 (m, 2H), 0.88-0.88 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 169.7, 151.4, 145.8, 142.9, 142.6, 136.8, 129.5, 128.1, 128.0, 127.7, 127.6, 127.4, 126.6, 125.8, 122.8, 119.4, 112.0, 106.9, 70.1, 17.5, 12.6, 10.6; IR (KBr, *v*, cm⁻¹): 3114, 2925, 1710, 1652, 1595, 1493,762, 693; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₂₈H₂₅N₂O₂ 433.1916; Found 433.1923.

3-methyl-5-phenyl-5-(5-phenyl-3-propylfuran-2-yl)-1-(phenylamino)-1,5-dihydro-2H-pyrrol-2one (5g)

white solid (26.9 mg, 60% yield); mp:199-201 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.51 (d, J = 7.6 Hz, 2H), 7.36 (s, 5H), 7.34 (s, 2H), 7.28 (s, 1H), 7.08 (s, 1H), 6.96-6.92 (m, 2H), 6.70-6.66 (m, 1H), 6.46 (s, 1H), 6.41 (d, J = 8.0 Hz, 2H), 6.16 (s, 1H), 2.08 (s, 3H), 1.96-1.92 (m, 2H), 1.37-1.29 (m, 6.9 Hz, 2H), 0.76-0.70 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.7, 152.3, 146.7, 144.3, 143.4, 137.6, 131.6, 130.4, 129.0, 128.7, 128.6, 128.4, 127.5, 127.2, 127.0, 123.8, 120.4, 113.0, 108.2, 71.0, 27.2, 22.7, 14.0, 11.6; IR (KBr, ν, cm⁻¹): 3115, 2925, 1710, 1653, 1595, 1493,780, 692; HRMS (ESI -TOF) *m/z*: [M-H]⁻ Calcd for C₃₀H₂₇N₂O₂ 447.2073; Found. 447.2083.

3-methyl-5-phenyl-1-(phenylamino)-5-(5-phenylfuran-2-yl)-1,5-dihydro-2H-pyrrol-2-one (5h)

white solid (24.4 mg, 60% yield); mp: 202-203 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.42 - 7.34 (m, 5H), 7.316-7.280 (m, 4H), 7.26 - 7.19 (m, 1H), 7.09 (s, 1H), 7.00-6.97 (m, 2H), 7.71-6.67 (m, 1H), 6.56 (d, J = 2.8 Hz, 1H), 6.49 (d, J = 8.0 Hz, 2H), 6.34 (d, J = 2.4 Hz, 1H), 5.95 (s, 1H), 2.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 170.9, 154.4, 146.8, 143.1, 137.1, 133.0, 130.3, 129.0, 128.8, 128.7, 128.6, 127.7, 127.4, 124.0, 120.7, 113.3, 112.4, 105.7, 70.4, 11.7; IR (KBr, *v*, cm⁻¹): 3266, 2909, 1669, 1603, 1496, 1354, 747, 690; HRMS (ESI -TOF) *m/z*: [M-H]⁻Calcd for C₂₇H₂₁N₂O₂ 405.1603; Found 405.1618.

5-(3,5-diphenylfuran-2-yl)-3-methyl-5-phenyl-1-(phenylamino)-1,5-dihydro-2H-pyrrol-2-one (5i)

white solid (35.7 mg, 74% yield); mp: 204-205 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.42 (d, J = 6.4 Hz, 2H), 7.34 - 7.29 (m, 5H), 7.26 (s, 1H), 7.23 (s, 7H), 6.98-6,94 (m, 2H), 6.88 (s, 1H), 6.68 - 6.65 (m, 2H), 6.42 (s, 2H), 5.81 (s, 1H), 2.08 (s, 1H), 1.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 169.6, 152.1, 145.8, 144.1, 142.5, 136.3, 132.6, 129.12, 129.10, 128.7, 127.84, 127.79, 127.5, 127.1, 127.0, 126.6, 126.5, 123.1, 119.6, 112.4, 70.2, 10.6; IR (KBr, *v*, cm⁻¹): 3270, 2965, 1668, 1602, 1496, 1448,748, 692; HRMS (ESI -TOF) *m/z*: [M-H]⁻Calcd for C₃₃H₂₅N₂O₂ 481.1916; Found 481.1910.

References

1. Li, X.; Villar-Yanez, A.; Tounzoua, C. N.; Benet-Buchholz, J.; Grignard, B.; Bo, C.; Detrembleur, C.; Kleij, A. W. Cascade Transformation of Carbon Dioxide and Alkyne-1,n-diols into Densely Substituted Cyclic Carbonates. *ACS Catal.* **2022**, *12*, 2854-2860.

2. Gabriele, B.; Veltri, L.; Plastina, P.; Mancuso, R.; Vetere, M. V.; Maltese, V. Copper-Catalyzed Synthesis of Substituted Furans and Pyrroles by Heterocyclodehydration and Tandem Heterocyclodehydration–Hydration of 3-Yne-1,2-diols and 1-Amino-3-yn-2-ol Derivatives. *J. Org. Chem.* **2013**, *78*, 4919-4928.

3. Minkler, S. R. K.; Isley, N. A.; Lippincott, D. J.; Krause, N.; Lipshutz, B. H. Leveraging the Micellar Effect: Gold-Catalyzed Dehydrative Cyclizations in Water at Room Temperature. *Org. Lett.* **2014**, *16*, 724-726.

4. Spina, R.; Colacino, E.; Martinez, J.; Lamaty, F. Poly(ethylene glycol) as a Reaction Matrix in Platinum- or Gold-Catalyzed Cycloisomerization: A Mechanistic Investigation. *Chem. Eur. J.* **2013** *19*, 3817-3821.

5. Tang, H.-J.; Zhang, X.; Zhang, Y.-F.; Feng, C. Visible-Light-Assisted Gold-Catalyzed Fluoroarylation of Allenoates. *Angew. Chem., Int. Ed.* **2020**, *59*, 5242-5247.

6. Gabriele, B.; Plastina, P.; Vetere, M. V.; Veltri, L.; Mancuso, R.; Salerno, G. A simple and convenient synthesis of substituted furans and pyrroles by CuCl₂-catalyzed heterocyclodehydration of 3-yne-1,2-diols and N-Boc- or N-tosyl-1-amino-3-yn-2-ols. *Tetrahedron Lett.* **2010**, *51*, 3565-3567.

¹H NMR Spectrum of Compound **3a**

S29

¹H NMR Spectrum of Compound **3b**

S31

¹H NMR Spectrum of Compound **3c**

¹H NMR Spectrum of Compound **3d**

¹H NMR Spectrum of Compound **3e**

¹H NMR Spectrum of Compound **3f**

¹H NMR Spectrum of Compound **3g**

~-123.5 ~-124.6

¹⁹F NMR Spectrum of Compound **3g**

¹H NMR Spectrum of Compound **3h**

¹H NMR Spectrum of Compound **3i**

¹H NMR Spectrum of Compound **3**j

¹H NMR Spectrum of Compound **3**k

¹H NMR Spectrum of Compound **3**I

¹H NMR Spectrum of Compound **3n**

¹H NMR Spectrum of Compound **30**

¹³C NMR Spectrum of Compound **30**

¹H NMR Spectrum of Compound **3p**

¹³C NMR Spectrum of Compound **3p**

¹H NMR Spectrum of Compound **3**q

¹³C NMR Spectrum of Compound **3**q

¹H NMR Spectrum of Compound **3**r

¹H NMR Spectrum of Compound **3s**

¹H NMR Spectrum of Compound **3**t

 [13.33
 [130.33
 [130.33
 [130.33
 [130.33
 [120.97
 [126.87
 [13.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
 [113.75
—178.72 ~145.60 ~144.98 ~143.92 -151.57 —70.98 22.12
 22.08
 20.23 —11.14 -137.54 $\begin{array}{c} 131.33\\ \hline 130.33\\ -129.97\\ -129.56\\ -129.44\\ -129.44\\ -126.10\\ -126.70\\ -126.70\\ \end{array}$ Мe 125 135 130 f1 (ppm) 70 140 90 80 f1 (ppm) 170 160 150 . 130 100 60 50 . 40 30 20 180 120 110 10 0

¹³C NMR Spectrum of Compound **3t**

-10

¹H NMR Spectrum of Compound **3u**

¹H NMR Spectrum of Compound **3v**

¹H NMR Spectrum of Compound **3**w

¹H NMR Spectrum of Compound **3**x

S74

Et ar > 20:1

¹H NMR Spectrum of Compound **3aa**

¹H NMR Spectrum of Compound **3bb**

¹H NMR Spectrum of Compound 4

¹³C NMR Spectrum of Compound 4

¹H NMR Spectrum of Compound **5a**

¹H NMR Spectrum of Compound **5b**

¹H NMR Spectrum of Compound **5**c

¹H NMR Spectrum of Compound **5d**

¹H NMR Spectrum of Compound **5**e

¹H NMR Spectrum of Compound **5**f

 $^{13}\mathrm{C}$ NMR Spectrum of Compound $\mathbf{5f}$

 $^1\mathrm{H}$ NMR Spectrum of Compound $\mathbf{5g}$

¹³C NMR Spectrum of Compound **5**g

¹H NMR Spectrum of Compound **5h**

¹³C NMR Spectrum of Compound **5h**

¹H NMR Spectrum of Compound **5**i

¹H NMR Spectrum of Compound **6**

