Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Color-stable blue light-emitting diodes with defect management by sulfonate

Guanghong Yang,^a Xingxing Tan,^a Lanlan Zhai,^{a,*} He Huang,^a Yingyu Wang,^a Kemin Jiang,^b Yun Yang,^a Lijie

Zhang,^a Zhan'ao Tan,^c Haihong Wen,^{d, *} Yuting Xu,^{a, *} Chao Zou^{a, *}

^a College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China

(zhaill@wzu.edu.cn, 272256692@qq.com, zouchao@wzu.edu.cn)

^b Center for Analysis and Measurements, Ningbo Institute of Materials Technology & Engineering, Chinese

Academy of Sciences, Ningbo, Zhejiang 315201, China

^c Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

^d National and Local Joint Engineering Research Centre of Ecological Treatment Technology for Urban Water

Pollution, Wenzhou University, Wenzhou 325035, China (00122005@wzu.edu.cn)

Experimental Details:

Materials. PEABr (>99.5%), BDABr₂ (>99.5%), PbBr₂ (>99.5%), CsBr (>99.5%), PEDOT: PSS (Clevios PVP AI 4083), and TPBi (>99%) were purchased from Xi'an Polymer Light Technology Corp. Triphenylphosphine oxide (TPPO) (99%), RbBr (>99.5%) were purchased from Alfa Aesar. LiBr (99%), Taurine (99%) was purchased from Aladdin. PSS-Na was purchased from Sigma Aldrich. Dimethyl sulfoxide (DMSO) (99.7+%, Extra Dry) were purchased from ACROS. Chlorobenzene (CB) (99.9+%) were purchased from J&K. m-PEDOT: PSS solution is mix of normal PEDOT: PSS (Clevios PVP AI 4083) aqueous solution and 40 mg ml⁻¹ PSS-Na aqueous solution by a volume ration of 1:1.

Preparation of Perovskite Precursor Solutions. 0.09 mmol CsBr, 0.15 mmol PbBr₂, 0.06 mmol PEABr, 0.06 mmol BDABr₂, 1.24 mg RbBr were dissolved in 1 mL DMSO under continuous stirring overnight and then filtered with a 0.22 μ m polytetrafluoroethylene filter before spin coating (The ratio of BDABr₂/PEABr ratio have been optimized).

Device fabrication. The patterned ITO-coated glass substrates were washed with deionized water, ethanol, acetone, isopropanol and ethanol for 20 min, then dried with a nitrogen blow gun. Before use, the ITO was cleaned with ultraviolet ozone for 15 min. m-PEDOT: PSS were spin-coated onto the substrates at 9000 rpm for 50 s followed by annealing on a hot plate at 120 °C for 20 min in ambient air. After cooling, the substrate was then transferred into a N₂-fifilled glovebox (O₂ <0.1 ppm, H₂O <0.1 ppm). The perovskite films were deposited in glovebox by spin-coating the precursor solution at 4000 rpm for 120s and annealed at 100 °C for 10 min. Chlorobenzene with TPPO (7.5 mg ml⁻¹) was added 40 s after the start of each spin coating process as anti-solvent. Finally, TPBi (40 nm), LiF (1 nm), and Al (110 nm) were deposited under a pressure of 5×10^{-4} Torr. The active area of the devices was 8 mm². All devices were tested in atmospheric environments.

Perovskite film and device characterization. UV–vis absorption spectra were collected with the spectrophotometer of SHIMADZU UV-1800. The steady-state photoluminescence spectra and time-resolved PL (TRPL) were measured using a FLS 980 spectrofluorometer (Edinburgh Instruments Ltd). The excitation source is 365 nm from a Xe lamp for PL and the time-resolved luminescence decay were measured using time-correlated single-photon counting with a 375 nm laser. X-ray diffraction analysis was carried on Bruker D8 advance X-ray diffractometer with graphite monochromatized Cu K α (λ =1.5405 Å) radiation with a step of 0.02° at a scanning speed of 4° min-1 in 20 ranging from 3° to 40°. X-ray Photoelectron Spectroscopy were carried out by ESCALAB 250Xi (Thermo Fisher). The Fourier Transform Infrared were measured by the Thermo Fisher is50. Scanning electron microscopy (SEM) were performed on a FEI Nova NanoSEM200 microscope. AFM was conducted on Dimension iCon (Bruker). The current density-luminance-voltage (J-V-L), EL spectra, EQE and operating lifetime of the PeLED were recorded simultaneously by using a commercialized system (Shenzhen Spectrum Research Connected Technology Co., Ltd) equipped with Keithley 2400, a fiber integrating sphere and Ocean Optics QE65 Pro spectrometer.

Figure S1. In-situ UV-vis absorption for samples a) w/o LiBr b) with LiBr c) with LiBr and with Taurine. d) w/o LiBr and with Taurine

Figure S2. PL spectra of perovskite films from 120 to 300 K. a) w/o LiBr. b) with LiBr. c) with LiBr and Taurine. Relevant integration of the temperature-dependent PL

intensity of perovskite films and fitting curves for E_b . d) w/o LiBr. e) with LiBr. f) with LiBr and Taurine.

Figure S3. SEM images of perovskite films without LiBr and with LiBr.

Figure S6. J-V-L curves of PeLEDs with and without LiBr.

Figure S7. PLQY of different thin perovskite films.

Figure S8. PLQY measurement of different thin perovskite films. a) w/o LiBr. b) with LiBr. c) with LiBr and Taurine. d) w/o LiBr and with Taurine

Figure S9. Current density-voltage characteristics of electron-only devices based on

ITO/TPBi/pero//TPBi/LiF/AI structure.

Figure S10. AFM images of perovskites films.

Figure S11. a) The XPS survey spectra of perovskite films with and without taurine treatment. High-resolution spectra of b) Br 3d.

Figure S12. a) Stability measurements of perovskite films with and without taurine treatment under UV illumination (365 nm, 10 mW cm⁻²) and b) heating process (100 °C).

Figure S13. EL spectra of LEDs under different voltage bias.

Figure S14. a) The half time of PeLEDs at initial luminance at 30 cd m⁻². b) Statistical graph of PeLEDs.

Table S1. PL lifetime characteristics of different amount taurine modified perovskite films. A₁[%] X2 x[%] $\tau_1[ns]$ τ₂[ns] A₂[%] τ₃[ns] A₃[%] $\tau_{avg}[ns]$ Control 0.75 24.35 2.90 34.44 13.06 41.21 11.17 1.099 26.91 w LiBr 0.83 3.21 33.9 15.12 39.90 12.95 1.097 0.010 M Taurine 0.80 21.77 44.88 0.975 3.42 33.75 15.10 13.13 (with LiBr) 0.015 M Taurine 20.40 1.05 3.85 33.12 17.95 46.48 15.75 1.177 (with LiBr) 0.020 M Taurine 1.03 22.32 3.65 34.59 16.28 43.09 13.99 1.005 (with LiBr)

 Table S2. Different concentrations perovskites films of trap densities. EOD is short for electron-only device and holeonly device.

	Taurine conc. (M)	V _{TFL} (V)	<i>n</i> _t (×10 ¹⁸ cm ⁻³)	
	0	1.46	1.13	
EOD	0.010	0.010 1.17		
	0.015	1.00	0.77	
	0.020	1.10	0.85	
HOD	Taurine conc. (M)	V _{TFL} (V)	<i>n</i> _t (×10 ¹⁸ cm ⁻³)	
	0	2.62	2.02	
	0.010	2.39	1.85	
	0.015	1.28	0.99	
	0.020	2.41	1.86	

Table S3. Performance parameters of blue PeLEDs.

Devices	V _{on} (V)	L <i>max</i> (cd m ⁻²)	EQE _{max} (%)	EL (nm)	FWHM (nm)
Control	5.2	116	0.28	490	30
w LiBr	4.6	144	0.96	487	28
0.010 M Taurine (with LiBr)	4.0	291	1.86	486	26
0.015 M Taurine (with LiBr)	3.8	442	3.82	487	25
0.020 M Taurine (with LiBr)	4.0	597	1.66	487	25