Supporting Information for

Pd-Catalyzed Intermolecular Asymmetric Allylic Dearomatization of 1-Nitro-2-naphthols with MBH Adducts

Qing-Xia Zhang, Jia-Hao Xie, Qing Gu, Shu-Li You*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China

* Email: <u>slyou@sioc.ac.cn</u>

Table of contents

1. General Information	2
2. Details for Condition Optimization	3
3. Pd-Catalyzed Intermolecular Asymmetric Allylic Dearomatization	of
1-Nitro-2-naphthols with MBH Adducts	9
4. Characterization Data of Products 3	10
5. Unsuccessful substrates	23
6. Mmol-scale Reaction	24
7. Crossover Experiments	25
8. X-Ray Crystal Structure of (<i>R</i>)- 3an	27
9. References	29
10. Copies of NMR Spectra	30
11. Copies of HPLC Chromatograms	78

1. General Information

Materials were purchased from commercial suppliers and used without further purification unless otherwise stated. All solvents were distilled according to standard methods. Flash column chromatography was performed using 200–300 mesh silica gel. ¹H and ¹³C NMR spectra were recorded on Bruker, Agilent, and Varian instruments (400 MHz and 100 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protic solvent signals. ¹H NMR data are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, sept = septet, m = multiplet, br = broad singlet, *AB* = *AB* system, coupling constant (s) in Hz, integration). Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (δ , ppm). All air- and moisture-sensitive reactions were performed under an atmosphere of argon in flame-dried glassware. IR spectra were obtained on Bruker Tensor 27 instruments with Bruker Platinum ATR accessory. Melting points were measured on Shenguang X-4 melting point apparatus. ESI was recorded on Agilent 6224 TOF LC/MS.

Substrates 1^1 , 2^2 and Trost ligands³ were synthesized according to the known procedures.

2. Details for Condition Optimization

Ć	NO ₂ OH +	Me DBoc Pd(OAc)₂ (10 mol%) L (11 mol%) Li₂CO₃ (1.0 equiv) Li₂CO₃ (1.0 equiv)		CO ₂ Me
O NH PPh. (<i>R</i> ,	1a 2 HN 0 HN 0 2 Ph ₂ P R)-L1	$\begin{array}{c} \mathbf{a} \\ 30 \ ^{\circ}\text{C}, 24 \ h \\ \end{array}$	3aa 4aa	(S, S, S_a) -L5
	O NH HI PPh ₂ Ph (R, R)-L	Ph Ph Ph Ph Ph Ph Ph Ph	$\int_{C}^{0} \int_{C}^{C} \int_{C$	
	(S)-L9	$PPh_2 \qquad \qquad$	PPh ₂ Ph ₂ P (<i>R</i> , <i>R</i>)-L11	1
entry	ligand	yield of 3aa $(\%)^b$	C/O^{c}	ee (%) ^d
1	L1	78	5/1	84
2	L2	n.d.		
3	L3	n.d.		
4	L4	n.d.		
5^e	L5	97	>19/1	0
6	L6	<5%		
7	L7	11	2/5	80
8^{f}	L8	95	19/1	9
9	L9	n.d.		
10	L10	n.d.		

^{*a*}General conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), Pd(OAc)₂ (10 mol%), ligand (11 mol%), Li₂CO₃ (1.0 equiv) in 1,4-dioxane (0.1 M) at 30 °C. ^{*b*}NMR yields using 1,3,5-trimethylbenzene as an internal standard. ^{*c*}Determined by ¹H NMR analysis of

the crude reaction mixture. ^{*d*}Determined by HPLC analysis with a chiral stationary phase. ^{*e*}22 mol% of (*S*, *S*, *S*_a)-**L5** was used. ^{*f*}22 mol% of (*S*, *R*_a)-**L8** was used. N.D. = not detected.

\bigcirc	NO ₂ OH +	OBoc Pd(OAc)2 (? (R, R)-L1 (?) CO2Me Li2CO3 (1. solvent (30 °C,	$\begin{array}{c} \text{MeO}_2C\\ \hline 0 \text{ mol}\%)\\ \hline 11 \text{ mol}\%)\\ \hline 0 \text{ equiv})\\ 0.1 \text{ M})\\ 24 \text{ h} \end{array} \begin{array}{c} \text{MeO}_2C\\ \hline O_2N\\ \hline O_2N$	NO ₂ CO ₂ Me 4aa	PPh ₂ Ph ₂ P (<i>R</i> , <i>R</i>)-L1
	entry	solvent	yield of 3aa $(\%)^b$	C/O^c	ee (%) ^d
	1	1,4-dioxane	78	5/1	84
	2	DCE	43	2/1	87
	3	DCM	21	1/1	82
	4	toluene	13	1/2	74
	5	CH ₃ CN	n.d.	32% (4aa)	
	6	THF	30	5/11	87
	7	Et ₂ O	n.d.	n.d.	

 Table S2. Screening of solvents.^a

^{*a*}General conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), Pd(OAc)₂ (10 mol%), (*R*, *R*)-**L1** (11 mol%), Li₂CO₃ (1.0 equiv) in solvent (0.1 M) at 30 °C. ^{*b*}NMR yields using 1,3,5-trimethylbenzene as an internal standard. ^{*c*}Determined by ¹H NMR analysis of the crude reaction mixture. ^{*d*}Determined by HPLC analysis with a chiral stationary phase. N.D. = not detected.

\bigcirc	NO ₂ OH 1a	$\begin{array}{c} \text{OBoc} \\ \text{CO}_2\text{Me} \end{array} \begin{array}{c} \text{Pd}(\text{OAc})_2 (\\ (R, R)\text{-L1} (\\ \text{base (1.0)} \\ \text{base (1.0)} \\ 1,4\text{-dioxan} \\ 30 \ ^\circ\text{C}, \end{array}$	$\begin{array}{c} 10 \text{ mol}\%) \\ \hline 11 \text{ mol}\%) \\ \hline e \text{ quiv}) \\ e \text{ (0.1 M)} \\ 24 \text{ h} \end{array} \begin{array}{c} \text{MeO}_2 \text{C} \\ O_2 \text{N} \\ O_2 N$	NO ₂ CO ₂ Me	PPh ₂ Ph ₂ P (<i>R</i> , <i>R</i>)-L1
	entry	base	yield of 3aa $(\%)^b$	C/O^{c}	ee (%) ^d
	1	Li ₂ CO ₃	78	5/1	84
	2	K ₂ CO ₃	65	33/10	84
	3	Cs_2CO_3	66	33/10	85
	4	Et ₃ N	92	>19/1	85
	5^e	Et ₃ N	60	15/1	87
	6	DBU	5	3/1	
	7^{f}		61	11/5	82
	8^g	Et ₃ N	83	>19/1	85
	9^h	Et ₃ N	91	>19/1	85

 Table S3. Screening of bases.^a

^{*a*}General conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), Pd(OAc)₂ (10 mol%), (*R*, *R*)-**L1** (11 mol%), base (1.0 equiv) in 1,4-dioxane (0.1 M) at 30 °C. ^{*b*}NMR yields using 1,3,5-trimethylbenzene as an internal standard. ^{*c*}Determined by ¹H NMR analysis of the crude reaction mixture. ^{*d*}Determined by HPLC analysis with a chiral stationary phase. ^{*e*}THF was used instead of 1, 4-dioxane as solvent. ^{*f*}Without base. ^{*g*}0.5 equiv of Et₃N was used. ^{*h*}1.0 equiv of Et₃N was used. N.D. = not detected.

Table S4. Screening of [Pd] precursors.^a

^{*a*}General conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), [Pd] (10 mol%), (*R*, *R*)-**L1** (11 mol%), Et₃N (1.0 equiv) in 1,4-dioxane (0.1 M) at 30 °C. ^{*b*}NMR yields using 1,3,5-trimethylbenzene as an internal standard. ^{*c*}Determined by ¹H NMR analysis of the crude reaction mixture. ^{*d*}Determined by HPLC analysis with a chiral stationary phase.

Ô	NO ₂ OH 1a	OBoc CO ₂ Me 2a Pd(OAc) ₂ (10 (<i>R</i> , <i>R</i>)-L1 (11 Et ₃ N (1.0 eq 1,4-dioxane (0 T, 24 h	$(uiv) \\ 0.1 M) \\ MeO_2C \\ O_2N \\ O_$	NO ₂ CO ₂ Me	O NH HN PPh ₂ Ph ₂ P (<i>R</i> , <i>R</i>)-L1
	entry	Т	yield of 3aa $(\%)^b$	C/O^{c}	ee (%) ^d
	1	30 °C	92	>19/1	84
	2	25 °C	90	>19/1	86
	3	50 °C	70	38/5	85
	4	80 °C	trace	43% 4aa	
	5^e	25 °C	92^{f}	>19/1	86

Table S5. Screening of temperature.^a

^{*a*}General conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), Pd(OAc)₂ (10 mol%), (*R*, *R*)-L1 (11 mol%), Et₃N (1.0 equiv) in 1,4-dioxane (0.1 M). ^{*b*}NMR yields using 1,3,5-trimethylbenzene as an internal standard. ^{*c*}Determined by ¹H NMR analysis of the crude reaction mixture. ^{*d*}Determined by HPLC analysis with a chiral stationary phase. ^{*e*}The reaction was carried out in 0.2 mmol scale. ^{*f*}Isolated yields.

3. Pd-Catalyzed Intermolecular Asymmetric Allylic Dearomatization of 1-Nitro-2-naphthols with MBH Adducts

Under Ar atmosphere, Pd(OAc)₂ (4.4 mg, 0.02 mmol, 10 mol%) and (*R*, *R*)-L1 (15.2 mg, 0.022 mmol, 11 mol%) were added to an oven-dried Schlenk tube. The reaction tube was evacuated and refilled with argon three times. Freshly redistilled 1,4-dioxane (2.0 mL) was added to the flask. After the mixture was stirred for 30 minutes, Boc-protected MBH carbonate (0.24 mmol, 1.2 equiv), α -substituted β -naphthol derivatives (0.20 mmol, 1.0 equiv) and Et₃N (28.0 μ L, 0.20 mmol, 1.0 equiv) were successively added to the flask. The reaction was stirred at 25 °C and monitored by TLC. After the reaction was complete, the mixture was filtered with a celite pad. The filter cake was rinsed with EtOAc (5 mL × 3) and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5:1, V/V) to afford the target product

3.

4. Characterization Data of Products 3

3aa was isolated as yellow solid (55.1 mg, 92% yield, 86% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). m.p. = 99.2-101.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.42 (m, 3H), 7.41-7.33 (m, 2H), 6.27 (d, *J* = 10.0 Hz, 1H), 6.12 (d, *J* = 0.8 Hz, 1H), 5.48 (d, *J* = 0.8 Hz, 1H), 3.68 (d, *J* = 13.6 Hz, 1H), 3.61 (d, *J* = 13.6 Hz, 1H), 3.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 166.5, 146.5, 135.5, 132.2, 131.3, 130.8, 130.4, 130.2, 129.8, 127.4, 124.7, 94.8, 52.0, 40.5. IR (thin film): v_{max} (cm⁻¹) = 2953, 2855, 1720, 1676, 1620, 1550, 1438, 1397, 1338, 1300, 1260, 1235, 1198, 1150, 959, 911, 884, 834, 803, 761, 732, 636, 610, 506, 451. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 90:10 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 42.83 min, t_R (minor) = 52.77 min. [α] $_{D}^{27}$ = +6.1 (*c* = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for C₁₅H₁₂O₅N [M-H]⁻: 286.0721; Found: 286.0716.

4aa, yellow solid, m.p. = 109.3-110.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.8 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.33 (d, J = 9.2 Hz, 1H), 6.43 (s, 1H), 6.04 (s, 1H), 4.98 (s, 2H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 147.4, 136.7, 134.7, 132.4, 129.3, 128.7, 128.2, 127.5, 125.7, 125.6, 120.7, 114.3, 67.9, 52.3. IR (thin film): v_{max} (cm⁻¹) = 3085, 3033, 2952, 2882, 2809, 1715, 1694, 1638, 1603, 1518, 1483, 1436, 1357, 1338, 1280, 1240, 1202, 1155, 1065, 1017, 968, 931, 868, 842, 817, 800, 770,

742, 669. HRMS (ESI-TOF) calcd for C₁₅H₁₃O₅NNa [M+Na]⁺: 310.0686; Found: 310.0689.

3ab was isolated as colorless oil (46.8 mg, 64% yield, 66% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.4 Hz, 1H), 7.52 (d, *J* = 2.0 Hz, 1H), 7.41 (d, *J* = 10.0 Hz, 1H), 7.24 (d, *J* = 8.4 Hz, 1H), 6.29 (d, *J* = 10.0 Hz, 1H), 6.16 (s, 1H), 5.52 (s, 1H), 3.66 (d, *J* = 13.6 Hz, 1H), 3.60 (d, *J* = 14.0 Hz, 1H), 3.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.1, 166.3, 144.7, 133.9, 133.4, 132.6, 131.9, 131.52, 131.46, 128.9, 125.7, 124.4, 94.2, 52.1, 40.1. IR (thin film): v_{max} (cm⁻¹) = 2952, 2926, 2853, 1719, 1679, 1630, 1552, 1487, 1439, 1337, 1293, 1260, 1233, 1206, 1152, 1084, 969, 887, 802, 708, 651, 612, 553, 469. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 70:30 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 15.36 min, t_R (minor) = 18.11 min. [α]_D²⁵ = -21.3 (*c* = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for C₁₅H₁₂O₅N⁷⁹BrNa [M+Na]⁺: 387.9791; Found: 387.9792.

3ac was isolated as colorless oil (39.3 mg, 54% yield, 78% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.0 Hz, 1H), 7.59-7.53 (m, 4H), 7.50-7.40 (m, 4H), 6.30 (d, J = 10.0 Hz, 1H), 6.15 (d, J = 2.0 Hz, 1H), 5.53 (d, J = 2.0 Hz, 1H), 3.73 (d, J = 13.6 Hz, 1H), 3.65 (d, J = 14.4 Hz, 1H), 3.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.9, 166.5, 146.5, 143.6, 139.0, 134.0, 132.3, 131.3, 130.2, 129.2, 128.7, 128.6, 128.0, 127.1, 125.0, 94.6, 52.1, 40.4. IR (thin film): v_{max} (cm⁻¹) = 2963, 2923, 1720, 1677, 1550, 1439, 1411, 1260, 1084, 1017, 865, 797, 698. HPLC conditions: Daicel

Chiralpak IC column, hexane/*i*-PrOH, 80:20 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C. t_R (major) = 23.81 min, t_R (minor) = 28.20 min. [α]_D²⁵ = -28.9 (c = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for C₂₁H₁₇O₅NNa [M+Na]⁺: 386.0999; Found: 386.0995.

3ad was isolated as colorless oil (50.0 mg, 83% yield, 81% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 10.0 Hz, 1H), 7.26 (d, *J* = 2.4 Hz, 2H), 7.16 (s, 1H), 6.22 (d, *J* = 10.0 Hz, 1H), 6.11 (d, *J* = 1.2 Hz, 1H), 5.45 (d, *J* = 1.2 Hz, 1H), 3.67 (d, *J* = 14.0 Hz, 1H), 3.61 (d, *J* = 13.6 Hz, 1H), 3.47 (s, 3H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 166.6, 146.7, 140.7, 132.5, 132.4, 131.5, 131.1, 130.8, 129.7, 127.4, 124.7, 94.5, 52.0, 40.3, 21.2. IR (thin film): v_{max} (cm⁻¹) = 3852, 3797, 3732, 3666, 3575, 3549, 2956, 2929, 2902, 2863, 2562, 2259, 2213, 2169, 2096, 2014, 1946, 1721, 1677, 1630, 1552, 1440, 1338, 1300, 1261, 1203, 1150, 1024, 799, 712, 602, 562, 505, 476, 439. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 70:30 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 17.49 min, t_R (minor) = 19.90 min. [α]_D²⁸ = -13.4 (*c* = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for C₁₆H₁₉O₅N₂ [M+NH₄]⁺: 319.1288; Found: 319.1288.

3ae was isolated as colorless oil (52.0 mg, 71% yield, 58% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.4 Hz, 1H), 7.51 (d, J = 2.0 Hz, 1H), 7.44 (d, J = 10.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 6.27 (d, J = 10.0 Hz, 1H), 6.19 (s, 1H), 5.55 (d, J = 1.2 Hz, 1H), 3.66 (d, J = 14.0 Hz, 1H), 3.60 (d, J = 14.0 Hz, 1H), 3.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.9, 166.3, 145.3, 136.8, 133.6, 131.8, 131.2, 130.7, 128.6, 125.4,

124.8, 94.0, 52.1, 40.2. IR (thin film): v_{max} (cm⁻¹) = 2951, 2927, 2852, 1719, 1677, 1619, 1585, 1550, 1488, 1438, 1386, 1336, 1287, 1258, 1235, 1198, 1150, 1083, 960, 888, 848, 820, 756, 708, 643, 613, 547, 450, 424. HPLC conditions: Daicel Chiralpak AD–H column, hexane/*i*-PrOH, 90:10 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 10.88 min, t_R (major) = 13.19 min. [α]_D²⁵ = -18.7 (*c* = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for C₁₅H₁₁O₅N⁷⁹Br [M-H]⁻: 363.9826; Found: 363.9822.

3af was isolated as colorless oil (58.8 mg, 81% yield, 80% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.0 Hz, 1H), 7.59 (d, *J* = 7.6 Hz, 2H), 7.56-7.51 (m, 2H), 7.51-7.38 (m, 4H), 6.27 (d, *J* = 9.6 Hz, 1H), 6.17 (s, 1H), 5.58 (s, 1H), 3.79 (d, *J* = 13.6 Hz, 1H), 3.63 (d, *J* = 13.6 Hz, 1H), 3.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 166.6, 146.4, 143.8, 139.1, 135.8, 132.3, 131.3, 130.7, 129.3, 128.9, 128.7, 128.6, 127.2, 126.4, 124.3, 94.8, 52.1, 40.3. IR (thin film): v_{max} (cm⁻¹) = 2951, 2926, 2852, 1720, 1675, 1605, 1550, 1486, 1439, 1393, 1337, 1259, 1231, 1197, 1151, 1077, 962, 910, 853, 812, 762, 732, 697, 647, 606, 531, 420. HPLC conditions: Daicel Chiralcel OD–3 column, CO₂/MeOH, 95:05 v/v, flow rate 1 mL/min, λ = 214 nm, 33 °C. t_R (minor) = 10.65 min, t_R (major) = 11.59 min. [α]_D²⁹ = -46.4 (*c* = 0.5, CHCl₃). HRMS (ESI-TOF) calcd for C₂₁H₁₆O₅N [M-H]⁻: 362.1034; Found: 362.1031.

3ag was isolated as colorless oil (52.4 mg, 87% yield, 82% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 10.0 Hz, 1H), 7.24 (s, 2H), 7.16 (s, 1H), 6.18 (d, J = 10.0 Hz, 1H), 6.12 (s, 1H), 5.47 (d, J = 1.2 Hz, 1H), 3.65 (d, J = 14.0 Hz, 1H), 3.59 (d, J = 14.0

Hz, 1H), 3.46 (s, 3H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 166.5, 146.7, 141.8, 135.5, 132.3, 131.1, 131.0, 130.2, 128.2, 127.2, 123.6, 94.8, 52.0, 40.5, 21.7. IR (thin film): v_{max} (cm⁻¹) = 2961, 2923, 2853, 1720, 1674, 1609, 1549, 1438, 1337, 1296, 1259, 1217, 1015, 797, 708, 609, 547, 457. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 80:20 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 13.95 min, t_R (minor) = 16.24 min. [α]_D²⁵ = -18.4 (*c* = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for C₁₆H₁₄O₅N [M-H]⁻: 300.0877; Found: 300.0872.

3ah was isolated as white solid (59.0 mg, 88% yield, 68% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). m.p. = 95.9-97.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 7.8 Hz, 1H), 8.02 (d, J = 7.4 Hz, 2H), 7.79-7.68 (m, 1H), 7.56-7.44 (m, 2H), 7.44-7.38 (m, 1H), 7.29 (d, J = 8.4 Hz, 1H), 6.00 (s, 1H), 5.39 (s, 1H), 3.71 (d, J = 14.0 Hz, 1H), 3.62 (d, J = 14.0 Hz, 1H), 3.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.2, 166.2, 136.7, 136.1, 132.6, 132.3, 131.4, 130.31, 130.29, 129.5, 129.1, 128.5, 128.0, 127.4, 123.9, 123.5, 96.6, 51.8, 40.6. IR (thin film): v_{max} (cm⁻¹) = 2950, 2920, 2849, 1721, 1691, 1599, 1549, 1482, 1434, 1336, 1279, 1234, 1200, 1152, 1134, 961, 838, 812, 764, 725, 663, 618. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 80:20 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 30.89 min, t_R (minor) = 34.87 min. [α]_D²⁸ = +53.2 (c = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for C₁₉H₁₅O₅NNa [M+Na]⁺: 360.0842; Found: 360.0845.

3ai was isolated as colorless oil (51.8 mg, 86% yield, 84% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.41 (m, 3H), 7.40-7.32 (m, 2H), 6.24 (d, *J* = 10.0 Hz, 1H), 6.12 (s, 1H), 5.46 (s, 1H), 3.98-3.81 (m, 2H), 3.68 (d, *J* = 13.6 Hz, 1H), 3.61 (d, *J* = 13.6 Hz, 1H), 1.13 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 166.0, 146.5, 135.5, 132.5, 131.0, 130.8, 130.4, 130.2, 129.8, 127.4, 124.7, 94.9, 61.2, 40.4, 14.1. IR (thin film): v_{max} (cm⁻¹) = 2983, 2931, 1712, 1676, 1550, 1396, 1367, 1333, 1299, 1149, 1024, 958, 852, 806, 762, 503. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 70:30 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 22.24 min, t_R (minor) = 28.58 min. [α]_D³⁰ = +4.2 (*c* = 0.5, CHCl₃). HRMS (ESI-TOF) calcd for C₁₆H₁₄O₅N [M-H]⁻: 300.0877; Found: 300.0872.

3aj was isolated as colorless oil (53.6 mg, 85% yield, 89% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.40 (m, 3H), 7.43-7.31 (m, 2H), 6.24 (d, *J* = 10.0 Hz, 1H), 6.09 (s, 1H), 5.43 (s, 1H), 4.84-4.66 (m, 1H), 3.68 (d, *J* = 13.6 Hz, 1H), 3.61 (d, *J* = 13.6 Hz, 1H), 1.13 (d, *J* = 6.4 Hz, 3H), 1.06 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 165.5, 146.5, 135.5, 132.8, 130.9, 130.6, 130.4, 130.1, 129.8, 127.4, 124.8, 94.9, 68.9, 40.2, 21.7, 21.6. IR (thin film): v_{max} (cm⁻¹) = 2982, 2935, 1710, 1676, 1621, 1550, 1453, 1434, 1298, 1260, 1235, 1194, 1104, 956, 915, 802, 757, 708. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 80:20 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 17.30 min, t_R (minor) = 21.28 min. [α] $_{D}^{27}$ = +4.3 (*c* = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for C₁₇H₁₇O₅NNa [M+Na]⁺: 338.0999; Found: 338.0999.

3ak was isolated as colorless oil (54.0 mg, 82% yield, 88% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.41 (m, 3H), 7.40-7.33 (m, 2H), 6.24 (d, *J* = 10.0 Hz, 1H), 6.04 (s, 1H), 5.38 (s, 1H), 3.64 (d, *J* = 13.6 Hz, 1H), 3.58 (d, *J* = 13.6 Hz, 1H), 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 165.1, 146.4, 135.7, 133.6, 131.0, 130.3, 130.1, 129.9, 127.5, 124.8, 95.1, 81.4, 40.1, 27.9. IR (thin film): v_{max} (cm⁻¹) = 2978, 2930, 1708, 1677, 1551, 1455, 1395, 1341, 1147, 957, 847, 808, 761. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 95:05 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 9.40 min, t_R (minor) = 10.92 min. [α] p^{28} = +3.2 (*c* = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for C₁₈H₁₈O₅N [M-H]⁻: 328.1190; Found: 328.1186.

3al was isolated as colorless oil (58.1 mg, 80% yield, 88% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.31 (m, 7H), 7.28 (d, *J* = 8.4 Hz, 1H), 7.23 (d, *J* = 3.2 Hz, 1H), 7.22 (d, *J* = 2.0 Hz, 1H), 6.33-6.01 (m, 2H), 5.51 (s, 1H), 4.91 (*AB*, *J_{AB}* = 12.4 Hz, 1H), 4.86 (*BA*, *J_{BA}* = 12.4 Hz, 1H), 3.70 (d, *J* = 13.6 Hz, 1H), 3.63 (d, *J* = 13.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 165.8, 146.5, 135.6, 135.4, 132.3, 131.5, 130.9, 130.4, 130.2, 129.7, 128.7, 128.5, 128.4, 127.4, 124.7, 94.8, 66.9, 40.3. IR (thin film): v_{max} (cm⁻¹) = 2925, 2226, 1716, 1677, 1551, 1454, 1398, 1334, 1299, 1187, 1147, 961, 807, 754, 698. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 70:30 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 24.31 min, t_R (minor) = 28.55 min. [α]_D³⁰ = +1.5 (*c* = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for C₂₁H₁₆O₅N [M-H]⁻: 362.1034; Found: 362.1029.

3am was isolated as colorless oil (66.8 mg, 84% yield, 88% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.31 (m, 5H), 7.33-7.25 (m, 2H), 7.27-7.23 (m, 2H), 6.35-5.98 (m, 2H), 5.56 (s, 1H), 4.98 (s, 2H), 3.71 (d, *J* = 13.6 Hz, 1H), 3.63 (d, *J* = 14.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 165.7, 146.6, 135.3, 133.8, 133.3, 132.1, 131.8, 130.9, 130.4, 130.2, 130.1, 129.8, 129.72, 129.70, 127.5, 127.0, 124.6, 94.8, 64.2, 40.3. IR (thin film): v_{max} (cm⁻¹) = 2963, 2905, 1718, 1676, 1550, 1407, 1258, 1014, 796, 756, 702, 503. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 80:20 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 18.72 min, t_R (minor) = 21.86 min. [α]_D²⁹ = +3.7 (*c* = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for C₂₁H₁₅O₅NCl [M-H]⁻: 396.0644; Found: 396.0639.

3an was isolated as white solid (64.9 mg, 86% yield, 90% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). m.p. = 117.8-119.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.30 (m, 4H), 7.29-7.21 (m, 2H), 7.17 (d, *J* = 5.2 Hz, 3H), 6.15 (s, 1H), 6.14 (d, *J* = 10.0 Hz, 1H), 5.51 (s, 1H), 4.90 (s, 2H), 3.69 (d, *J* = 13.6 Hz, 1H), 3.62 (d, *J* = 13.6 Hz, 1H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 165.8, 146.4, 137.1, 135.3, 133.5, 132.3, 131.4, 130.8, 130.5, 130.3, 130.1, 129.7, 129.4, 128.7, 127.4, 126.1, 124.6, 94.8, 65.3, 40.3, 19.0. IR (thin film): v_{max} (cm⁻¹) = 2962, 2917, 1710, 1678, 1617, 1552, 1460, 1419, 1392, 1338, 1302, 1258, 1211, 1194, 1142, 1041, 973, 959, 923, 849, 817, 801, 763, 742, 689, 638, 603, 553, 526, 505, 450, 413. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 70:30 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 13.69 min, t_R (minor) s17

= 15.67 min. $[\alpha]_D^{29}$ = +0.8 (c = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for C₂₂H₁₈O₅N [M-H]⁻: 376.1190; Found: 376.1185.

3ao was isolated as colorless oil (75.8 mg, 88% yield, 87% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.6 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 8.0 Hz, 2H), 7.41-7.28 (m, 5H), 6.20 (s, 1H), 6.19 (d, J = 10.0 Hz, 1H), 5.56 (s, 1H), 5.06 (s, 2H), 3.70 (d, J = 13.6 Hz, 1H), 3.63 (d, J = 13.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 165.5, 146.6, 135.3, 133.7 (d, J = 1.8 Hz), 132.2, 132.0, 131.9, 130.9, 130.4, 130.3, 130.2, 129.7, 128.6, 128.5 (q, J = 30.9 Hz), 127.4, 126.3 (q, J = 5.7 Hz), 124.6, 124.2 (q, J = 272.1 Hz), 94.8, 63.3 (q, J = 2.7 Hz), 40.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.0. IR (thin film): v_{max} (cm⁻¹) = 2963, 2923, 1720, 1676, 1619, 1551, 1455, 1398, 1313, 1259, 1112, 1060, 1039, 958, 801, 765, 655, 505, 446. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 80:20 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C. t_R (major) = 13.46 min, t_R (minor) = 15.53 min. $[\alpha]_D^{29} = -1.5$ (c = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for $C_{22}H_{15}O_5NF_3$ [M-H]⁻: 430.0908; Found: 430.0902.

3ap was isolated as colorless oil (50.9 mg, 64% yield, 88% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.25 (m, 7H), 7.19 (s, 1H), 7.11 (d, J = 7.2 Hz, 1H), 6.23-6.08 (m, 2H), 5.56 (s, 1H), 4.88 (*AB*, J_{AB} = 12.4 Hz, 1H), 4.83 (*BA*, J_{BA} = 12.4 Hz, 1H), 3.69 (d, J = 13.6 Hz, 1H), 3.62 (d, J = 13.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 165.5, 146.4, 137.4, 135.2, 134.4, 132.0, 131.8, 130.7, 130.3, 130.0, 129.8, 129.6, 128.5, 128.2, 127.3, 126.3, 124.5, 94.6, 65.8, 40.2. IR (thin film): v_{max} (cm⁻¹) = 3678, 3071, 2966, 2922, 2904, 1718, 1676, 1620, 1550, 1398, 1333, 1299, 1258, 1211, 1185, 1144, 1078, 963, 870, 849, 801, 762, 683, 635, 507, 446. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 80:20 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 19.70 min, t_R (minor) = 22.83 min. [α]_D²⁹ = -0.9 (*c* = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for C₂₁H₁₅O₅NCl [M-H]⁻: 396.0644; Found: 396.0639.

3aq was isolated as colorless oil (62.8 mg, 73% yield, 83% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.6 Hz, 1H), 7.52-7.46 (m, 2H), 7.45-7.39 (m, 2H), 7.38-7.32 (m, 3H), 7.28 (d, *J* = 3.6 Hz, 1H), 6.20 (s, 1H), 6.16 (d, *J* = 10.0 Hz, 1H), 5.56 (s, 1H), 4.96 (*AB*, *J_{AB}* = 12.4 Hz, 1H), 4.92 (*BA*, *J_{BA}* = 12.4 Hz, 1H), 3.68 (d, *J* = 13.6 Hz, 1H), 3.63 (d, *J* = 14.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 190.9, 165.7, 146.5, 136.6, 135.4, 132.0, 131.9, 131.7 (d, *J* = 1.5 Hz), 131.0 (q, *J* = 32.3 Hz), 130.9, 130.4, 130.2, 129.7, 129.2, 127.4, 125.3 (q, *J* = 3.8 Hz), 125.0 (q, *J* = 3.8 Hz), 124.6, 124.1 (q, *J* = 270.8 Hz), 94.7, 65.9, 40.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6. IR (thin film): v_{max} (cm⁻¹) = 2989, 2960, 2926, 1720, 1677, 1620, 1551, 1452, 1328, 1259, 1121, 1073, 1010, 965, 884, 801, 762, 701, 661, 635, 505, 456. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 70:30 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 10.74 min, t_R (minor) = 12.04 min. [α]p²⁸ = -3.8 (*c* = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for C₂₂H₁₅O₅NF₃ [M-H]⁻: 430.0908; Found: 430.0902.

3ar was isolated as colorless oil (64.5 mg, 73% yield, 87% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz,

CDCl₃) δ 7.47 (d, J = 8.0 Hz, 2H), 7.43-7.32 (m, 4H), 7.29 (d, J = 8.4 Hz, 1H), 7.10 (d, J = 8.0 Hz, 2H), 6.17 (s, 1H), 6.16 (d, J = 10.0 Hz, 1H), 5.52 (s, 1H), 4.87 (*AB*, $J_{AB} = 12.4$ Hz, 1H), 4.82 (*BA*, $J_{BA} = 12.4$ Hz, 1H), 3.67 (d, J = 13.6 Hz, 1H), 3.62 (d, J = 13.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 190.9, 165.7, 146.5, 135.4, 134.6, 132.1, 131.8, 131.7, 130.9, 130.4, 130.2, 130.1, 129.7, 127.4, 124.6, 122.5, 94.7, 66.0, 40.2. IR (thin film): v_{max} (cm⁻¹) = 2959, 2925, 2854, 1717, 1675, 1620, 1550, 1488, 1399, 1332, 1299, 1258, 1211, 1185, 1144, 1070, 1011, 962, 883, 800, 754, 666, 632, 540, 504, 452. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 80:20 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C. t_R (major) = 20.89 min, t_R (minor) = 24.89 min. [α]_D³⁰ = -4.9 (c = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for C₂₁H₁₅O₅N⁷⁹Br [M-H]⁻: 440.0139; Found: 440.0133.

3as was isolated as colorless oil (57.4 mg, 76% yield, 88% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.32 (m, 4H), 7.29 (d, *J* = 6.8 Hz, 1H), 7.19-7.06 (m, 4H), 6.16 (d, *J* = 9.2 Hz, 2H), 5.48 (s, 1H), 4.86 (*AB*, *J*_{AB} = 12.4 Hz, 1H), 4.82 (*BA*, *J*_{BA} = 12.4 Hz, 1H), 3.69 (d, *J* = 13.6 Hz, 1H), 3.62 (d, *J* = 13.6 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.9, 165.8, 146.4, 138.2, 135.3, 132.4, 132.2, 131.3, 130.7, 130.2, 130.0, 129.6, 129.2, 128.4, 127.3, 124.5, 94.7, 66.7, 40.2, 21.2. IR (thin film): v_{max} (cm⁻¹) = 2960, 2922, 1716, 1677, 1620, 1551, 1398, 1333, 1299, 1259, 1186, 1147, 1014, 961, 801, 762, 707, 476. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 70:30 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 13.89 min, t_R (minor) = 15.84 min. [α]_D³⁰ = +5.2 (*c* = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for C₂₂H₁₈O₅N [M-H]⁻: 376.1190; Found: 376.1185.

3at was isolated as white solid (41.2 mg, 62% yield, 60% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). m.p. = 129.7-130.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.44 (m, 2H), 7.43-7.28 (m, 7H), 7.25 (d, *J* = 7.2 Hz, 1H), 6.32 (d, *J* = 10.0 Hz, 1H), 5.90 (s, 1H), 5.67 (s, 1H), 4.00 (d, *J* = 13.6 Hz, 1H), 3.71 (d, *J* = 13.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 190.8, 146.4, 139.5, 136.1, 135.3, 132.4, 132.2, 131.1, 130.5, 130.1, 129.43, 129.38, 128.0, 127.5, 124.8, 94.0, 40.4. IR (thin film): v_{max} (cm⁻¹) = 3372, 2974, 2898, 1653, 1545, 1444, 1394, 1340, 1264, 1229, 1202, 1085, 1045, 999, 957, 878, 831, 813, 781, 765, 749, 701, 655, 630, 573, 544, 508, 470. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 70:30 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 12.88 min, t_R (minor) = 15.56 min. [α]_D²⁹ = -15.7 (*c* = 1.0, CHCl₃). HRMS (ESI-TOF) calcd for C₂₀H₁₅O₄NNa [M+Na]⁺: 356.0893; Found: 356.0888.

5a, yellow foam. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.81 (d, *J* = 9.2 Hz, 1H), 7.64 (d, *J* = 9.2 Hz, 1H), 7.55 (d, *J* = 9.2 Hz, 1H), 7.45-7.30 (m, 3H), 7.30-7.21 (m, 2H), 6.51 (s, 1H), 6.07 (s, 1H), 5.35 (s, 2H), 4.99 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 147.7, 136.5, 134.4, 133.9, 133.2, 132.6, 131.4, 130.1, 129.9, 129.8, 129.5, 128.3, 127.1, 124.3, 122.5, 119.4, 115.6, 68.0, 64.4. IR (thin film): v_{max} (cm⁻¹) = 2984, 2904, 1722, 1632, 1592, 1529, 1500, 1476, 1446, 1407, 1358, 1305, 1285, 1261, 1200, 1154, 1085, 1052, 1023, 959, 879, 812, 755, 731, 702, 676, 652, 620. HRMS (ESI-TOF) calcd for C₂₁H₁₅O₅NNaCl⁷⁹Br [M+Na]⁺: 497.9714; Found: 497.9707.

6a was isolated as colorless oil (82.6 mg, 87% yield, 0% ee) by flash column chromatography (petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (dd, J = 8.4, 2.0 Hz, 1H), 7.44 (d, J = 2.0 Hz, 1H), 7.43-7.36 (m, 1H), 7.36-7.25 (m, 3H), 7.26-7.19 (m, 2H), 6.24 (s, 1H), 6.23 (d, J = 9.6 Hz, 1H), 5.60 (d, J = 1.2 Hz, 1H), 5.02 (*AB*, $J_{AB} = 12.8$ Hz, 1H), 5.01 (*BA*, $J_{BA} = 12.8$ Hz, 1H), 3.71 (d, J = 14.0 Hz, 1H), 3.61 (d, J = 13.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 190.2, 165.6, 144.8, 134.0, 133.8, 133.5, 133.1, 132.7, 132.1, 131.9, 131.5, 130.2, 129.9, 129.8, 129.1, 127.0, 125.7, 124.5, 94.3, 64.4, 39.8. IR (thin film): v_{max} (cm⁻¹) = 2974, 2922, 1720, 1672, 1610, 1552, 1476, 1428, 1400, 1332, 1300, 1256, 1216, 1169, 1144, 1056, 1003, 964, 909, 824, 756, 733, 701, 662. HPLC conditions: Daicel Chiralpak IC column, hexane/*i*-PrOH, 70:30 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C. t_R (major) 19.32 min, t_R (minor) = 22.06 min. HRMS (ESI-TOF) calcd for = C₂₁H₁₅O₅NNaCl⁷⁹Br [M+Na]⁺: 497.9714; Found: 497.9715.

5. Unsuccessful substrates

Optimal conditions:

Unsuccessful substrates under optimal conditions:

6. Mmol-scale Reaction

Pd(OAc)₂ (99.0 mg, 0.45 mmol, 10 mol%) and (*R*, *R*)-L1 (342.0 mg, 0.50 mmol, 11 mol%) were added to an oven-dried Schlenk tube under Ar atmosphere. The reaction tube was evacuated and refilled with argon three times. Freshly redistilled 1,4-dioxane (45 mL) was added to the flask. After the mixture was stirred for 30 minutes, Boc-protected MBH carbonate **2a** (1167.6 mg, 5.4 mmol, 1.2 equiv), 1-nitro-2-naphthol (774.0 mg, 4.5 mmol, 1.0 equiv) and Et₃N (630 μ L, 4.5 mmol, 1.0 equiv) were successively added. The reaction was stirred at room temperature and monitored by TLC. After the reaction was complete, the mixture was filtered with a celite pad. The filter cake was rinsed with EtOAc (10 mL × 3) and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5:1) to afford the target product **3aa** (0.98 g, 76% yield, 84% ee).

7. Crossover Experiments

Under Ar atmosphere, Pd(OAc)₂ (4.4 mg, 0.02 mmol, 10 mol%) and (*R*, *R*)-L1 (15.2 mg, 0.022 mmol, 11 mol%) were added to an oven-dried Schlenk tube. The reaction tube was evacuated and refilled with argon three times. Freshly redistilled 1,4-dioxane (2.0 mL) was added to the flask. After the mixture was stirred for 30 min, **4aa** (28.7 mg, 0.1 mmol), **5a** (47.7 mg, 0.1 mmol) and Et₃N (28.0 μ L, 0.20 mmol, 1.0 equiv) were successively added to the flask. The reaction was stirred at 25 °C for 24 h. Subsequently, the mixture was filtered with a celite pad. The filter cake was rinsed with EtOAc (5 mL × 3) and the filtrate was concentrated under reduced pressure. ¹H NMR analysis of the crude reaction mixture showed that the reaction produced **3aa**, **3ab**, **3am** and **6aa** in a ratio of 1.00:1.13:1.03:0.98.

¹H NMR (400 MHz, CDCl₃) of the crude reaction mixture:

8. X-Ray Crystal Structure of (R)-3an

CCDC 2234267 [Thermal ellipsoid plots (30% probability)] Figure S1. The X-Ray crystal structure of (*R*)-**3an**

The single crystal of 3an (> 99% ee) is obtained by evaporation of its Et₂O/hexane solution at room temperature. The structure of 3an was then determined by X-ray crystallographic analysis to confirm its absolute configuration as R (shown in Figure S1). The X-ray intensity data were measured on a Bruker D8 VENTURE diffractometer.

Table S6.	Crystal data and	l structure refineme	nt for m	j22278_0)m.
	-				

Identification code	mj22278_0m	
Empirical formula	C22 H19 N O5	
Formula weight	377.38	
Temperature	213 K	
Wavelength	1.34139 Å	
Crystal system	Monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 8.01130(10) Å	$\alpha = 90^{\circ}$
	b = 13.9038(2) Å	β=90.3800(10) °
	c = 8.5163(2) Å	$\gamma = 90^{\circ}$
Volume	948.59(3) Å ³	
Z	2	
Density (calculated)	1.321 Mg/m ³	
Absorption coefficient	0.494 mm ⁻¹	
S	27	

F(000)	396
Crystal size	0.07 x 0.07 x 0.05 mm ³
Theta range for data collection	4.517 to 54.939 °.
Index ranges	-9<=h<=9, -16<=k<=16, -10<=l<=10
Reflections collected	20296
Independent reflections	3537 [R(int) = 0.0355]
Completeness to theta = 53.594 $^{\circ}$	98.2 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7508 and 0.5985
Refinement method	Full-matrix least-squares on F ²
Refinement method Data / restraints / parameters	Full-matrix least-squares on F ² 3537 / 1 / 254
Refinement method Data / restraints / parameters Goodness-of-fit on F ²	Full-matrix least-squares on F ² 3537 / 1 / 254 1.049
Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)]	Full-matrix least-squares on F ² 3537 / 1 / 254 1.049 R1 = 0.0297, wR2 = 0.0739
Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	Full-matrix least-squares on F ² 3537 / 1 / 254 1.049 R1 = 0.0297, wR2 = 0.0739 R1 = 0.0312, wR2 = 0.0753
Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter	Full-matrix least-squares on F ² 3537 / 1 / 254 1.049 R1 = 0.0297, wR2 = 0.0739 R1 = 0.0312, wR2 = 0.0753 0.03(7)
Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient	Full-matrix least-squares on F ² 3537 / 1 / 254 1.049 R1 = 0.0297, wR2 = 0.0739 R1 = 0.0312, wR2 = 0.0753 0.03(7) n/a

9. References

(1) K. A. Ju árez-Ornelas, J. O. C. Jim énez-Halla, T. Kato, C. R. Solorio-Alvarado, K. Maruoka, *Org. Lett.*, 2019, **21**, 1315-1319.

(2) (a) G.-H. Yang, H. Zheng, X. Li, J.-P. Cheng, ACS. Catal., 2020, 10, 2324-2333. (b)

J. B. Kra ëm, H. Amri, *Synth. Commun.*, 2012, 43, 110-117. (c) X. B. Nguyen, Y. Nakano, N. M. Duggan, L. Scott, M. Breugst, D. W. Lupton, *Angew. Chem.*, *Int. Ed.*, 2019, 58, 11483-11490.

(3) B. M. Trost, D. L. Van Vranken, C. Bingel, J. Am. Chem. Soc., 2002, 114, 9327-9343.

10. Copies of NMR Spectra

¹³C NMR (100 MHz, CDCl₃) of **3aa**

¹H NMR (400 MHz, CDCl₃) of 4aa

¹³C NMR (100 MHz, CDCl₃) of 4aa

¹H NMR (400 MHz, CDCl₃) of **3ab**

¹³C NMR (100 MHz, CDCl₃) of **3ab**

¹H NMR (400 MHz, CDCl₃) of **3ac**

¹³C NMR (100 MHz, CDCl₃) of **3ac**

¹H NMR (400 MHz, CDCl₃) of **3ad**

^{13}C NMR (100 MHz, CDCl₃) of **3ad**

¹H NMR (400 MHz, CDCl₃) of 3ae

¹H NMR (400 MHz, CDCl₃) of **3af**

^{13}C NMR (100 MHz, CDCl₃) of **3af**

¹H NMR (400 MHz, CDCl₃) of **3ag**

¹³C NMR (100 MHz, CDCl₃) of **3ag**

¹H NMR (400 MHz, CDCl₃) of **3ah**

¹³C NMR (100 MHz, CDCl₃) of **3ah**

¹H NMR (400 MHz, CDCl₃) of 3ai

S48

¹³C NMR (100 MHz, CDCl₃) of 3ai

¹H NMR (400 MHz, CDCl₃) of 3aj

¹³C NMR (100 MHz, CDCl₃) of **3aj**

¹H NMR (400 MHz, CDCl₃) of **3ak**

¹³C NMR (100 MHz, CDCl₃) of **3ak**

S53

¹H NMR (400 MHz, CDCl₃) of **3al**

۔ _ك

S54

¹³C NMR (100 MHz, CDCl₃) of **3al**

¹H NMR (400 MHz, CDCl₃) of **3am**

 4.	980

____ 5. 558

 $\begin{array}{c} 7.\ 434\\ 7.\ 409\\ 7.\ 397\\ 7.\ 386\\ 7.\ 368\\ 7.\ 356\\ 7.\ 356\\ 7.\ 305\\ 7.\ 305\\ 7.\ 305\\ 7.\ 305\\ 7.\ 301\\ 7.\ 292\\ 7.\ 273\\ 7.\ 266\\ 7.\ 246\\ 7.\ 246\\ 7.\ 246\\ 7.\ 246\\ 6.\ 205\\ 6.\ 174\\ \end{array}$

 $\overbrace{}^{J.729}_{X.695} \\ \overbrace{}^{3.645}_{3.610} \\ \end{array}$

¹³C NMR (100 MHz, CDCl₃) of **3am**

¹H NMR (400 MHz, CDCl₃) of **3an**

ν.

¹³C NMR (100 MHz, CDCl₃) of **3an**

¹H NMR (400 MHz, CDCl₃) of **3ao**

 $\left\{\begin{array}{c} 7.\ 680\\ 7.\ 661\\ 7.\ 562\\ 7.\ 543\\ 7.\ 543\\ 7.\ 543\\ 7.\ 543\\ 7.\ 543\\ 7.\ 543\\ 7.\ 543\\ 7.\ 543\\ 7.\ 543\\ 7.\ 543\\ 7.\ 543\\ 7.\ 349\\ 7.\ 389\\ 7.\ 371\\ 7.\ 353\\ 7.\ 376\\ 7.\$

¹³C NMR (100 MHz, CDCl₃) of 3ao

¹⁹F NMR (376 MHz, CDCl₃) of **3ao**

¹H NMR (400 MHz, CDCl₃) of **3ap**

	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.6.6.6.6	433 408 396 392 367 349 333 326 305 298 280 276 189 118 100 195 190 165 161
	5.	559
Ł	4. 4. 4.	900 868 849 818
52	3. 3. 3. 3.	709 675 639 605

S63

¹³C NMR (100 MHz, CDCl₃) of **3ap**

¹H NMR (400 MHz, CDCl₃) of **3aq**

¹³C NMR (100 MHz, CDCl₃) of 3aq

¹⁹F NMR (376 MHz, CDCl₃) of **3aq**

_____ -62. 640

¹H NMR (400 MHz, CDCl₃) of **3ar**

ν]

¹³C NMR (100 MHz, CDCl₃) of **3ar**

¹H NMR (400 MHz, CDCl₃) of **3as**

'2

^{13}C NMR (100 MHz, CDCl₃) of **3as**

¹H NMR (400 MHz, CDCl₃) of **3at**

רי א

^{13}C NMR (100 MHz, CDCl₃) of **3at**

1 H NMR (400 MHz, CDCl₃) of **5a**

0.0

-0.5

¹³C NMR (100 MHz, CDCl₃) of **5a**

¹H NMR (400 MHz, CDCl₃) of 6a

¹³C NMR (100 MHz, CDCl₃) of **6a**

11. Copies of HPLC Chromatograms

HPLC of 3aa:

HPLC of 3ab:

	Name	RT	Area	Height	Width (sec)	% Area		
1		15.358	62498816	2230935	127.000	82.80		
2		18.105	12985663	463993	72.000	17.20		

HPLC of **3ac**:

	RI	Area	% Area	Height
1	23.746	6952681	50.52	170863
2	28.150	6808831	49.48	143418

	RT	Area	% Area	Height
1	23.809	11809847	89.23	297452
2	28.202	1425165	10.77	32961

HPLC of 3ad:

HPLC of 3ae:

S82

HPLC of **3af**:

			()		
10.654	Unknown	137341	57.550	1928137	10.17
11.586	Unknown	1053406	69.800	17035956	89.83

1

2

HPLC of 3ag:

2

16.203

9956015

49.86

254881

HPLC of 3ah:

Name	RT	Area	Height	Width (sec)	% Area			
	31.030	101185943	2111785	210.000	49.35			
	34.665	103850615	1879083	209.000	50.65			
	Name	Name RT 31.030 34.665	Name RT Area 31.030 101185943 34.665 103850615	Name RT Area Height 31.030 101185943 2111785 34.665 103850615 1879083	Name RT Area Height (sec) 31.030 101185943 2111785 210.000 34.665 103850615 1879083 209.000			

HPLC of 3ai:

		RI	Area	% Area	Height
I	1	22.243	13634352	92.15	372658
	2	28.579	1161229	7.85	26981

HPLC of 3aj:

	Name	RT	Area	Height	Width (sec)	% Area
1		17.298	15128076	589626	100.000	94.56
2		21.276	871009	29876	85.000	5.44

HPLC of 3ak:

HPLC of 3al:

0.08-24.509 8.546 0.06 0.04 0.02 0.00-15.00 20.00 25.00 30.00 0.00 5.00 10.00 35.00 Minutes RT Area % Area Height 24.509 3109748 50.03 82687 1 28.546 3105645 49.97 72946 2

40.00

HPLC of 3am:

3am Ar = 2-CIC₆H₄

HPLC of 3an:

3an Ar = $2 - MeC_6H_4$

HPLC of 3ao:

3ao Ar = $2 - CF_3C_6H_4$

HPLC of 3ap:

3ap Ar = 3-CIC₆H₄

	RT	Area	% Area	Height
1	19.696	4369976	94.13	129405
2	22.834	272430	5.87	7838

HPLC of 3aq:

3aq Ar = $3 - CF_3C_6H_4$

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 Minutes

	RT	Area	% Area	Height
1	10.741	6233584	91.34	190655
2	12.042	590867	8.66	17779

HPLC of **3ar**:

3ar Ar = 4-BrC₆H₄

	RT	Area	% Area	Height
1	20.878	7476660	93.66	186116
2	24.885	506065	6.34	12996

HPLC of 3as:

3as Ar = $4 - MeC_6H_4$

HPLC of 3at:

