Electronic Supplementary Material (ESI) for ChemComm

$\text{TiFeNb}_{10}\text{O}_{29\text{-}\delta}$ anode for high power and durable lithium-ion

batteries

Guangshuo Wang, Yuanyuan Sun, Yonghua Sun, Chao Yan, Yuepeng Pang, Tao Yuan*, Shiyou Zheng*

School of Materials Science and Engineering, University of Shanghai for Science and Technology,

Shanghai 200093, China

* Corresponding authors.

E-mail addresses: T. Yuan (yuantao@usst.edu.cn); S. Zheng (syzheng@usst.edu.cn).

Experimental section

1. Material preparation

The TFNO powder was prepared by solid state reaction method. In brief, the stoichiometric TiO₂ (anatase, 99.9%), Fe₂O₃ (hematite, 99.8%), and Nb₂O₅ (AR, 99.9%), purchased from Aladdin Reagent Co. Ltd., were mixed and ground with a planetary ball milling apparatus, and then cal-cinated at 1000 °C for 10 h. As a control sample, pure Ti₂Nb₁₀O₂₉ (TNO) was prepared by the same way without adding Fe₂O₃.

2. Materials characterization

Inductively coupled plasma optical emission spectroscopy (ICP-OES) (Agilent 5110) was used to obtain the exact composition of each chemical component in the TNO and TFNO samples. The structures and phases of the synthesized materials were measured by X-ray diffraction (XRD) with Cu Kα radiation (BRUKER, D8 ADVANCE). Rietveld refinement of XRD was further performed by General Structure Analysis System (GSAS) to get the detailed structural information. The micro-morphology of the prepared samples was investigated by high-resolution transmission electron microscope HRTEM (JEM-2100F micro-scope) and corresponding energy dispersive spec-troscopy (EDS). EPR spectra of the pristine TNO and TFNO samples were acquired using an EPR spectrometer (Bruker A320) at room temperature. The surface elements and corre-sponding valence states of the samples were analyzed using an XPS (Kratos Axis Ultra DLD).

3. Electrochemical measurements

The 2032-type coin cells were used to measure the electrochemical performance of

TFNO and TNO anodes. The electrode slurry was comprised of 85 wt % TFNO or TNO powder, 8 wt % carbon black, and 7 wt % polyvinylidene fluoride (PVDF) binder in N-methyl-2-pyrrolidone (NMP) (Sigma-Aldrich, 99.5%). Then, the slurry was spread on a Cu foil and dried in a vacuum oven at 80 °C overnight. The mass loading of the prepared electrode was controlled at ~1.5 mg cm⁻².

The coin cells were assembled in a glovebox filled with Ar (O_2 and $H_2O < 0.1$ ppm). The Li metal was used as the counter and reference electrodes, and the electrolyte consists of 1 M LiPF₆/EC/DMC (1:1 in volume). The microporous polypropylene Celgard 3501 (Celgard, LLC Corp., USA) was used as a separator to separate the cathode (TFNO or TNO) and anode (Li metal) in the cell.

The electrochemical performance of TFNO and TNO were collected at room temperature (25 °C). The galvanostatic discharge-charge (GCD) was performed on a Neware CT-3008 eight-channel battery testing system. The voltage range (1-3 V vs. Li/Li⁺) were adopted to test the electrochemical performance of the TFNO and TNO anodes. Here, the current rate of 1 C for both TFNO and TNO was equivalent to a current density of 200 mA g⁻¹. The current densities of charging and discharging are the same at a certain rate for the rate testing. The galvanostatic intermittent titration technique (GITT) was also performed on the Neware CT-3008 eight-channel battery testing system at a pulse current of 10 mA g⁻¹ for 30 min between 2 h of relaxation. The electrochemical impedance spec-troscopy (EIS) and cyclic voltammetry (CV) were conducted using a Gamry Reference 6000 (Gamry Co., U.S.A.) electrochemical station. The applied frequency for EIS is from 100 kHz to 100 mHz.

4. Computational method

Density functional theory (DFT) with the Vienna ab initio simulation package (VASP).^{1, 2} The projector-augmented-wave (PAW) potentials were used while the generalized gradient appro-ximations (GGA) of Perdew-Burke-Ernzerhof (PBE) were applied for the exchange-correlation functional. The cutoff energy was set to 500 eV, and the gamma point was applied in our calculations. The force on each atom less than 0.01 eV/Å was set for convergence criterion of geo-metry relaxation. The Climbing Image-Nudged Elastic Band (CI-NEB) methods were employed to calculate the migration barriers.

Theoretical Chemical	Measured atomic ratio			
Formula	Ti	Fe	Nb	
$Ti_2Nb_{10}O_{29}$	1.989	0	10.013	
$TiFeNb_{10}O_{29\text{-}\delta}$	0.994	1.015	10.008	

Table S1 ICP-OES results of the pristine TNO and TFNO samples

Table S2 Crystallographic parameters and other phase information of the TNO and TFNO samples refined by Rietveld method.

	a/Å	b/Å	c/Å	V/ų	other phases n	nolar ratio	Rp%	wRp%
$Ti_2Nb_{10}O_{29}$	15.5826	3.8219	20.5961	1127.4645	none		5.61	7.28
TiFeNb ₁₀ O ₂ 9	15.5762	3.8242	20.5979	1128.8121	Ti ₂ Nb ₁₀ O ₂₉ orthorhombic FeNbO ₄	11% 5%	2.47	3.12

Figure S1

Figure S1 EPR spectra of the pristine TNO and TFNO samples.

Figure S2 XPS spectra of TNO and TFNO samples.

		Nb ⁵⁺ 3d3/2	2 Nb ⁴⁺ 3d3/2	Nb ⁵⁺ 3d5/2	Nb ⁴⁺ 3d5/2
Binding Energy (eV)		209.7	208.7	206.9	206.2
ratios (% at.)	TNO	37.3		62.7	
	TFNO	29.0	10.3	40.6	20.1

Table S3 Nb 3d composition from high-resolution XPS spectra

		Ti ⁴⁺ 2p1/2	Ti ³⁺ 2p1/2	Ti ⁴⁺ 2p3/2	Ti ³⁺ 2p3/2
Binding Energy (eV)		464.4	463.4	458.7	458.1
ratios (% at.)	TNO	30.4		69.9	
	TFNO	18.7	5.5	68.4	7.4

Table S4 Ti 2p composition from high-resolution XPS spectra

Figure S3 Rate-cycle capabilities of $Ti_2Nb_{10}O_{29}$, $TiFeNb_{10}O_{29-\delta}$, $Ti_{1.5}Fe_{0.5}Nb_{10}O_{29-\delta}$, $Ti_{0.5}Fe_{1.5}Nb_{10}O_{29-\delta}$, and $Ti_2FeNb_9O_{29-\delta}$ electrodes.

Table S5 The comparison of electrochemical behaviors of titanium niobium oxide

anodes

Materials	Low rate capacity (mAh g ⁻¹)	High rate capacity (mAh g ⁻¹)	Cycle retention	Ref.
ΓiFeNb ₁₀ O _{29-δ}	225 (0.2C)	100 (50C)	86.7% (10C 1000cycles)	This work
$Ti_2Nb_{10}O_{29}$ microrods	205 (0.5C)	80 (20C)	66% (10C 500cycles)	3
$Ti_2Nb_{10}O_{29}$ nanoparticles	200 (0.5C)	100 (10C)	66.7% (1C 200cycles)	4
FiNb ₂₄ O ₆₂ /NC nanowires	218 (0.5C)	177 (6C)	92.2% (10C 900cycles)	5
macroporous TiNb ₂ O ₇	206 (1C)	84 (20C)	82% (10C 1000cycles)	6
$TiNb_6O_{17}$ nanospheres	214.4 (0.5C)	127.3 (5C)	75.2% (0.5C 150cycles)	7

Figure S4

Figure S4 Rietveld refinement patterns of the XRD data for (a) TNO and (b) TFNO electrodes at the full lithiation state (discharge to 1 V).

Table S6 Crystallographic parameters of the TNO and TFNO electrodes at the full lithiation state (discharge to 1 V) refined by Rietveld method.

	a/Å	b/Å	c/Å	V/Å ³	∆V/%
$Ti_2Nb_{10}O_{29}$	15.5542	3.8412	20.6260	1133.4460	0.5305
TiFeNb ₁₀ O ₂ 9	15.5398	3.8416	20.6278	1133.2872	0.3946

Figure S5

Figure S5 CV curves of the (a) TNO and (c) TFNO electrodes at various scan rates from 0.1 mV s⁻¹ to 10 mV s⁻¹; and the magnified CV curves with scan rate of 0.1 mV s⁻¹ for (b) TNO and (d) TFNO electrodes.

	R1 (Ω)	R2+R3 (Ω)
TNO	2.753	23.102
TFNO	2.599	9.206

Table S7 Resistance values of TNO and TFNO electrodes based on the EIS fitting results

R1: ohmic resistance;

R2+R3: polarization and charge-transfer resistances.

Figure S6

Figure S6 GITT curves for the TNO and TFNO electrodes.

References

- 1. A. S. Botana and M. R. Norman, *Phys. Rev. Mater.*, 2019, **3**, 044001.
- 2. L. Chaput, P. Pécheur and H. Scherrer, *Phys. Rev. B*, 2007, **75**, 045116.
- 3. X. Xia, S. Deng, S. Feng, J. Wu and J. Tu, J. Mater. Chem. A, 2017, 5, 21134-21139.
- 4. C. D. Gu, X. H. Xia, J. P. Tu, X. L. Wang and L. Zhang, *Sustainable Mater. Technol.*, 2021, **28**, e00272.
- 5. H. Yu, X. Cheng, H. Zhu, R. Zheng, T. Liu, J. Zhang, S. Miao, X. Ying and S. Jie, *Nano Energy*, 2018, **54**, 227-237.
- X. Cheng, Y. Zhao, A. Lushington, J. Gao, Q. Li, P. Zuo, B. Wang, Y. Gao and Y. Ma, Nano Energy, 2017, 34, 15-25.
- Y. Yuan, H. Yu, X. Cheng, R. Zheng, T. Liu, N. Peng, N. Long, M. Shui and J. Shu, Chem. Eng. J., 2019, 374, 937-946.