Diastereo- and enantioselective synthesis of biaryl aldehydes bearing both axial and central chirality

Fen Huang,^a Ling-Fei Tao,^a Jiyong Liu,^b Linghui Qian^{*a} and Jia-Yu Liao^{*ac}

- ^{a.} College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China. E-mail: lhqian@zju.edu.cn, jyliao@zju.edu.cn
- ^{b.} Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
- ^{*c.*} Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China.

Table of contents	Page
I. General information	S2
II. Preparation of activated isocyanides 2	S3
III. Metal salt and solvent screening	S 7
IV. Silver-catalyzed desymmetric [3+2] cycloaddition reaction	S 7
V. Characterization of compounds 3	S 8
VI. Evaluation of the thermal stability of the chiral axis	S32
VII. Gram-scale reaction and derivatization	S33
VIII. Isolation of <i>rac-3e</i> ' and <i>rac-3e</i> ''	S40
IX. Crystal structure data of 3a and 3a'	S41
X. References	S45
XI. NMR spectra	S46

Supplementary Information

I. General information

¹H, ¹³C, ¹⁹F, and ³¹P spectra were recorded on a JNM-ECZ 400S (400 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: ¹H (CDCl₃ δ 7.26; DMSO-*d*₆ δ 2.50), ¹³C (CDCl₃ δ 77.16; DMSO-*d*₆ δ 39.52). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets), coupling constants (Hz), and integration. Melting point (**MP**) was obtained on Buchi M-560. For thin-layer chromatography (**TLC**), Huanghai TLC plates (HSGF 254) were used, and compounds were visualized with UV light at 254 nm. Preparative HPLC was conducted on an Agilent HPLC 1260 Infinity II using an Agilent Prep column (10 µm, Prep-C18, 100 Å, 250 × 21.2 mm). High-resolution mass spectra (**HRMS**) were obtained on an Agilent 1290-6530 Q-TOF spectrometer. **X**-ray diffraction analysis was performed on a Bruker D8 Venture diffractometer. **Optical rotations** were recorded on an InsMark IP-digi 300 automatic polarimeter. Enantiomeric ratios (**er**) were determined by HPLC analysis on an Agilent HPLC 1260 Infinity II; column, Chiralpak IA, IB N-5, ID, and IF.

Unless otherwise noted, all reactions were carried out under an ambient atmosphere; exclusion of air or moisture was not required. Anhydrous and deuterated solvents were purchased from commercial suppliers and used as received without further purification. Prochiral biaryl dialdehydes 1^1 and ligands L1,² L4- $L7^3$ were prepared according to literature procedures. Ligands L2, L3, and L8 were purchased from commercial suppliers and used as received without further purification. The relative and absolute configurations of 3a and 3a' were unambiguously assigned by single-crystal X-ray diffraction analysis (CCDC 2181106 and 2241542, respectively), and those of other products were assigned by analogy.

II. Preparation of activated isocyanides 2

Figure S1. Activated isocyanides involved in this study

Isocyanoacetate 2g is a known compound and was prepared according to the literature procedure.⁴ Isocyanides 2a-2f were prepared from α -isocyanomethyldiphenylphosphine oxide⁵ and the corresponding halides according to the following procedure.

$$CN \frown POPh_{2} \xrightarrow{\text{RX (1.0 equiv)}} THF, -50 °C, 24 h \xrightarrow{\text{R}} CN \xrightarrow{\text{POPh}_{2}}$$

General procedure. To a solution of α -isocyanomethyldiphenylphosphine oxide (1.0 equiv) in THF (0.02 M) under a nitrogen atmosphere was slowly added n-BuLi (2.5 M in hexane, 1.05 equiv) at -50 °C and stirred for 0.5 h, then the corresponding halide (1.0 equiv) was added. After another 24 h, the reaction mixture was warmed to room temperature and filtered to remove insoluble solids. The filtrate was concentrated and the residue was purified by flash column chromatography to afford the corresponding activated isocyanide.

(1-Isocyano-2-phenylethyl)diphenylphosphine oxide (2a)

Purified by flash column chromatography (PE/EtOAc 1:1). White solid, 680 mg, 66% yield. **MP**: 185-186 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.04-7.97 (m, 2H), 7.93-7.86 (m, 2H), 7.71-7.52 (m, 6H), 7.34-7.27 (m, 3H), 7.25-7.21 (m, 2H), 4.51-4.43 (m, 1H), 3.47-3.38 (m, 1H), 2.82-2.72 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃): δ 162.6 (d, *J* = 3.0 Hz), 135.8 (d, *J* = 11.2 Hz), 133.4 (d, *J* = 2.9 Hz), 133.2 (d, *J* = 2.9 Hz), 132.6 (d, *J* = 8.9 Hz), 131.6 (d, *J* = 9.5 Hz), 129.3, 129.24, 129.19 (d, *J* = 102.6 Hz), 129.1 (d, *J* = 7.7 Hz), 129.0, 128.9, 127.7, 126.7, 56.1 (d, *J* = 70.7 Hz), 34.9; ³¹**P NMR** (162 MHz, CDCl₃): δ 28.5; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₁₈NNaOP 354.1018; Found 354.1018.

(1-Isocyano-2-(p-tolyl)ethyl)diphenylphosphine oxide (2b)

Purified by flash column chromatography (EtOAc). White solid, 250 mg, 72% yield. **MP**: 174-175 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.04-7.96 (m, 2H), 7.92-7.85 (m, 2H), 7.70-7.51 (m, 6H), 7.11 (d, J = 0.7 Hz, 4H), 4.49-4.40 (m, 1H), 3.43-3.34 (m, 1H), 2.78-2.68 (m, 1H), 2.31 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃): δ 162.5, 137.3, 133.3 (d, J = 2.8 Hz), 133.2 (d, J = 2.9 Hz), 132.7 (d, J = 11.5 Hz), 132.5 (d, J = 9.0Hz), 131.5 (d, J = 9.5 Hz), 129.6, 129.22 (d, J = 102.4 Hz), 129.18 (d, J = 12.2 Hz), 129.1, 129.0 (d, J = 12.1 Hz), 127.2 (d, J = 100.9 Hz), 56.1 (d, J = 70.8 Hz), 34.5, 21.2; ³¹**P NMR** (162 MHz, CDCl₃): δ 28.6; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₀NNaOP 368.1175; Found 368.1177.

(2-(4-Chlorophenyl)-1-isocyanoethyl)diphenylphosphine oxide (2c)

Purified by flash column chromatography (EtOAc). White solid, 200 mg, 55% yield. **MP**: 140-141 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.98-7.92 (m, 2H), 7.87-7.81 (m, 2H), 7.67-7.48 (m, 6H), 7.25-7.21 (m, 2H), 7.14-7.10 (m, 2H), 4.44-4.36 (m, 1H), 3.39-3.31 (m, 1H), 2.76-2.66 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃): δ 162.9, 134.2 (d, *J* = 11.2 Hz), 133.7, 133.4 (d, *J* = 2.8 Hz), 133.3 (d, *J* = 2.9 Hz), 132.5 (d, *J* = 8.9 Hz), 131.5 (d, *J* = 9.5 Hz), 130.6, 129.3 (d, *J* = 12.3 Hz), 129.09, 129.06 (d, *J* = 12.3 Hz), 129.0 (d, *J* = 102.9 Hz), 127.0 (d, *J* = 101.1 Hz), 55.8 (d, *J* = 70.3 Hz), 34.3; ³¹**P NMR** (162 MHz, CDCl₃): δ 28.3; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₁₇CINNaOP 388.0628; Found 388.0631.

(1-Isocyano-2-(naphthalen-1-yl)ethyl)diphenylphosphine oxide (2d)

Purified by flash column chromatography (EtOAc). White solid, 200 mg, 53% yield. **MP**: 170-171 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.10-8.04 (m, 2H), 7.94-7.83 (m, 4H), 7.80 (dd, J = 6.8, 2.7 Hz, 1H), 7.73-7.68 (m, 1H), 7.66-7.60 (m, 3H), 7.58-7.49 (m, 4H), 7.43-7.37 (m, 2H), 4.67-4.59 (m, 1H), 4.17-4.09 (m, 1H), 3.08-2.98 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃): δ 162.4, 134.1, 133.4 (d, J = 2.9 Hz), 133.3 (d, J = 2.9Hz), 132.6 (d, J = 9.0 Hz), 131.6 (d, J = 9.5 Hz), 131.3 (d, J = 10.9 Hz), 131.2, 129.3 (d, J = 3.4 Hz), 129.18 (d, J = 102.5 Hz), 129.15, 129.0, 128.6 (d, J = 9.3 Hz), 127.2 (d, J = 100.7 Hz), 126.9, 126.0, 125.6, 122.8, 54.8 (d, J = 70.5 Hz), 32.5; ³¹**P NMR** (162 MHz, CDCl₃): δ 28.9; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₂₀NNaOP

(1-Isocyano-2-(5-(trifluoromethyl) fur an -2-yl) ethyl) diphenyl phosphine oxide (2e)

Purified by flash column chromatography (EtOAc). Yellow wax, 150 mg, 39% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.00-7.94 (m, 2H), 7.91-7.85 (m, 2H), 7.70-7.53 (m, 6H), 6.68-6.65 (m, 1H), 6.29 (dd, J = 3.4, 1.0 Hz, 1H), 4.70-4.63 (m, 1H), 3.49-3.39 (m, 1H), 3.08-2.98 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 163.2, 151.9 (d, J = 12.0Hz), 141.9 (q, J = 42.7 Hz), 133.6 (d, J = 2.9 Hz), 133.5 (d, J = 2.8 Hz), 132.4 (d, J =9.2 Hz), 131.5 (d, J = 9.6 Hz), 129.4 (d, J = 12.4 Hz), 129.2 (d, J = 12.4 Hz), 128.1, 126.8 (d, J = 101.8 Hz), 119.0 (q, J = 267.0 Hz), 112.7 (q, J = 3.0 Hz), 110.0, 52.6 (d, J = 70.0 Hz), 28.3; ¹⁹F NMR (376 MHz, CDCl₃): δ -64.0; ³¹P NMR (162 MHz, CDCl₃): δ 28.0; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₅F₃NNaO₂P 412.0685; Found 412.0687.

(1-Isocyanoethyl)diphenylphosphine oxide (2f)

Purified by flash column chromatography (PE/EtOAc 1:1). White solid, 200 mg, 78% yield. **MP**: 159-160 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.98-7.91 (m, 2H), 7.89-7.82 (m, 2H), 7.68-7.50 (m, 6H), 4.48-4.38 (m, 1H), 1.60 (dd, J = 13.4, 7.1 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃): δ 161.2, 133.3 (d, J = 2.9 Hz), 133.2 (d, J = 2.9 Hz), 132.5 (d, J = 8.7 Hz), 131.6 (d, J = 9.6 Hz), 129.18 (d, J = 102.2 Hz), 129.16 (d, J = 12.3 Hz), 128.9 (d, J = 12.2 Hz), 126.9 (d, J = 101.1 Hz), 48.6 (d, J = 73.3 Hz), 15.4; ³¹**P NMR** (162 MHz, CDCl₃): δ 29.6; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₅H₁₄NNaOP 278.0705; Found 278.0706.

III. Metal salt and solvent screening^a

OHC Ph	CHO + Bn + CN POPh ₂ -		5 mol% metal sal 10 mol% L4 solvent, 25 °C, 48		H Bn Ph ₂ OP
1a	2a (1	I.0 equiv)			3a
Entry	Metal salt	Solvent	dr (3a/3a') ^b	Yield $(\%)^c$	er^d
1	Ag ₂ CO ₃	EtOAc	8:1	68	99:1
2	AgOAc	EtOAc	9:1	36	99:1
3	Cu(OAc) ₂	EtOAc	/	<5	/
4	Cu ₂ O	EtOAc	/	<5	/
5	Ag ₂ O	THF	9:1	50	99:1
6	Ag ₂ O	CH_2Cl_2	8:1	56	99:1
7	Ag ₂ O	DCE	8:1	53	99:1
8	Ag ₂ O	toluene	9:1	65	99:1

^{*a*} Reaction conditions: **1a** (0.1 mmol), **2a** (0.1 mmol), metal salt (5 mol%), and **L4** (10 mol%) in 1.0 mL of solvent at 25 °C for 48 h. ^{*b*} Determined by crude ¹H NMR. ^{*c*} Isolated yields. ^{*d*} Determined by chiral HPLC.

IV. Silver-catalyzed desymmetric [3+2] cycloaddition reaction

General procedure. To a 10 mL vial charged with L4 (5.81 mg, 0.010 mmol, 10 mol%) and Ag₂O (1.16 mg, 0.005 mmol, 5 mol%) was added anhydrous EtOAc (1.0 mL, 0.1 M). The mixture was stirred at ambient temperature for 5 min, then prochiral biaryl dialdehyde 1 (0.10 mmol) and activated isocyanide 2 (0.10 mmol) were added

successively in one portion. The reaction mixture was stirred at 25 °C for the given time, then concentrated and purified by flash column chromatography to afford **3**.

V. Characterization of compounds 3

(S)-6-((4R,5R)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-[1,1':2', 1''-terphenyl]-2-carbaldehyde (3a)

With **2a** (1.0 equiv) for 48 h. 8:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by flash column chromatography (PE/EtOAc 4:1). White solid, 46.9 mg, 76% yield. **MP**: 227-228 °C; ¹H **NMR** (400 MHz, DMSO-*d*₆): δ 9.66 (s, 1H), 7.84-7.75 (m, 4H), 7.73-7.65 (m, 2H), 7.55-7.45 (m, 3H), 7.40-7.15 (m, 9H), 7.06-6.95 (m, 5H), 6.84-6.76 (m, 3H), 6.69-6.64 (m, 2H), 5.58 (d, *J* = 19.2 Hz, 1H), 2.94 (dd, *J* = 14.1, 7.3 Hz, 1H), 2.81 (dd, *J* = 20.7, 14.1 Hz, 1H); ¹³C **NMR** (101 MHz, DMSO-*d*₆): δ 191.4, 157.1 (d, *J* = 7.7 Hz), 143.1, 140.6, 139.9, 135.2 (d, *J* = 4.5 Hz), 135.1, 134.1 (d, *J* = 7.6 Hz), 133.2, 132.5, 132.0 (d, *J* = 7.7 Hz), 131.8, 131.6, 131.53, 131.45, 131.1, 130.8, 130.5, 129.6, 129.0, 128.6, 128.5, 128.0 (d, *J* = 10.8 Hz), 127.7, 127.6 (d, *J* = 11.5 Hz), 127.4, 126.9, 126.8, 126.1, 79.9 (d, *J* = 7.7 Hz), 78.9 (d, *J* = 81.0 Hz); ³¹P **NMR** (162 MHz, DMSO-*d*₆): δ 26.9; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₄₁H₃₂NNaO₃P 640.2012; Found 640.2026. **Optical Rotation**: [α]²⁰_D = +128.4 (c = 0.1, CH₂Cl₂). 99:1 er (HPLC condition: Chiralpak IF column, *n*-hexane/*i*-PrOH = 80:20, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 18.1 min for major isomer, t_R = 37.1 min for minor isomer).

(S)-6-((4S,5R)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-[1,1':2',1 ''-terphenyl]-2-carbaldehyde (3a')

The crude reaction mixture was purified by flash column chromatography (PE/EtOAc 4:1). White solid, 5.9 mg, 10% yield. MP: 137-138 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.67 (s, 1H), 8.62 (d, J = 7.5 Hz, 1H), 8.33-8.24 (m, 2H), 7.77-7.66 (m, 4H), 7.60 (dd, J = 7.6, 1.3 Hz, 1H), 7.53 (dd, J = 7.7, 1.4 Hz, 1H), 7.49-7.40 (m, 4H), 7.30-7.24 (m, 2H), 7.19-7.08 (m, 3H), 7.01-6.90 (m, 4H), 6.68-6.63 (m, 2H), 6.45 (t, J = 7.7 Hz, 1H), 6.40-6.35 (m, 2H), 6.21 (dd, J = 7.8, 1.4 Hz, 1H), 5.50 (d, J = 13.9 Hz, 1H), 3.04-2.91 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 192.2, 155.8 (d, J = 13.6 Hz), 144.2, 142.4, 140.2, 134.9 (d, J = 6.2 Hz), 134.1 (d, J = 7.8 Hz), 133.9 (d, J = 12.6Hz), 133.3 (d, J = 6.2 Hz), 133.0 (d, J = 16.0 Hz), 132.4 (d, J = 7.8 Hz), 132.0, 131.9, 131.6, 131.4, 130.0, 129.2, 128.7, 128.6, 128.5, 128.2, 128.1, 128.0, 127.84, 127.79, 127.1, 126.8, 126.7, 126.4, 81.4 (d, J = 4.2 Hz), 78.5 (d, J = 87.0 Hz), 40.5 (d, J = 5.8 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 24.3; HRMS (ESI) m/z: [M+K]⁺ Calcd for $C_{41}H_{32}KNO_3P$ 656.1751; Found 656.1755. **Optical Rotation**: $[\alpha]^{20}_D = -52.9$ (c = 0.4, CH₂Cl₂). 97:3 er (HPLC condition: Chiralpak IA column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 22.0 min for minor isomer, t_R = 23.7 min for major isomer).

(*R*)-6-((4*S*,5*S*)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-[1,1':2',1 ''-terphenyl]-2-carbaldehyde (*ent*-3a)

With **2a** (1.0 equiv) and **L6** for 48 h. 8:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by flash column chromatography (PE/EtOAc 4:1). White solid, 43.8 mg, 71% yield. **Optical Rotation**: $[\alpha]^{20}_{D} = -126.1$ (c = 0.1, CH₂Cl₂). 99:1 er (HPLC condition: Chiralpak IF column, *n*-hexane/*i*-PrOH = 80:20, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 18.2 min for minor isomer, t_R = 36.1 min for major isomer).

(S)-6-((4R,5R)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-2'-isopr opyl-[1,1'-biphenyl]-2-carbaldehyde (3b)

With 2a (1.0 equiv) for 24 h. 4:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by flash column chromatography (PE/EtOAc 4:1). White wax, 32.2 mg, 55% yield. ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.52 (s, 1H), 7.89 (dd, J = 7.2, 1.7 Hz, 1H), 7.82-7.75 (m, 2H), 7.71-7.65 (m, 1H), 7.61-7.52 (m, 3H),7.51-7.38 (m, 4H), 7.30-7.22 (m, 3H), 7.19-7.13 (m, 2H), 7.08-7.00 (m, 4H), 6.84-6.77 (m, 3H), 5.52 (d, J = 19.4 Hz, 1H), 2.97-2.84 (m, 2H), 2.20-2.08 (m, 1H), $0.84 (d, J = 6.9 Hz, 3H), 0.74 (d, J = 6.9 Hz, 3H); {}^{13}C NMR (101 MHz, DMSO-d_6): \delta$ 191.3, 157.0 (d, J = 7.7 Hz), 145.7, 143.6, 135.4 (d, J = 11.2 Hz), 135.2 (d, J = 4.8 Hz), 134.6, 134.0, 132.4, 132.0, 131.8 (d, *J* = 7.7 Hz), 131.5 (d, *J* = 6.5 Hz), 131.4 (d, J = 6.8 Hz), 131.2, 130.7, 130.3, 129.4, 129.1, 128.0, 127.9, 127.6, 127.5, 126.9, 126.7, 126.1, 125.3, 79.7 (d, J = 7.6 Hz), 78.8 (d, J = 81.2 Hz), 29.6, 23.8, 22.5; ³¹P NMR (162 MHz, DMSO- d_6): δ 26.9; HRMS (ESI) m/z: [M+Na]⁺ Calcd for $C_{38}H_{34}NNaO_{3}P$ 606.2169; Found 606.2164. **Optical Rotation**: $[\alpha]^{20}D = +147.4$ (c = 0.4, CH₂Cl₂). 97:3 er (HPLC condition: Chiralpak IA column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 30.6 min for minor isomer, $t_R = 35.9$ min for major isomer).

(S)-6-((4R,5R)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-2'-vinyl-[1,1'-biphenyl]-2-carbaldehyde (3c)

With 2a (1.2 equiv) for 24 h. 4:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by preparative HPLC (gradient (0.1% HCOOH in H₂O/MeCN) 0 min; 40:60, 15 min; 0:100, 25 min; 0:100, 25.1 min; 40:60, 30 min; 40:60). White solid, 26.6 mg, 47% yield. MP: 170-171 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.61 (d, J = 0.8 Hz, 1H), 8.00-7.93 (m, 3H), 7.85 (dd, J = 7.8, 1.5 Hz, 1H), 7.79-7.67 (m, 2H), 7.54 (dd, J = 7.5, 1.5 Hz, 1H), 7.42-7.36 (m, 1H), 7.30-7.22 (m, 6H), 7.20-7.14 (m, 3H), 7.02-6.97 (m, 2H), 6.92 (d, J = 3.7 Hz, 1H), 6.88-6.81 (m, 3H), 6.11 (dd, J = 17.4, 11.0 Hz, 1H), 5.73 (d, J = 19.1 Hz, 1H), 5.61 (dd, J = 17.4, 1.2 Hz, 1H), 5.04 (dd, J = 11.0, 1.1 Hz, 1H), 3.18 (dd, J = 14.4, 8.0 Hz, 1H), 2.94 (dd, J = 18.2, 14.4 Hz, 1H; ¹³C NMR (101 MHz, CDCl₃): δ 192.0, 156.0 (d, J = 7.5 Hz), 143.4, 136.4, 135.7 (d, J = 11.6 Hz), 135.5 (d, J = 6.2 Hz), 134.7, 134.2, 134.0, 133.1, 132.5 (d, J = 8.0 Hz), 132.24, 132.16 (d, J = 8.3 Hz), 131.7 (d, J = 2.8 Hz), 131.21, 131.16 (d, J = 2.8 Hz), 131.0 (d, J = 95.3 Hz), 129.5, 129.2 (d, J = 92.3 Hz), 129.0, 128.0, 127.9, 127.80, 127.75, 127.4, 126.4, 125.3, 116.5, 80.7 (d, J = 6.8 Hz), 79.4 (d, J = 80.3 Hz), 38.6 (d, J = 3.3 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 29.8; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₇H₃₀NNaO₃P 590.1856; Found 590.1886. Optical **Rotation**: $[\alpha]^{20}_D = +104.0$ (c = 0.1, CH₂Cl₂). 98:2 er (HPLC condition: Chiralpak IA column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 32.6 min for major isomer, $t_R = 55.9$ min for minor isomer).

(*S*)-6-((4*R*,5*R*)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-2'-brom o-[1,1'-biphenyl]-2-carbaldehyde (3d)

With **2a** (1.2 equiv) for 24 h. 4:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by preparative HPLC (gradient (0.1% HCOOH in H₂O/MeCN) 0 min; 40:60, 15 min; 0:100, 25 min; 0:100, 25.1 min; 40:60, 30 min; 40:60). White solid, 24.4 mg, 39% yield. MP: 121-122 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.60 (s, 1H), 8.01-7.94 (m, 3H), 7.89 (dd, J = 8.1, 1.2 Hz, 1H), 7.85-7.80 (m, 1H), 7.65-7.56 (m, 2H), 7.46-7.40 (m, 1H), 7.34-7.24 (m, 6H), 7.22-7.15 (m, 3H), 7.01-6.96 (m, 2H), 6.93 (d, J = 3.7 Hz, 1H), 6.89-6.81 (m, 3H), 5.76 (d, J = 19.1 Hz, 1H), 3.17 (dd, J = 14.4, 8.0 Hz, 1H), 2.94 (dd, J = 18.2, 14.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 191.4, 156.0 (d, J = 7.7 Hz), 143.3, 135.40 (d, J = 3.4 Hz), 135.35, 135.3, 134.9, 134.5, 134.2, 132.6, 132.4 (d, *J* = 7.8 Hz), 132.1 (d, *J* = 8.3 Hz), 131.9 (d, J = 2.8 Hz), 131.24, 131.20, 130.93 (d, J = 95.4 Hz), 130.85, 129.1 (d, J = 92.4 Hz)Hz), 128.7, 128.3, 128.2, 127.9 (d, J = 5.1 Hz), 127.8 (d, J = 5.7 Hz), 127.4, 126.5, 123.5, 80.9 (d, J = 6.8 Hz), 79.4 (d, J = 80.3 Hz), 38.7 (d, J = 3.2 Hz); ³¹P NMR (162) MHz, CDCl₃): δ 30.0; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₅H₂₇BrNNaO₃P 642.0804; Found 642.0809. **Optical Rotation**: $[\alpha]^{20}_{D} = +121.8$ (c = 0.5, CH₂Cl₂). 99:1 er (HPLC condition: Chiralpak IB N-5 column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 12.5 min for major isomer, t_R = 15.4 min for minor isomer).

(S)-6-((4R,5R)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-2'-(meth ylthio)-[1,1'-biphenyl]-2-carbaldehyde (3e)

With 2a (1.0 equiv) for 24 h. 5:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by flash column chromatography (PE/EtOAc 4:1). White solid, 22.5 mg, 38% yield. MP: 124-125 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.58 (s, 1H), 8.02-7.94 (m, 3H), 7.75-7.65 (m, 2H), 7.55 (dd, J = 7.2, 1.8 Hz, 1H), 7.46-7.38 (m, 2H), 7.36-7.15 (m, 9H), 7.06-7.00 (m, 2H), 6.97 (d, J = 3.7 Hz, 1H), 6.91-6.82 (m, 3H), 5.75 (d, J = 19.3 Hz, 1H), 3.20 (dd, J = 14.4, 7.8 Hz, 1H), 2.99 (dd, J = 18.8, 14.4 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 192.0, 156.1 (d, J = 7.5 Hz), 142.6, 137.9, 135.8 (d, J = 11.5 Hz), 135.5 (d, J = 5.9 Hz), 134.6, 134.3, 133.3, 132.5 (d, *J* = 7.9 Hz), 132.2 (d, *J* = 8.3 Hz), 131.8, 131.7 (d, *J* = 2.7 Hz), 131.3, 131.2 (d, J = 95.3 Hz), 131.1 (d, J = 2.9 Hz), 129.9, 129.5 (d, J = 92.1 Hz), 128.2, 128.0, 127.8 (d, J = 6.8 Hz), 127.7 (d, J = 6.5 Hz), 127.4, 126.5, 125.9, 124.0, 81.0 (d, J = 7.0 Hz), 79.4 (d, J = 80.5 Hz), 38.9 (d, J = 2.9 Hz), 15.3; ³¹P NMR (162 MHz, CDCl₃): δ 29.6; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₃₆H₃₀NNaO₃PS 610.1576; Found 610.1578. **Optical Rotation**: $[\alpha]^{20}_{D} = +149.4$ (c = 0.1, CH₂Cl₂). 99:1 er (HPLC condition: Chiralpak IA column, n-hexane/i-PrOH = 80:20, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 20.0 min for major isomer, t_R = 31.1 min for minor

isomer).

(S)-3-((4R,5R)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-2-(napht halen-1-yl)benzaldehyde (3f)

With **2a** (1.0 equiv) for 48 h. 4:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by flash column chromatography (PE/EtOAc 4:1). White solid, 43.1 mg, 73% yield. **MP**: 118-119 °C; ¹H **NMR** (400 MHz, DMSO-*d*₆): δ 9.42 (d, *J* = 0.7 Hz, 1H), 8.31-8.23 (m, 2H), 7.95 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.88 (dd, *J* = 8.3, 7.0 Hz, 1H), 7.80-7.73 (m, 3H), 7.69-7.64 (m, 1H), 7.54-7.48 (m, 1H), 7.44-7.35 (m, 3H), 7.31-7.13 (m, 4H), 7.03 (dd, *J* = 8.5, 1.1 Hz, 1H), 6.98-6.94 (m, 2H), 6.92-6.86 (m, 2H), 6.85-6.78 (m, 3H), 6.63-6.56 (m, 2H), 5.39 (d, *J* = 19.3 Hz, 1H), 2.98 (dd, *J* = 14.2, 7.4 Hz, 1H), 2.81 (dd, *J* = 19.4, 14.1 Hz, 1H); ¹³C **NMR** (101 MHz, DMSO-*d*₆): δ 191.3, 156.9 (d, *J* = 7.7 Hz), 141.9, 136.3 (d, *J* = 11.5 Hz), 135.2 (d, *J* = 5.6 Hz), 134.8, 134.0, 133.3, 131.6, 131.51 (d, *J* = 93.7 Hz), 131.49, 131.4 (d, *J* = 5.3 Hz), 127.6, 127.4 (d, *J* = 10.7 Hz), 127.1, 126.9, 126.6, 126.1 (d, *J* = 8.7 Hz), 124.4, 79.7 (d, *J* = 7.2 Hz), 78.8 (d, *J* = 80.6 Hz), 38.3; ³¹P **NMR** (162 MHz, DMSO-*d*₆): δ 27.3; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₃₉H₃₀NNaO₃P 614.1856; Found 614.1859. **Optical Rotation**: [α]²⁰_D = +61.8 (c = 0.3, CH₂Cl₂). 99:1 er (HPLC

condition: Chiralpak IA column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 29.2 min for major isomer, t_R = 49.1 min for minor isomer).

(S)-3-((4R,5R)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-2-(4-met hoxynaphthalen-1-yl)benzaldehyde (3g)

With **2a** (1.2 equiv) for 24 h. 5:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by preparative HPLC (gradient (0.1% HCOOH in H₂O/MeCN) 0 min; 40:60, 15 min; 0:100, 25 min; 0:100, 25.1 min; 40:60, 30 min; 40:60). White solid, 38.4 mg, 62% yield. **MP**: 130-131 °C; ¹H **NMR** (400 MHz, CDCl₃): δ 9.54 (d, J = 0.8 Hz, 1H), 8.58-8.54 (m, 1H), 8.01 (dd, J = 7.6, 1.4 Hz, 1H), 7.93-7.86 (m, 2H), 7.67 (d, J = 7.9 Hz, 1H), 7.61-7.55 (m, 1H), 7.39-7.29 (m, 3H), 7.27-7.21 (m, 2H), 7.19-7.11 (m, 3H), 7.08-7.01 (m, 3H), 6.91-6.82 (m, 6H), 6.77-6.70 (m, 2H), 5.65 (d, J = 19.4 Hz, 1H), 4.23 (s, 3H), 3.20 (dd, J = 14.4, 7.6 Hz, 1H), 2.99 (dd, J = 18.7, 14.4 Hz, 1H); ¹³C **NMR** (101 MHz, CDCl₃): δ 192.5, 156.4, 155.9 (d, J = 7.7 Hz), 143.3, 136.7 (d, J = 11.3 Hz), 135.9, 135.5 (d, J = 5.9 Hz), 131.3, 131.11 (d, J = 95.1 Hz), 131.09 (d, J = 2.9 Hz), 128.8 (d, J = 92.6 Hz), 128.0, 127.8 (d, J = 2.3 Hz), 127.7 (d, J = 3.3 Hz), 127.61, 127.55, 127.4, 126.5, 125.9,

125.6, 125.1, 122.9, 122.7, 104.5, 80.9 (d, J = 7.1 Hz), 79.3 (d, J = 80.5 Hz), 56.1, 38.7 (d, J = 3.0 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 29.9; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₄₀H₃₂NNaO₄P 644.1961; Found 644.1961. Optical Rotation: [α]²⁰_D = +81.1 (c = 0.4, CH₂Cl₂). 98:2 er (HPLC condition: Chiralpak IA column, *n*-hexane/*i*-PrOH = 80:20, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 16.3 min for minor isomer, t_R = 22.5 min for major isomer).

(S)-3-((4R,5R)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-2-(4-fluo ronaphthalen-1-yl)benzaldehyde (3h)

With **2a** (1.2 equiv) for 24 h. 5:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by preparative HPLC (gradient (0.1% HCOOH in H₂O/MeCN) 0 min; 40:60, 15 min; 0:100, 25 min; 0:100, 25.1 min; 40:60, 30 min; 40:60). White solid, 34.7 mg, 57% yield. **MP**: 200-201 °C; ¹H **NMR** (400 MHz, CDCl₃): δ 9.52 (s, 1H), 8.42 (d, *J* = 8.4 Hz, 1H), 8.03 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.94-7.87 (m, 2H), 7.72-7.63 (m, 3H), 7.45-7.35 (m, 2H), 7.28-7.23 (m, 2H), 7.21-7.12 (m, 4H), 7.02-6.98 (m, 2H), 6.92-6.82 (m, 6H), 6.79-6.72 (m, 2H), 5.56 (d, *J* = 19.3 Hz, 1H), 3.19 (dd, *J* = 14.4, 7.9 Hz, 1H), 2.96 (dd, *J* = 18.3, 14.4 Hz, 1H); ¹³C **NMR** (101 MHz, CDCl₃): δ 191.8, 159.5 (d, *J* = 254.2 Hz), 155.8 (d, *J* = 7.7 Hz), 142.1, 136.6 (d, *J* = 11.4 Hz), 135.6, 135.4 (d, *J* = 6.1 Hz), 134.1, 133.5 (d, *J* = 4.8

Hz), 132.1 (d, J = 8.5 Hz), 131.9 (d, J = 8.2 Hz), 131.6 (d, J = 8.9 Hz), 131.4 (d, J = 2.8 Hz), 131.23, 131.18 (d, J = 2.9 Hz), 130.9 (d, J = 95.3 Hz), 128.8 (d, J = 92.5 Hz), 128.2, 127.9, 127.8, 127.6, 127.5, 127.4, 126.73 (d, J = 4.5 Hz), 126.67, 126.5, 125.3 (d, J = 2.6 Hz), 124.1 (d, J = 16.5 Hz), 121.4 (d, J = 5.3 Hz), 110.4 (d, J = 20.3 Hz), 80.7 (d, J = 7.0 Hz), 79.4 (d, J = 80.4 Hz), 38.6 (d, J = 3.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -120.8; ³¹P NMR (162 MHz, CDCl₃): δ 29.8; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₉H₂₉FNNaO₃P 632.1761; Found 632.1759. **Optical Rotation**: $[\alpha]^{20}_{D} = +53.0$ (c = 0.7, CH₂Cl₂). 99:1 er (HPLC condition: Chiralpak IA column, *n*-hexane/*i*-PrOH = 80:20, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 15.1 min for major isomer, t_R = 21.9 min for minor isomer).

(S)-3-((4R,5R)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-2-(phen anthren-9-yl)benzaldehyde (3i)

With **2a** (1.2 equiv) for 24 h. 4:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by preparative HPLC (gradient (0.1% HCOOH in H₂O/MeCN) 0 min; 40:60, 15 min; 0:100, 25 min; 0:100, 25.1 min; 40:60, 30 min; 40:60). White solid, 32.9 mg, 51% yield. **MP**: 155-156 °C; ¹H **NMR** (400 MHz, CDCl₃): δ 9.62 (s, 1H), 9.00-8.95 (m, 1H), 8.91 (d, *J* = 8.1 Hz, 1H), 8.23 (dd, *J* = 7.7,

1.6 Hz, 1H), 8.08 (dd, J = 7.6, 1.5 Hz, 1H), 8.00 (s, 1H), 7.87-7.74 (m, 5H), 7.48-7.38 (m, 2H), 7.33 (dd, J = 7.9, 1.5 Hz, 1H), 7.24-7.18 (m, 2H), 7.16-7.08 (m, 3H), 7.05-7.01 (m, 2H), 6.95-6.79 (m, 6H), 6.69-6.63 (m, 2H), 5.72 (d, J = 19.2 Hz, 1H), 3.28 (dd, J = 14.4, 8.3 Hz, 1H), 3.06 (dd, J = 17.9, 14.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 192.1, 155.7 (d, J = 7.7 Hz), 142.9, 136.6 (d, J = 11.2 Hz), 135.7, 135.6 (d, J = 6.0 Hz), 134.3, 132.9, 132.2 (d, J = 8.5 Hz), 131.9 (d, J = 8.1 Hz), 131.6, 131.4, 131.32, 131.26 (d, J = 2.7 Hz), 131.1 (d, J = 2.9 Hz), 131.0 (d, J = 95.2 Hz), 130.8, 130.6, 129.9, 129.3, 129.0 (d, J = 92.6 Hz), 128.1 (d, J = 3.4 Hz), 127.8, 127.7 (d, J = 2.8 Hz), 127.6, 127.5, 127.4, 127.1, 126.5, 126.3, 123.4, 122.7, 81.0 (d, J = 7.1 Hz), 79.3 (d, J = 80.3 Hz), 38.6 (d, J = 3.3 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 30.0; HRMS (ESI) m/z: [M+H]⁺ Calcd for C4₃H₃₃NO₃P 642.2193; Found 642.2198. Optical Rotation: [α]²⁰_D = +59.7 (c = 0.8, CH₂Cl₂). 98:2 er (HPLC condition: Chiralpak IA column, *n*-hexane/*i*-PrOH = 80:20, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 9.0 min for major isomer, t_R = 12.3 min for minor isomer).

(S)-3-((4R,5R)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-2-(pyren -1-yl)benzaldehyde (3j)

With 2a (1.2 equiv) for 24 h. 4:1 dr (determined by crude ¹H NMR). The crude

reaction mixture was purified by preparative HPLC (gradient (0.1% HCOOH in H₂O/MeCN) 0 min; 40:60, 15 min; 0:100, 25 min; 0:100, 25.1 min; 40:60, 30 min; 40:60). Yellow solid, 30.9 mg, 46% yield. MP: 158-159 °C; ¹H NMR (400 MHz, $CDCl_3$): δ 9.53 (d, J = 0.8 Hz, 1H), 8.70 (d, J = 7.8 Hz, 1H), 8.39-8.33 (m, 2H), 8.27 (d, J = 8.3 Hz, 2H), 8.22 (dd, J = 7.7, 1.2 Hz, 1H), 8.15-8.10 (m, 2H), 7.93 (d, J = 9.2 Hz, 1H), 7.78-7.71 (m, 2H), 7.51-7.46 (m, 1H), 7.42-7.37 (m, 2H), 7.20-7.14 (m, 1H), 7.09-7.02 (m, 4H), 6.91 (d, J = 3.6 Hz, 1H), 6.89-6.82 (m, 3H), 6.76-6.70 (m, 1H), 6.31-6.24 (m, 2H), 6.09-6.03 (m, 2H), 5.60 (d, J = 19.5 Hz, 1H), 3.19 (dd, J = 14.3, 7.2 Hz, 1H), 3.01 (dd, J = 19.8, 14.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 191.9, 155.9 (d, J = 7.7 Hz), 143.7, 136.5 (d, J = 11.4 Hz), 135.6, 135.4 (d, J = 5.5 Hz), 134.3, 132.0, 131.92, 131.89, 131.7, 131.5, 131.44, 131.41, 131.0, 130.9 (d, *J* = 3.2 Hz), 130.8, 130.7, 129.3, 129.2, 128.8, 128.4, 128.23, 128.20, 128.17, 128.1, 127.6 (d, *J* = 11.6 Hz), 127.4, 127.1 (d, *J* = 11.2 Hz), 126.6 (d, *J* = 3.8 Hz), 126.0, 125.8, 125.5, 124.8 (d, J = 9.9 Hz), 124.0, 81.0 (d, J = 7.5 Hz), 79.4 (d, J = 80.9 Hz), 39.2 (d, J = 2.8 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 28.8; HRMS (ESI) m/z: [M+H]⁺ Calcd for $C_{45}H_{33}NO_{3}P$ 666.2193; Found 666.2189. **Optical Rotation**: $[\alpha]^{20}D = -15.1$ (c = 0.4, CH₂Cl₂). 99:1 er (HPLC condition: Chiralpak IA column, *n*-hexane/*i*-PrOH = 80:20, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 31.2 min for minor isomer, t_R = 54.9 min for major isomer).

(*S*)-6-((4*R*,5*R*)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-4-metho xy-[1,1':2',1''-terphenyl]-2-carbaldehyde (3k)

With 2a (1.0 equiv) for 24 h. 4:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by flash column chromatography (PE/EtOAc 4:1). White solid, 27.0 mg, 42% yield. **MP**: 104-105 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 9.76 (s, 1H), 8.01-7.94 (m, 2H), 7.90-7.85 (m, 1H), 7.79-7.70 (m, 2H), 7.55 (dd, J = 7.6, 1.4 Hz, 1H), 7.46-7.41 (m, 1H), 7.35-7.25 (m, 6H), 7.21-7.15 (m, 2H), 7.08-6.97 (m, 5H), 6.90-6.82 (m, 4H), 6.74-6.70 (m, 2H), 6.51 (d, *J* = 2.8 Hz, 1H), 5.72 (d, *J* = 19.2 Hz, 1H), 3.66 (s, 3H), 3.20 (dd, J = 14.5, 8.2 Hz, 1H), 3.00 (dd, J = 18.1, 14.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 192.1, 158.5, 156.1 (d, J = 7.7 Hz), 142.1, 140.4, 137.2, 136.8 (d, J = 11.6 Hz), 135.8, 135.6 (d, J = 6.2 Hz), 133.9, 132.6 (d, J = 7.9Hz), 132.2 (d, J = 8.5 Hz), 132.0, 131.8 (d, J = 2.7 Hz), 131.4 (d, J = 95.1 Hz), 131.3, 131.2 (d, J = 2.9 Hz), 130.1, 129.7 (d, J = 91.9 Hz), 129.3, 129.1, 128.6, 128.0 (d, J = 11.1 Hz), 127.9, 127.8, 127.3, 126.8, 126.4, 121.8, 110.6, 80.7 (d, *J* = 7.2 Hz), 79.5 (d, J = 80.4 Hz, 55.4, 38.7 (d, J = 3.0 Hz); ³¹**P NMR** (162 MHz, CDCl₃): δ 29.4; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₄₂H₃₄NNaO₄P 670.2118; Found 670.2116. Optical **Rotation**: $[\alpha]^{20}_{D} = +155.2$ (c = 0.2, CH₂Cl₂). 96:4 er (HPLC condition: Chiralpak IB N-5 column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1 mL/min, wavelength = 254 nm, $t_R = 9.9$ min for major isomer, $t_R = 16.0$ min for minor isomer).

(S)-3-((4R,5R)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-5-chloro

-2-(naphthalen-1-yl)benzaldehyde (3l)

With 2a (1.0 equiv) for 24 h. 1:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by flash column chromatography (PE/EtOAc 4:1). Yellow solid, 27.3 mg, 44% yield. MP: 119-120 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.48 (s, 1H), 8.29-8.25 (m, 1H), 8.19-8.15 (m, 1H), 8.07-7.94 (m, 4H), 7.76 (dd, J =7.0, 1.2 Hz, 1H), 7.67-7.62 (m, 1H), 7.43-7.38 (m, 1H), 7.35-7.30 (m, 1H), 7.27-7.18 (m, 3H), 7.15 (dd, J = 8.5, 1.0 Hz, 1H), 7.01-6.93 (m, 6H), 6.92-6.86 (m, 2H), 6.84 (d, J = 3.8 Hz, 1H), 6.69-6.62 (m, 2H), 5.56 (d, J = 19.4 Hz, 1H), 3.30 (dd, J = 14.7, 8.8 Hz, 1H), 2.97 (dd, J = 14.7, 13.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 190.8, 155.5 (d, J = 7.5 Hz), 141.1, 138.6 (d, J = 11.9 Hz), 136.4, 135.3 (d, J = 8.4 Hz), 134.7, 134.1, 133.9, 132.5 (d, J = 8.4 Hz), 132.1 (d, J = 7.8 Hz), 131.9, 131.7, 131.58, 131.57 (d, J = 8.2 Hz), 130.7, 129.92, 129.87, 129.8, 129.1, 128.2 (d, J = 92.4 Hz), 128.1, 128.0 (d, J = 7.4 Hz), 127.7, 127.6, 127.5, 127.0, 126.7, 126.5, 125.0, 79.9 (d, J = 7.1 Hz), 79.4 (d, J = 79.3 Hz), 37.6 (d, J = 3.5 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 30.7; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₃₉H₂₉ClNNaO₃P 648.1466; Found 648.1461. Optical Rotation: $[\alpha]^{20}_{D} = +88.4$ (c = 0.1, CH₂Cl₂). 95:5 er (HPLC condition: Chiralpak IB N-5 column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1 mL/min, wavelength = 254 nm, $t_R = 9.5 \text{ min}$ for major isomer, $t_R = 31.8 \text{ min}$ for minor isomer).

S22

(S)-3-((4S,5R)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-5-chloro -2-(naphthalen-1-yl)benzaldehyde (3l')

The crude reaction mixture was purified by flash column chromatography (PE/EtOAc 4:1). White solid, 20.9 mg, 33% yield. MP: 153-154 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.36 (s, 1H), 8.67 (dd, J = 7.1, 1.1 Hz, 1H), 8.32-8.25 (m, 2H), 8.14 (d, J = 8.3 Hz, 1H), 8.07 (d, *J* = 7.7 Hz, 1H), 7.90 (d, *J* = 2.3 Hz, 1H), 7.84 (dd, *J* = 8.3, 7.1 Hz, 1H), 7.80-7.74 (m, 2H), 7.58-7.39 (m, 7H), 7.35-7.30 (m, 1H), 6.96 (d, J = 8.5 Hz, 1H), 6.92-6.87 (m, 2H), 6.66 (t, J = 7.6 Hz, 2H), 6.46 (d, J = 2.3 Hz, 1H), 5.78-5.73 (m, 2H), 5.17 (d, J = 15.2 Hz, 1H), 2.85 (dd, J = 13.6, 6.3 Hz, 1H), 2.61 (dd, J = 13.6, 4.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 190.9, 155.3 (d, J = 12.9 Hz), 141.9, 138.4 (d, J = 6.2 Hz), 136.0, 133.9, 133.8, 133.6, 133.3 (d, J = 96.4 Hz), 133.2, 133.0, 132.7,132.3 (d, J = 3.0 Hz), 132.1, 132.0 (d, J = 5.7 Hz), 131.9, 131.7, 131.3, 130.9, 129.6, 128.7 (d, J = 3.3 Hz), 128.6, 128.4, 127.7, 127.5, 127.4, 126.8, 126.6, 125.8, 124.9, 80.8 (d, J = 3.8 Hz), 78.4 (d, J = 85.6 Hz), 40.1 (d, J = 5.5 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 24.2; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₃₉H₂₉ClNNaO₃P 648.1466; Found 648.1468. **Optical Rotation**: $[\alpha]^{20}_{D} = -61.7$ (c = 0.3, CH₂Cl₂). 85:15 er (HPLC condition: Chiralpak IB N-5 column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1 mL/min, wavelength = 254 nm, $t_R = 6.1$ min for major isomer, $t_R = 7.0$ min for minor isomer).

S23

(*R*)-6-((4*R*,5*R*)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-2'-fluor o-6'-methoxy-[1,1'-biphenyl]-2-carbaldehyde (3m)

With **2a** (1.0 equiv) for 24 h. >20:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by flash column chromatography (PE/EtOAc 4:1). White solid, 44.7 mg, 76% yield. MP: 101-102 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.63 (s, 1H), 7.88 (dd, J = 7.6, 1.4 Hz, 1H), 7.81-7.70 (m, 3H), 7.54-7.43 (m, 3H), 7.40-7.34 (m, 3H), 7.29-7.23 (m, 2H), 7.22-7.09 (m, 5H), 7.01-6.95 (m, 2H), 6.82-6.77 (m, 3H), 5.55 (d, J = 19.4 Hz, 1H), 3.98 (s, 3H), 2.95 (dd, J = 14.1, 5.9 Hz, 1H), 2.64 (dd, J = 21.2, 14.1 Hz, 1H); ¹³C NMR (101 MHz, DMSO- d_6): δ 191.6, 159.4 (d, J = 6.5 Hz), 158.7 (d, J = 241.0 Hz), 157.0 (d, J = 7.7 Hz), 136.2 (d, J = 11.3 Hz), 135.4 (d, J = 5.4 Hz), 134.1, 134.0, 133.8, 131.9 (d, J = 7.7 Hz), 131.81 (d, J = 102.8 Hz), 131.76, 131.5, 131.4, 131.0, 130.7, 129.8 (d, *J* = 90.6 Hz), 128.4, 128.0, 127.9, 127.6 (d, J = 11.5 Hz), 127.0, 126.1, 110.1 (d, J = 19.6 Hz), 108.9, 107.3 (d, J = 21.9 Hz), 80.0 (d, J = 7.3 Hz), 79.2 (d, J = 80.9 Hz), 56.2, 37.5; ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -114.0; ³¹P NMR (162 MHz, DMSO-*d*₆): δ 26.9; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₆H₂₉FNNaO₄P 612.1710; Found 612.1708. Optical **Rotation**: $[\alpha]^{20}_D = +128.5$ (c = 0.3, CH₂Cl₂). 99:1 er (HPLC condition: Chiralpak ID column, *n*-hexane/*i*-PrOH = 80:20, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 13.4 min for major isomer, $t_R = 28.3$ min for minor isomer).

(*R*)-3-((4*R*,5*R*)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-2-(2-eth oxynaphthalen-1-yl)benzaldehyde (3n)

With **2a** (1.0 equiv) for 16 h. >20:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by flash column chromatography (PE/EtOAc 4:1). White solid, 48.0 mg, 76% yield. MP: 258-259 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.63 (d, J = 0.8 Hz, 1H), 8.27 (d, J = 9.1 Hz, 1H), 8.09 (dd, J = 8.2, 1.3 Hz, 1H), 8.04 (dd, J = 7.7, 1.4 Hz, 1H), 7.99-7.92 (m, 2H), 7.74 (d, J = 9.2 Hz, 1H), 7.49-7.44 (m, 1H), 7.33-7.24 (m, 3H), 7.21-7.11 (m, 4H), 7.02-6.96 (m, 3H), 6.90-6.83 (m, 6H), 6.68-6.61 (m, 2H), 5.56 (d, J = 19.6 Hz, 1H), 4.58-4.48 (m, 1H), 4.42-4.32 (m, 1H), 3.26 (dd, J = 14.6, 8.0 Hz, 1H), 2.95 (dd, J = 16.3, 14.5 Hz, 1H), 1.29 (t, J = 7.0 Hz, 1H), 13H); ¹³C NMR (101 MHz, CDCl₃): δ 193.2, 156.2, 155.9 (d, J = 7.5 Hz), 139.8, 136.8 (d, J = 11.7 Hz), 136.0 (d, J = 7.2 Hz), 135.0, 134.2, 133.1, 132.4 (d, J = 8.4 Hz),132.0 (d, J = 8.1 Hz), 131.4, 131.3 (d, J = 2.7 Hz), 131.2, 131.11 (d, J = 95.0 Hz), 131.07 (d, J = 2.9 Hz), 129.0, 128.8 (d, J = 91.7 Hz), 128.6, 127.8, 127.7, 127.62, 127.56, 127.5, 127.4, 127.3, 126.2, 123.7 (d, J = 5.6 Hz), 114.7, 80.7 (d, J = 6.7 Hz), 79.5 (d, J = 80.0 Hz), 64.2, 36.4 (d, J = 3.1 Hz), 15.1; ³¹P NMR (162 MHz, CDCl₃): δ 30.0; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₄₁H₃₄NNaO₄P 658.2118; Found 658.2122. Optical Rotation: $[\alpha]^{20}_{D} = +6.7$ (c = 0.1, CH₂Cl₂). 99:1 er (HPLC condition: Chiralpak IA column, n-hexane/i-PrOH = 80:20, flow rate = 1 mL/min, wavelength = 254 nm, $t_R = 5.2$ min for major isomer, $t_R = 6.7$ min for minor isomer).

(*S*)-6-((4*R*,5*R*)-4-(diphenylphosphoryl)-4-(4-methylbenzyl)-4,5-dihydrooxazol-5-y l)-[1,1':2',1''-terphenyl]-2-carbaldehyde (30)

With **2b** (1.0 equiv) for 48 h. 7:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by flash column chromatography (PE/EtOAc 4:1). White solid, 34.7 mg, 55% yield. MP: 282-283 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.72 (d, J = 0.8 Hz, 1H), 7.88-7.81 (m, 3H), 7.77-7.66 (m, 3H), 7.49 (dd, J = 7.7, 1.3 Hz, 1H), 7.39-7.33 (m, 1H), 7.25-7.17 (m, 5H), 7.14 (t, *J* = 7.7 Hz, 1H), 7.10-7.04 (m, 3H), 7.01-6.90 (m, 3H), 6.88-6.84 (m, 3H), 6.67-6.63 (m, 2H), 6.55 (d, J = 7.8 Hz, 2H), 5.71 (d, J = 19.3 Hz, 1H), 3.04 (dd, J = 14.3, 7.3 Hz, 1H), 2.87 (dd, J = 20.6, 14.3 Hz, 1H), 2.02 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 192.1, 156.1 (d, J = 7.7 Hz), 144.2, 141.6, 140.2, 135.9, 135.4 (d, J = 11.3 Hz), 134.7, 134.2, 133.4, 132.5 (d, J = 8.0 Hz), 132.2, 132.1 (d, J = 10.4 Hz), 132.0 (d, J = 8.3 Hz), 131.6 (d, J = 2.7 Hz), 131.5 (d, J = 95.4 Hz), 131.3, 130.5 (d, J = 2.9 Hz), 129.9, 129.8 (d, J = 91.8 Hz), 129.3, 129.0, 128.6, 128.04, 128.01, 127.93, 127.85, 127.7, 127.5 (d, J = 10.6 Hz), 126.8, 80.9 (d, J = 7.2 Hz), 79.8 (d, J = 81.3 Hz), 39.0 (d, J = 2.9 Hz), 20.9; ³¹P NMR (162 MHz, CDCl₃): δ 28.9; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₄₂H₃₅NO₃P 632.2349; Found 632.2355. Optical Rotation: $[\alpha]^{20}_{D} = +128.7$ (c = 0.2, CH₂Cl₂). 99:1 er (HPLC condition: Chiralpak IB N-5 column, *n*-hexane/*i*-PrOH = 95:5, flow

rate = 1 mL/min, wavelength = 254 nm, t_R = 14.1 min for major isomer, t_R = 27.9 min for minor isomer).

(*S*)-6-((4*R*,5*R*)-4-(4-chlorobenzyl)-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-[1,1':2',1''-terphenyl]-2-carbaldehyde (3p)

With **2c** (1.0 equiv) for 24 h. 11:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by flash column chromatography (PE/EtOAc 4:1). White solid, 50.0 mg, 77% yield. **MP**: 191-192 °C; ¹H **NMR** (400 MHz, CDCl₃): δ 9.78 (d, J = 0.8 Hz, 1H), 7.93-7.81 (m, 4H), 7.80-7.75 (m, 1H), 7.73 (dd, J = 7.5, 1.3 Hz, 1H), 7.56-7.53 (m, 1H), 7.46-7.40 (m, 1H), 7.33-7.24 (m, 6H), 7.18-7.12 (m, 3H), 7.06-6.95 (m, 6H), 6.76-6.72 (m, 2H), 6.69-6.65 (m, 2H), 5.75 (d, J = 19.1 Hz, 1H), 3.04 (dd, J = 14.2, 6.3 Hz, 1H), 2.89 (dd, J = 22.0, 14.2 Hz, 1H); ¹³C **NMR** (101 MHz, CDCl₃): δ 192.0, 156.3 (d, J = 7.6 Hz), 144.2, 141.7, 140.1, 135.2 (d, J = 11.2 Hz), 134.9, 134.0, 133.8 (d, J = 4.7 Hz), 133.3, 132.9, 132.5, 132.4 (d, J = 8.0 Hz), 132.1, 131.9 (d, J = 8.2 Hz), 131.8 (d, J = 2.9 Hz), 131.4 (d, J = 95.1 Hz), 130.9 (d, J = 2.9 Hz), 130.0, 129.7 (d, J = 92.3 Hz), 129.4, 129.0, 128.6, 128.1 (d, J = 11.2 Hz), 127.8, 127.7 (d, J = 9.5 Hz), 127.4, 126.9, 81.0 (d, J = 7.3 Hz), 79.5 (d, J = 81.3 Hz), 39.2 (d, J = 2.8 Hz); ³¹P **NMR** (162 MHz, CDCl₃): δ 28.1; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₄₁H₃₂CINO₃P 652.1803; Found 652.1799. **Optical Rotation**: [α]²⁰D

+33.0 (c = 0.1, CH₂Cl₂). 99:1 er (HPLC condition: Chiralpak IA column, *n*-hexane/*i*-PrOH = 80:20, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 14.6 min for major isomer, t_R = 26.4 min for minor isomer).

(S)-6-((4R,5R)-4-(diphenylphosphoryl)-4-(naphthalen-1-ylmethyl)-4,5-dihydroox azol-5-yl)-[1,1':2',1''-terphenyl]-2-carbaldehyde (3q)

With **2d** (1.0 equiv) for 72 h. 4:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by flash column chromatography (PE/EtOAc 4:1). White solid, 39.4 mg, 59% yield. **MP**: 138-139 °C; ¹H **NMR** (400 MHz, CDCl₃): δ 9.80 (s, 1H), 8.11 (d, J = 8.5 Hz, 1H), 8.02-7.96 (m, 1H), 7.90 (dd, J = 7.7, 1.4 Hz, 1H), 7.84-7.79 (m, 1H), 7.75 (dd, J = 7.5, 1.5 Hz, 1H), 7.62-7.49 (m, 5H), 7.44-7.20 (m, 10H), 7.06-6.90 (m, 6H), 6.81-6.74 (m, 4H), 5.89 (d, J = 18.9 Hz, 1H), 3.54-3.42 (m, 2H); ¹³C **NMR** (101 MHz, CDCl₃): δ 192.0, 156.2 (d, J = 7.6 Hz), 144.2, 141.7, 140.2, 135.4 (d, J = 11.1 Hz), 134.9, 133.9, 133.5, 133.4, 133.0, 132.6 (d, J = 8.0 Hz), 132.2, 132.1 (d, J = 4.3 Hz), 131.6 (d, J = 2.6 Hz), 131.1 (d, J = 8.6 Hz), 131.0, 130.6, 130.5 (d, J = 2.9 Hz), 130.0, 129.7 (d, J = 92.1 Hz), 129.4, 129.1, 128.7, 128.1, 127.91, 127.88, 127.80, 127.75, 127.5, 127.1, 126.9 (d, J = 7.4 Hz), 125.5, 125.2, 125.0, 124.6, 81.1 (d, J = 6.6 Hz), 80.2 (d, J = 81.4 Hz), 36.1 (d, J = 2.7 Hz); ³¹P **NMR** (162 MHz, CDCl₃): δ 29.0; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₄₅H₃₅NO₃P

668.2349; Found 668.2350. **Optical Rotation**: $[\alpha]^{20}_{D} = +143.0$ (c = 0.1, CH₂Cl₂). 99.5:0.5 er (HPLC condition: Chiralpak IF column, *n*-hexane/*i*-PrOH = 80:20, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 18.2 min for major isomer, t_R = 43.8 min for minor isomer).

(S)-6-((4R,5R)-4-(diphenylphosphoryl)-4-((5-(trifluoromethyl)furan-2-yl)methyl)-4,5-dihydrooxazol-5-yl)-[1,1':2',1''-terphenyl]-2-carbaldehyde (3r)

With **2e** (1.0 equiv) for 48 h. 8:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by flash column chromatography (PE/EtOAc 4:1). White wax, 31.7 mg, 47% yield. ¹H NMR (400 MHz, CDCl₃): δ 9.78 (d, J = 0.7 Hz, 1H), 8.13-8.05 (m, 2H), 7.89-7.82 (m, 2H), 7.77-7.73 (m, 1H), 7.65 (dd, J = 7.5, 1.3 Hz, 1H), 7.55 (dd, J = 7.7, 1.2 Hz, 1H), 7.49-7.43 (m, 1H), 7.37-7.27 (m, 8H), 7.19 (dd, J = 7.9, 1.4 Hz, 1H), 7.07-6.95 (m, 3H), 6.93 (d, J = 3.4 Hz, 1H), 6.71-6.66 (m, 2H), 6.19-6.15 (m, 1H), 5.92 (d, J = 3.4 Hz, 1H), 5.74 (d, J = 18.9 Hz, 1H), 3.21 (dd, J = 15.5, 8.2 Hz, 1H), 2.98 (dd, J = 18.2, 15.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 192.0, 156.7 (d, J = 7.6 Hz), 152.3 (d, J = 5.8 Hz), 144.2, 141.7, 140.6 (d, J = 42.4 Hz), 140.1, 134.9, 134.7 (d, J = 10.7 Hz), 133.7, 133.3, 132.6 (d, J = 8.0 Hz), 132.1, 132.0 (d, J = 2.7 Hz), 131.9 (d, J = 8.5 Hz), 131.5 (d, J = 2.9 Hz), 130.8 (d, J = 95.6 Hz), 130.1, 129.4, 129.1, 128.6, 128.5, 128.3, 128.2, 128.1 (d, J = 5.2 Hz), 127.9, 127.7, 126.9, 119.1 (d, J = 266.7 Hz), 112.0 (d, J = 3.1 Hz), 111.4, 80.5 (d, J = 7.0

Hz), 78.2 (d, J = 81.4 Hz), 31.8 (d, J = 3.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.4; ³¹P NMR (162 MHz, CDCl₃): δ 29.1; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₄₀H₂₉F₃NNaO₄P 698.1679; Found 698.1678. **Optical Rotation**: [α]²⁰_D = +67.4 (c = 0.1, CH₂Cl₂). 99:1 er (HPLC condition: Chiralpak IF column, *n*-hexane/*i*-PrOH = 80:20, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 12.0 min for major isomer, t_R = 14.9 min for minor isomer).

(S)-6-((4R,5R)-4-(diphenylphosphoryl)-4-methyl-4,5-dihydrooxazol-5-yl)-[1,1':2', 1''-terphenyl]-2-carbaldehyde (3s)

With **2f** (1.0 equiv) for 24 h. 13:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by flash column chromatography (PE/EtOAc 4:1). White solid, 38.4 mg, 71% yield. **MP**: 106-107 °C; ¹H **NMR** (400 MHz, CDCl₃): δ 9.71 (d, J = 0.8 Hz, 1H), 8.25-8.18 (m, 2H), 7.80 (dd, J = 7.7, 1.4 Hz, 1H), 7.76-7.71 (m, 1H), 7.67-7.64 (m, 1H), 7.53 (dd, J = 7.4, 1.4 Hz, 1H), 7.49-7.25 (m, 10H), 7.21-7.18 (m, 1H), 7.02-6.92 (m, 3H), 6.73-6.68 (m, 3H), 5.65 (d, J = 19.0 Hz, 1H), 1.26 (d, J = 14.3 Hz, 3H); ¹³C **NMR** (101 MHz, CDCl₃): δ 192.1, 156.0 (d, J = 7.9 Hz), 144.2, 141.6, 140.2, 135.3 (d, J = 10.8 Hz), 134.9, 133.6 (d, J = 6.5 Hz), 132.7 (d, J = 4.1 Hz), 132.6 (d, J = 3.7 Hz), 132.2 (d, J = 2.8 Hz), 132.1, 132.0, 130.1 (d, J = 95.3 Hz), 129.9, 129.3, 129.2, 128.61 (d, J = 93.2 Hz), 128.59, 128.5, 128.4, 128.1, 127.93, 127.88, 127.7, 126.9, 79.8 (d, J = 7.1 Hz), 75.3 (d, J = 81.4 Hz), 19.3 (d, J = 7.4 Hz), 132.7 (d, J = 7.9 Hz), 127.88, 127.7, 126.9, 79.8 (d, J = 7.1 Hz), 75.3 (d, J = 81.4 Hz), 19.3 (d, J = 7.4 Hz), 19.4 Hz), 19.4

2.8 Hz); ³¹**P** NMR (162 MHz, CDCl₃): δ 32.0; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₅H₂₈NNaO₃P 564.1699; Found 564.1701. **Optical Rotation**: $[\alpha]^{20}_{D} = +465.1$ (c = 0.3, CH₂Cl₂). 99:1 er (HPLC condition: Chiralpak IB N-5 column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 13.9 min for major isomer, t_R = 15.2 min for minor isomer).

Methyl

(4*S*,5*R*)-4-benzyl-5-((*S*)-6-formyl-[1,1':2',1''-terphenyl]-2-yl)-4,5-dihydrooxazole-

4-carboxylate (3t)

With **2g** (1.0 equiv) for 24 h. 4:1 dr (determined by crude ¹H NMR). The crude reaction mixture was purified by flash column chromatography (PE/EtOAc 4:1). White solid, 34.2 mg, 72% yield. **MP**: 100-101 °C; ¹H **NMR** (400 MHz, CDCl₃): δ 9.77 (d, J = 0.8 Hz, 1H), 7.84 (dd, J = 7.7, 1.4 Hz, 1H), 7.74-7.65 (m, 3H), 7.62-7.59 (m, 1H), 7.37-7.31 (m, 1H), 7.26-7.23 (m, 1H), 7.22-7.16 (m, 3H), 7.11-7.04 (m, 3H), 6.90-6.84 (m, 3H), 6.68-6.63 (m, 2H), 5.22 (s, 1H), 3.30 (s, 3H), 3.10 (d, J = 13.7 Hz, 1H); 2.87 (d, J = 13.7 Hz, 1H); ¹³C **NMR** (101 MHz, CDCl₃): δ 191.9, 171.3, 155.6, 143.4, 142.2, 139.8, 136.6, 134.4, 134.3, 133.4, 132.7, 131.5, 131.2, 130.5, 129.5, 129.1, 128.2, 128.1, 127.9, 127.81, 127.76, 127.3, 83.0, 81.0, 52.4, 43.0; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₂₆NO₄ 476.1856; Found 476.1857. **Optical Rotation**:

 $[\alpha]^{20}_{D}$ = +13.6 (c = 0.3, CH₂Cl₂). 97.5:2.5 er (HPLC condition: Chiralpak IB N-5 column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 17.5 min for major isomer, t_R = 22.5 min for minor isomer).

VI. Evaluation of the thermal stability of the chiral axis

To a 10 mL vial charged with 3c (0.010 mmol) was added anhydrous DMSO (1.0 mL). After stirring at 60 °C for 24 h, no 3c" was detected by ¹H NMR spectroscopy, and the ee value of 3c remained unchanged.

To a 10 mL vial charged with **3d** (0.010 mmol) was added anhydrous DMSO (1.0 mL). After stirring at 60 °C for 24 h, no **3d**" was detected by ¹H NMR spectroscopy, and the ee value of **3d** remained unchanged.

To a 10 mL vial charged with 3e (0.010 mmol) was added anhydrous DMSO (1.0 mL). After stirring at 60 °C for 24 h, no 3e" was detected by ¹H NMR spectroscopy, and the ee value of 3e remained unchanged.

To a 10 mL vial charged with 3f (0.010 mmol) was added anhydrous DMSO (1.0 mL). After stirring at 60 °C for 24 h, no 3f" was detected by ¹H NMR spectroscopy, and the ee value of 3f remained unchanged.

VII. Gram-scale reaction and derivatization

To a 50 mL round-bottom flask charged with L4 (145.3 mg, 0.25 mmol) and Ag₂O (29.0 mg, 0.125 mmol) was added anhydrous EtOAc (25.0 mL). The mixture was stirred at ambient temperature for 5 min, then 1a (715.0 mg, 2.5 mmol) and 2a (827.5 mg, 2.5 mmol) were added successively in one portion. The reaction mixture was

stirred at 25 °C for 48 h, then concentrated and purified by flash column chromatography (PE/EtOAc 4:1) to afford **3a**.

To a suspension of NaBH₄ (1.9 mg, 0.05 mmol) in THF/MeOH = 3:1 (1.0 mL) under nitrogen atmosphere was added a solution of **3a** (61.7 mg, 0.10 mmol) in THF/MeOH = 3:1 (1.0 mL). The reaction mixture was stirred at 0 °C for 12 h and then concentrated and purified by flash column chromatography (EtOAc) to afford **4**.

((4*R*,5*R*)-4-benzyl-5-((*R*)-6-(hydroxymethyl)-[1,1':2',1''-terphenyl]-2-yl)-4,5-dihy drooxazol-4-yl)diphenylphosphine oxide (4)

White solid, 60.6 mg, 98% yield. **MP**: 245-246 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.89-7.81 (m, 3H), 7.72-7.66 (m, 1H), 7.61-7.57 (m, 1H), 7.53 (dd, J = 7.7, 1.3 Hz, 1H), 7.44 (d, J = 7.4 Hz, 1H), 7.40-7.34 (m, 1H), 7.25-7.16 (m, 6H), 7.11-7.02 (m, 5H), 7.01-6.95 (m, 2H), 6.94-6.90 (m, 2H), 6.83-6.76 (m, 5H), 5.68 (d, J = 19.4 Hz, 1H), 4.46 (d, J = 13.6 Hz, 1H), 4.28 (d, J = 13.6 Hz, 1H), 3.13-2.96 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃): δ 156.4 (d, J = 7.7 Hz), 140.6 (d, J = 4.8 Hz), 139.9, 139.1, 135.7 (d, J = 4.2 Hz), 134.7, 134.0 (d, J = 10.8 Hz), 132.7, 132.4 (d, J = 7.9 Hz), 132.0 (d, J = 8.4 Hz), 131.8 (d, J = 94.8 Hz), 131.6, 131.5 (d, J = 2.7 Hz), 130.8 (d, J = 2.9 Hz), 130.1, 130.0 (d, J = 92.2 Hz), 129.0, 128.8, 128.7, 128.0, 127.9, 127.67,

127.65, 127.6, 127.54, 127.48, 127.2, 126.7, 126.4, 82.0 (d, J = 7.1 Hz), 79.4 (d, J = 81.4 Hz), 63.3, 39.4 (d, J = 2.7 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 28.6; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₄₁H₃₄NNaO₃P 642.2169; Found 642.2167. Optical Rotation: $[\alpha]^{20}_{D} = +76.7$ (c = 0.1, CH₂Cl₂). 99:1 er (HPLC condition: Chiralpak IB N-5 column, *n*-hexane/*i*-PrOH = 80:20, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 5.4 min for major isomer, t_R = 9.0 min for minor isomer).

To a solution of **3a** (30.9 mg, 0.05 mmol) in anhydrous CH_2Cl_2 (1.0 mL) was added aniline (46.6 mg, 0.5 mmol). The reaction mixture was stirred at 25 °C overnight, after which NaBH₄ (15.1 mg, 0.4 mmol) and MeOH (1.0 mL) were added and the mixture was stirred for an additional 12 h. After completion of the reaction, the solvent was removed under reduced pressure. To the residue, water was added and the mixture was extracted with CH_2Cl_2 . The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (PE/EtOAc 4:1) to afford **5**.

((4*R*,5*R*)-4-benzyl-5-((*R*)-6-((phenylamino)methyl)-[1,1':2',1''-terphenyl]-2-yl)-4,5 -dihydrooxazol-4-yl)diphenylphosphine oxide (5)

White solid, 29.0 mg, 83% yield. **MP**: 127-128 °C; ¹**H NMR** (400 MHz, DMSO-*d*₆): δ 7.83-7.70 (m, 4H), 7.60-7.54 (m, 2H), 7.47 (d, *J* = 3.5 Hz, 1H), 7.44-7.39 (m, 1H), 7.30-7.24 (m, 3H), 7.18-7.11 (m, 7H), 7.08-7.03 (m, 4H), 6.94-6.85 (m, 5H), 6.82-6.76 (m, 3H), 6.48-6.42 (m, 1H), 6.17-6.12 (m, 2H), 5.62 (d, *J* = 19.4 Hz, 1H), 3.83 (d, *J* = 16.5 Hz, 1H), 3.58 (d, *J* = 16.5 Hz, 1H), 3.05-2.90 (m, 2H); ¹³**C NMR** (101 MHz, DMSO-*d*₆): δ 157.2 (d, *J* = 7.6 Hz), 148.4, 140.4, 139.7, 139.1, 137.6, 135.4 (d, *J* = 4.2 Hz), 134.3, 134.2, 132.4, 132.2 (d, *J* = 93.6 Hz), 131.9 (d, *J* = 7.8 Hz), 131.6, 131.5, 131.3, 130.7, 129.82, 129.75, 128.81, 128.78, 128.7, 128.4, 127.8 (d, *J* = 10.6 Hz), 127.7, 127.5 (d, *J* = 11.2 Hz), 127.0, 126.8, 126.7 (d, *J* = 4.1 Hz), 126.5, 126.1, 115.8, 112.0, 81.1 (d, *J* = 7.2 Hz), 78.8 (d, *J* = 81.0 Hz), 45.2; ³¹**P NMR** (162 MHz, CDCl₃): δ 28.9; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₄₇H₃₉N₂NaO₂P 717.2641; Found 717.2640. **Optical Rotation**: [α]¹⁴_D = +104.1 (c = 0.7, CH₂Cl₂). 99.5:0.5 er (HPLC condition: Chiralpak IB N-5 column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 15.0 min for major isomer, t_R = 23.9 min for minor isomer).

To a mixture of **3a** (61.7 mg, 0.10 mmol) and Cs_2CO_3 (39.1 mg, 0.12 mmol) in DMSO/H₂O = 3:1 (1.0 mL) was added a solution of NH₂OH·HCl (8.3 mg, 0.12 mmol) in DMSO/H₂O = 3:1 (1.0 mL). The reaction mixture was stirred at 100 °C for 12 h. After completion, the reaction mixture was cooled to room temperature and treated with water (2 × 5 mL). The resulting mixture was extracted with ethyl acetate (5 mL). The organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (PE/EtOAc 4:1) to afford **6**.

(*E*)-6-((4*R*,5*R*)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-[1,1':2', 1''-terphenyl]-2-carbaldehyde oxime (6)

White solid, 55.0 mg, 87% yield. **MP**: 157-158 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 10.33 (d, J = 1.9 Hz, 1H), 8.02 (s, 1H), 7.91-7.80 (m, 3H), 7.74-7.69 (m, 1H), 7.66 (dd, J = 7.5, 1.4 Hz, 1H), 7.56-7.49 (m, 2H), 7.48-7.43 (m, 1H), 7.36-7.30 (m, 2H), 7.28-7.17 (m, 3H), 7.13-7.06 (m, 4H), 7.04-6.99 (m, 1H), 6.96-6.89 (m, 4H), 6.83-6.76 (m, 4H), 6.70-6.66 (m, 2H), 5.62 (d, J = 19.8 Hz, 1H), 3.24 (dd, J = 14.4, 7.0 Hz, 1H), 2.95 (dd, J = 23.1, 14.4 Hz, 1H); ¹³C **NMR** (101 MHz, CDCl₃): δ 156.4 (d, J = 8.2 Hz), 148.9, 140.8, 140.5, 140.4, 135.8 (d, J = 4.5 Hz), 134.2, 133.8, 133.7 (d, J = 10.8 Hz), 132.7, 132.5 (d, J = 8.1 Hz), 131.9 (d, J = 8.0 Hz), 131.7, 131.6,

130.9 (d, J = 3.8 Hz), 129.9, 129.6 (d, J = 93.3 Hz), 129.4, 129.1, 129.0, 128.8, 128.2, 128.0, 127.8, 127.7, 127.6, 127.2, 127.0, 126.5, 126.3, 81.7 (d, J = 7.5 Hz), 79.4 (d, J = 82.5 Hz), 38.8 (d, J = 2.8 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 29.0; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₄₁H₃₃N₂NaO₃P 655.2121; Found 655.2121. Optical Rotation: [α]²⁰_D = +185.4 (c = 0.1, CH₂Cl₂). 99.5:0.5 er (HPLC condition: Chiralpak IB N-5 column, *n*-hexane/*i*-PrOH = 90:10, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 9.2 min for major isomer, t_R = 10.5 min for minor isomer).

To a stirred solution of methyltriphenylphosphonium bromide (39.3 mg, 0.11 mmol) in anhydrous THF (0.5 mL) was added n-BuLi (2.5 M in hexane, 45 μ L, 0.11 mmol) dropwise at 0 °C under nitrogen atmosphere and stirred for 0.5 h. Then a solution of **3a** (61.7 mg, 0.1 mmol) in THF (0.5 mL) was added and stirred at °C for 6 h. After completion, the reaction mixture was quenched with water (3 mL), and extracted with ethyl acetate (2 × 5 mL). The organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (PE/EtOAc 4:1) to afford **7**.

((4*R*,5*R*)-4-benzyl-5-((*R*)-6-vinyl-[1,1':2',1''-terphenyl]-2-yl)-4,5-dihydrooxazol-4yl)diphenylphosphine oxide (7)

White solid, 54.8 mg, 89% yield. MP: 222-223 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.83-7.76 (m, 3H), 7.67-7.62 (m, 1H), 7.51 (dd, J = 7.6, 1.3 Hz, 1H), 7.47-7.41 (m, 2H), 7.39-7.34 (m, 1H), 7.27-7.17 (m, 4H), 7.15-7.10 (m, 1H), 7.05-6.94 (m, 6H), 6.92-6.87 (m, 2H), 6.82 (d, J = 3.6 Hz, 1H), 6.76-6.65 (m, 6H), 6.46 (dd, J = 17.5, 11.0 Hz, 1H), 5.57-5.54 (m, 1H), 5.53-5.50 (m, 1H), 5.08 (dd, J = 11.1, 1.2 Hz, 1H), 3.00 (dd, J = 14.3, 7.5 Hz, 1H), 2.86 (dd, J = 21.9, 14.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 156.4 (d, J = 7.7 Hz), 141.0, 140.8, 139.5, 137.6, 135.8 (d, J = 4.5 Hz), 135.7, 135.3, 134.0 (d, J = 11.1 Hz), 133.1, 132.5 (d, J = 8.0 Hz), 132.4, 132.0 (d, J = 8.3 Hz), 131.6, 131.5 (d, *J* = 3.1 Hz), 130.7 (d, *J* = 3.3 Hz), 129.9, 129.8, 129.0, 128.6, 128.4, 127.9 (d, J = 11.1 Hz), 127.7 (d, J = 11.5 Hz), 127.5, 127.4, 127.19, 127.15, 126.5, 126.3, 125.2, 115.4, 82.0 (d, J = 7.1 Hz), 79.5 (d, J = 81.3 Hz), 39.2 (d, J = 2.7 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 28.1; HRMS (ESI) m/z: [M+H]⁺ Calcd for $C_{42}H_{35}NO_2P$ 616.2400; Found 616.2396. **Optical Rotation**: $[\alpha]^{20}D = +216.1$ (c = 0.1, CH₂Cl₂). 99:1 er (HPLC condition: Chiralpak IB N-5 column, *n*-hexane/*i*-PrOH = 95:5, flow rate = 1 mL/min, wavelength = 254 nm, t_R = 7.7 min for major isomer, t_R = 8.6 min for minor isomer).

VIII. Isolation of rac-3e' and rac-3e''

To a 10 mL vial charged with PPh₃ (5.24 mg, 0.02 mmol) and Ag₂O (2.32 mg, 0.01 mmol) was added anhydrous EtOAc (1.0 mL). The mixture was stirred at ambient temperature for 5 min, then **1e** (25.6 mg, 0.10 mmol) and **2a** (49.7 mg, 0.15 mmol) were added successively in one portion. The reaction mixture was stirred at 25 °C for 40 h, then concentrated and purified by flash column chromatography (PE/EtOAc 5:1) to afford *rac-3e*' and *rac-3e*''.

(±)-(*S*)-6-((4*S*,5*R*)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-2'-(methylthio)-[1,1'-biphenyl]-2-carbaldehyde (*rac*-3e')

White solid. **MP**: 131-132 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 9.51 (d, J = 0.8 Hz, 1H), 8.43 (dd, J = 7.6, 1.6 Hz, 1H), 8.32-8.23 (m, 2H), 7.83 (dd, J = 7.7, 1.4 Hz, 1H), 7.75-7.68 (m, 2H), 7.63-7.57 (m, 1H), 7.54-7.43 (m, 5H), 7.36 (dd, J = 8.0, 1.2 Hz, 1H), 7.34-7.28 (m, 2H), 7.15-7.03 (m, 3H), 7.00 (d, J = 2.0 Hz, 1H), 6.70 (t, J = 7.8 Hz, 1H), 6.43 (dd, J = 7.8, 1.4 Hz, 1H), 6.29-6.24 (m, 2H), 5.35 (d, J = 14.7 Hz, 1H), 2.93 (dd, J = 13.6, 6.1 Hz, 1H), 2.83 (dd, J = 13.6, 4.6 Hz, 1H), 2.26 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃): δ 192.2, 155.8 (d, J = 13.1 Hz), 143.0, 139.2, 135.2 (d, J = 6.3 Hz), 134.1, 133.8 (d, J = 12.6 Hz), 133.7, 133.5, 133.2, 133.0 (d, J = 16.5 Hz), 132.5 (d, J = 7.9 Hz), 132.0 (d, J = 8.0 Hz), 131.6 (d, J = 2.8 Hz), 131.5, 131.4, 129.7, 128.6, 128.5, 128.2, 128.1, 127.8, 127.2, 127.1 (d, J = 2.9 Hz), 124.8, 123.6, 81.3 (d, J = 4.2 Hz), 78.5 (d, J = 86.5 Hz), 40.4 (d, J = 5.7 Hz), 15.2; ³¹P **NMR** (162 MHz,

CDCl₃): δ 24.1; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₃₆H₃₀NNaO₃PS 610.1576; Found 610.1580.

(±)-(*R*)-6-((4*R*,5*R*)-4-benzyl-4-(diphenylphosphoryl)-4,5-dihydrooxazol-5-yl)-2'-(methylthio)-[1,1'-biphenyl]-2-carbaldehyde (*rac*-3e")

White solid. **MP**: 110-111 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 9.54 (s, 1H), 8.03-7.95 (m, 3H), 7.60-7.54 (m, 1H), 7.51-7.36 (m, 6H), 7.33-7.17 (m, 6H), 6.95-6.83 (m, 5H), 6.70-6.54 (m, 2H), 5.93 (d, *J* = 19.6 Hz, 1H), 3.44 (dd, *J* = 14.6, 8.0 Hz, 1H), 3.07 (dd, *J* = 17.0, 14.6 Hz, 1H), 2.59 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃): δ 192.3, 155.7 (d, *J* = 7.8 Hz), 142.6, 140.8, 135.9 (d, *J* = 6.9 Hz), 135.3 (d, *J* = 11.2 Hz), 134.9, 134.8, 133.1, 132.7 (d, *J* = 7.8 Hz), 132.1 (d, *J* = 8.3 Hz), 131.8, 131.5, 131.24 (d, *J* = 2.8 Hz), 131.16 (d, *J* = 96.0 Hz), 129.6, 129.32 (d, *J* = 92.0 Hz), 129.30, 128.1, 128.0 (d, *J* = 5.4 Hz), 127.9 (d, *J* = 4.8 Hz), 127.5, 127.3, 126.5, 125.4, 124.0, 81.2, 79.6 (d, *J* = 80.6 Hz), 37.1 (d, *J* = 3.4 Hz), 15.7; ³¹**P NMR** (162 MHz, CDCl₃): δ 29.7; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₃₆H₃₀NNaO₃PS 610.1576; Found 610.1574.

IX. Crystal structure data of 3a and 3a'

The relative and absolute configurations of **3a** (*S*,4*R*,5*R*) were assigned by X-ray crystallographic analysis of a single crystal of **3a** (Figure S2). The crystal was prepared from the solution of **3a** in PE/EtOAc/CH₂Cl₂ = 4:1:1 at 25 °C.

Figure S2. X-ray structure of **3a** (ellipsoid contour at 30% probability)

Identification code	mo_220412_HF_0m_tw
Empirical formula	$C_{41}H_{32}NO_3P$
Formula weight	617.64
Temperature/K	170.0
Crystal system	monoclinic
Space group	P21
a/Å	14.582(4)
b/Å	14.754(3)
c/Å	15.384(4)
α/°	90
β/°	95.337(13)
$\gamma/^{\circ}$	90
Volume/Å ³	3295.6(14)
Z	4
$ ho_{calc}g/cm^3$	1.245
μ/mm^{-1}	0.124

Table S1. Crystal data and structure refinement for mo_220412_HF_0m_tw

F(000)	1296.0
Crystal size/mm ³	$0.28\times0.16\times0.12$
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	3.832 to 54.308
Index ranges	$-18 \le h \le 18, -18 \le k \le 18, -2 \le l \le 19$
Reflections collected	14509
Independent reflections	14509 [$R_{int} = 0.0529, R_{sigma} = 0.0552$]
Data/restraints/parameters	14509/1/830
Goodness-of-fit on F ²	1.047
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0360, wR_2 = 0.0865$
Final R indexes [all data]	$R_1 = 0.0458, wR_2 = 0.0902$
Largest diff. peak/hole / e Å ⁻³	0.33/-0.22
Flack parameter	0.04(2)

The relative and absolute configurations of **3a'** (*S*,4*S*,5*R*) were assigned by X-ray crystallographic analysis of a single crystal of **3a'** (Figure S3). The crystal was prepared from the solution of **3a'** in PE/EtOAc = 3:1 at 25 °C.

Figure S3. X-ray structure of **3a'** (ellipsoid contour at 30% probability)

Identification code	cu_221208_HF_Ph_model_dr_sq	
Empirical formula	$C_{41}H_{32}NO_3P$	
Formula weight	617.64	
Temperature/K	298.00	
Crystal system	orthorhombic	
Space group	P21212	
a/Å	13.7964(3)	
b/Å	25.0930(6)	
c/Å	10.7544(3)	
$\alpha/^{\circ}$	90	
β/°	90	
γ/°	90	
Volume/Å ³	3723.10(16)	
Z	4	
$\rho_{calc}g/cm^3$	1.102	
μ/mm^{-1}	0.932	
F(000)	1296.0	
Crystal size/mm ³	0.45 imes 0.3 imes 0.26	
Radiation	$CuK\alpha \ (\lambda = 1.54178)$	
2Θ range for data collection/°	8.222 to 136.244	
Index ranges	$-16 \le h \le 16, -29 \le k \le 30, -12 \le 1 \le 12$	
Reflections collected	35451	
Independent reflections	$6754 [R_{int} = 0.0406, R_{sigma} = 0.0306]$	
Data/restraints/parameters	6754/0/415	
Goodness-of-fit on F ²	1.024	
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0325, wR_2 = 0.0854$	

Table S2. Crystal data and structure refinement for cu_221208_HF_Ph_model_dr_sq

Final R indexes [all data]	$R_1 = 0.0364, wR_2 = 0.0882$
Largest diff. peak/hole / e Å ⁻³	0.14/-0.23
Flack parameter	0.023(8)

X. References

- 1 Y. Wu, M. Li, J. Sun, G. Zheng and Q. Zhang, *Angew. Chem. Int. Ed.*, 2022, **61**, e202117340.
- 2 Y. Xiong, Z. Du, H. Chen, Z. Yang, Q. Tan, C. Zhang, L. Zhu, Y. Lan and M. Zhang, J. Am. Chem. Soc., 2019, 141, 961-971.
- 3 (a) F. Sladojevich, A. Trabocchi, A. Guarna and D. J. Dixon, J. Am. Chem. Soc.,
 2011, 133, 1710-1713; (b) P.-L. Shao, J.-Y. Liao, Y. A. Ho and Y. Zhao, Angew.
 Chem. Int. Ed., 2014, 53, 5435-5439.
- 4 Z.-P. Wang, Q. Wu, J. Jiang, Z.-R. Li, X.-J. Peng, P.-L. Shao and Y. He, Org. Chem. Front., 2018, 5, 36-40.
- 5 X.-L. He, H.-R. Zhao, X. Song, B. Jiang, W. Du and Y.-C. Chen, *ACS Catal.*, 2019, **9**, 4374-4381.

XI. NMR spectra

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

³¹P NMR (162 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

³¹P NMR (162 MHz, CDCl₃)

(1) 2012 (2) 20

f1 (ppm) ò

³¹P NMR (162 MHz, CDCl₃)

11.159 11

³¹P NMR (162 MHz, CDCl₃)

¹H NMR (400 MHz, DMSO-*d*₆)

¹³C NMR (101 MHz, DMSO-*d*₆)

³¹P NMR (162 MHz, DMSO-*d*₆)

¹³C NMR (101 MHz, CDCl₃)

¹**H NMR** (400 MHz, DMSO-*d*₆)

¹³C NMR (101 MHz, DMSO-*d*₆)

³¹P NMR (162 MHz, DMSO-*d*₆)

¹³C NMR (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

22.25 22

³¹P NMR (162 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹**H NMR** (400 MHz, DMSO-*d*₆)

¹³C NMR (101 MHz, DMSO-*d*₆)

-27.34

³¹P NMR (162 MHz, DMSO-*d*₆)

¹³C NMR (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹⁹F NMR (376 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

55.77 55

³¹P NMR (162 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

³¹P NMR (162 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

---30.69

¹H NMR (400 MHz, CDCl₃)

-24.22

³¹**P NMR** (162 MHz, CDCl₃)

¹H NMR (400 MHz, DMSO-*d*₆)

¹³C NMR (101 MHz, DMSO-*d*₆)

¹⁹F NMR (376 MHz, DMSO-*d*₆)

³¹P NMR (162 MHz, DMSO-*d*₆)

¹³C NMR (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

³¹P NMR (162 MHz, CDCl₃)

99,978 99,78 99,78 90,27 9

¹³C NMR (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

³¹P NMR (162 MHz, CDCl₃)

25.75 25

¹³C NMR (101 MHz, CDCl₃)

³¹P NMR (162 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

---31.98

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

³¹P NMR (162 MHz, CDCl₃)

¹H NMR (400 MHz, DMSO-*d*₆)

¹³C NMR (101 MHz, DMSO-*d*₆)

¹H NMR (400 MHz, CDCl₃)

³¹P NMR (162 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

³¹**P NMR** (162 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

