Supporting Information

Molten-Salt Etching Synthesis of Delaminatable MXene

Xingyu Wang, Yu Shi, Jieshan Qiu, Zhiyu Wang

E-mail: zywang@dlut.edu.cn

Experimental Section

Synthesis of MXene by molten-salt etching

The Ti₃AlC₂ MAX phase (1.0 g) was uniformly mixed with anhydrous CuCl₂ (2.2g), KCl (1.0 g), NaCl (0.6 g) and LiF (1.0 g) under dry conditions. This mixture was annealed at 750 °C for 5 h in Ar flow. The obtained products were repeatedly rinsed with deionized water and an aqueous solution of ammonium persulfate (APS, 0.5 M) to remove the salt and Cu by-product, yielding accordion-like MXene.

The accordion-like MXene was immersed into an aqueous solution of TBAOH solution (25 %) for 36 h. After the removal of the TBAOH by centrifugation, the TBAOH intercalated accordion-like MXene was exfoliated to highly dispersed MXene nanosheets (denoted as LiF/CuCl₂-MXene) under ultrasonic for several hours in an ice bath. The dark green supernatant was collected by centrifugation at 2,000 rpm and stored at 4 °C in the refrigerator before use

As a comparison, the accordion-like MXene was also prepared similarly in the absence of LiF, which is hard to be exfoliated even with the assistance of TBAOH intercalation agent.

Synthesis of MXene by solution etching.

The MXene (denoted as LiF/HCl-MXene) was synthesized by etching the Ti_3AlC_2 MAX phase (1.0 g) with a mixture solution of LiF (1.32g) and HCl (6 M, 20 mL) at 35 °C for 24 h. The obtained product was harvested by several centrifugation-rinsing cycles with deionized water, followed by exfoliation under ultrasonic for 1 h in an ice bath. The dark green supernatant was collected by centrifugation at 2,000 rpm and stored at 4 °C in the refrigerator before use

Material Characterization.

The SEM and TEM images were taken with scanning electron microscopy (SU8220) and transmission electron microscopy (HT7700 EXALENS). The X-ray diffraction (XRD) analysis was done on a Bruker D8 Advance X-ray spectrometer (Cu K α , λ = 1.5406 Å). The mass change of the electrode was tested by electrochemical quartz

crystal microbalance (QCM 200). The XPS measurements were performed using Thermo ESCALAB MK II X-ray photoelectron spectrometer with C 1s (284.6 eV) calibration. The Raman analysis was conducted on a Thermo Fisher Scientific DXR Raman microscopy using laser excitation ($\lambda = 532$ nm). The FT-IR spectra were measured by a Thermofisher Nicolet-IS50 Fourier transform infrared spectrometer.

Supercapacitor tests

The supercapacitor tests were performed on an IVIUM vertex. C. EIS electrochemical workstation with a standard three-electrode system. A graphite rod and an Ag/AgCl electrode with saturated KCl solution were employed as counter and the reference electrode, respectively. The electrolyte was 3 M H₂SO₄. The working electrode was made by casting a slurry consisting of Ti₃C₂T_x MXene (10 mg), deionized water (0.49 mL), ethanol (0.49 mL) and 30 wt% Nafion solution (0.02 mL) on a carbon paper. The electrode has an average mass loading of ca. 0.2 mg cm⁻². The cyclic voltammetry (CV) was tested in a voltage window between –0.6 and 0.3 V (*vs.* Ag/AgCl) at different scan rates. The galvanostatic charge-discharge tests were conducted between –0.5 and 0.3 V (*vs.* Ag/AgCl) at desired current densities. The gravimetric capacitance was calculated from constant charge/discharge curves by the following formula:

$$C = \frac{I_{\rm cons}t}{m \Delta V} \tag{1}$$

where I_{cons} is the constant discharge current (A), t is the discharge time (s), m is the active mass in the electrode (g), and ΔV is the voltage range.

The Electrochemical impedance spectroscopy (EIS) measurements were performed at open-circuit voltage over the frequency range of 100 kHz to 0.01 Hz and an amplitude of 10 mV.

Fig. S1 SEM image of LiF/CuCl₂-MXene.

Fig. S2 Tyndall effect of LiF/CuCl₂-MXene colloids.

Fig. S3 Element mapping showing the uniform distribution of Ti, O and F element on LiF/HCl-MXene.

Fig. S4 XPS spectra of a) LiF/CuCl₂-MXene and b) LiF/HCl-MXene.

Fig. S5 (a) Zeta potential of LiF/CuCl₂-MXene and accordion-like MXene without -F group. (b) XRD patterns showing the peak from the (002) plane of LiF/CuCl₂-MXene before and after TBAOH intercalation. A shift in the peak position to the lower angle indicates the expansion of interlayer spacing.

Fig. S6 Galvanostatic charge-discharge curves of a) LiF/HCl-MXene and b) accordion like-MXene at various current densities from 0.5 A g^{-1} to 4.0 A g^{-1} .

Fig. S7 (a) CVs at a scan rate of 100 mV s⁻¹ and (b) galvanostatic charge-discharge curves a current density of 0.5 A g⁻¹ for LiF/CuCl₂-MXene, LiF/HCl-MXene and accordion like-MXene with a mass loading of *ca.* 2.0 mg cm⁻².

Fig. S8 Normalized real and imaginary capacitances of a) LiF/CuCl₂-MXene and b) LiF/HCl-MXene.

Fig. S9 CVs of a) LiF/CuCl₂-MXene, b) LiF/HCl-MXene and c) accordion like-MXene at various scant rates in 3 M H₂SO₄.

Element ratio / At. %	Ti	С	0	F	Cl
CuCl ₂ -MXene	12.79	69.23	15.88	0.82	0.2
LiF/HCl-MXene	10.32	74.85	13.43	1.15	trace

 Table S1. The element composition of LiF/CuCl₂-MXene and LiF/HCl-MXene.