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Experimental Section 

Sample Preparation.   
Microperoxidase-11 (MP11, Sigma Aldrich) was dissolved by 200 mM sodium carbonate buffer 

(pH10.0) while 500 molar equivalents of acetic anhydride were slowly added to acetylate the α-NH2 
group of Valine11 and the ε-NH2 group of Lysine13.1 Potassium hydroxide was added as needed to 
maintain a solution pH of 9 – 10. The reaction mixture was stirred in an ice water bath for 3 hours. 
Acetylated MP11 (AcMP11) was exchanged into ultrapure water using an Amicon Stirred Cell 
concentrator (molecular weight cutoff, 1 kDa) and lyophilized by a vacuum freeze dryer (FDU-
1200, EYELA, Japan). The concentration of AcMP11 was determined spectrophotometrically using 
the absorbance at 397 nm (molar extinction coefficient ε397 = 147167 cm−1 M−1).2 

d(TTAGGG), d(TTAGGGp), d(TTAGGGT) and d(TAGGGTGGGTTGGGTGIG) purified with 
a HPLC cartridge was purchased from Sangon Biotech (Shanghai) Co., Ltd. The oligonucleotide 
was obtained by ethanol precipitation, and then desalted with a size exclusion column (Tskgel 
G3000PW, TOSOH, Japan). The concentration of each oligonucleotide was determined 
spectrophotometrically using the absorbance at 260 nm (ε260 = 6.89 × 104, 6.89 × 104, 7.81 × 104 
and 2.01 × 105 cm−1 M−1 for the d(TTAGGG), d(TTAGGGp), d(TTAGGGT) and 
d(TAGGGTGGGTTGGGTGIG), respectively).3 G-quadruplex DNAs (G4s) were forming through 
annealing of oligo-nucleotides in the presence 300 mM KCl and 50 mM potassium phosphate buffer, 
pH6.80.4 The samples were annealed by heating at 95°C for 5 min and then slowly cooling to room 
temperature overnight. For 2D NMR sample preparation of the AcMP11–[d(TTAGGG)]4 hybrid-
complex, 125 μL of 4 mM AcMP11 solution was lyophilized by the freeze dryer, and dissolved by 
250 μL of 2.2 mM [d(TTAGGG)]4 solution in 300 mM KCl and 50 mM potassium phosphate 
buffer, pH6.80. Thus, the final concentrations of the AcMP11 and [d(TTAGGG)]4 in the solution 
mixture were 2 and 2.2 mM, respectively. The 2H2O content of the samples was either ~10% or 
~98%. The pH of the resulting solution was adjusted using 0.2 M KOH or 0.2 M HCl, if necessary. 
The pH value was monitored by an F-73G pH meter with a 9618S-10D electrode (Horiba, Japan). 
 
Mass Measurements.    

The molecular weight of the MP11 and AcMP11 were measured with a 2DμCFs-TOF-HRMS 
Impact Ⅱ (Bruker).5 The experimental settings for the mass spectrometry were optimized 
automatically. The results were processed using the Bruker Compass Date Analysis version 
4.3.110.102 with the instrument. The MP11 and AcMP11 samples were adjusted by ultrapure water 
to the concentrations of ~15 and ~150 μM, respectively. The injection volume and the flow rate 
were 5 μL and 300 μL/min, respectively. Full mass spectra were acquired in the positive ionization 
mode over the m/z 50 – 2000 range.  
 
NMR Measurements.    

1H NMR spectra were recorded on Bruker AVANCE III Ascend 500HD spectrometer operating 
at 1H frequency of 500 MHz. One-dimensional 1H NMR spectra of the AcMP11 and AcMP11–G4s 
hybrid-complexes were obtained with a 199.9 ppm spectral width, 32k data points, a 1.5 s 
relaxation delay, and 512 transients. Water suppression was achieved by the presaturation method. 
The signal-to-noise ratio of the spectra was improved by apodization, which introduced 10 Hz line-
broadening. The NMR spectra were processed using Bruker TopSpin version 3.6.3 (Bruker 
BioSpin).  

Two-dimensional nuclear Overhauser effect spectroscopy (NOESY) and total correlation 
spectroscopy (TOCSY) spectra of the AcMP11–G4 hybrid-complex were acquired by quadrature 
detection in the phase-sensitive mode with a States-TPPI,6 with a 15 ppm spectral width, 8k × 512 
data points, a 1.5 s relaxation delay, at 25 ºC. The NOESY and TOCSY spectra were recorded using 
mixing times of 100 and 80 ms, respectively. A phase-shifted sine-squared window function was 
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applied to both dimensions before two-dimensional Fourier transformation. The chemical shifts for 
1H NMR spectra are referred to external 2,2-dimethyl-2-silapentane-5-sulfonate. 
 
Absorption Measurements.   

UV-Vis absorption spectra were recorded at 298 K with UV-2700 and UV-3600Plus 
spectrophotometers (SHIMAZU, Japan). In order to characterize the complexations between 
AcMP11 and G4s, 2 – 5 µM AcMP11 in 300 mM KCl and 50 mM potassium phosphate buffer 
(pH6.80) were titrated against the G4s at 25 ºC.  

Kinetic studies were performed on the UV-2700 spectrometer. A chromogenic substrate, 2,2'-
Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS), was purchased from Sigma-Aldrich, and 
the peroxidase reaction was monitored by following the appearance of the oxidized product, 
ABTS•+ through the following reaction, whitch absorbance at ~414 nm. Sample of the AcMP11–
[d(TTAGGGT)]4 hybrid-complex comprised 0.1 μM AcMP11, 352.4 μM [d(TTAGGGT)]4, and 0.5 
mM ABTS. Sample of the AcMP11–[d(TTAGGGp)]4 hybrid-complex comprised 0.1 μM AcMP11, 
32.4 μM [d(TTAGGGp)]4, and 0.5 mM ABTS. Sample of the AcMP11–NG18I hybrid-complex 
comprised 0.1 μM AcMP11, 9.3 μM NG18I, and 0.5 mM ABTS. Sample of the AcMP11–
[d(TTAGGG)]4 hybrid-complex comprised 0.1 μM AcMP11, 2.4 μM [d(TTAGGG)]4, and 0.5 mM 
ABTS. The percentages of formation of the hybrid-complexes are more than 98% based on the Ka 
values. To initiate the oxidation reaction, 0 – 8 mM hydrogen peroxide (H2O2) was added to the 
solution mixture. The initial slope (R0) of the time evolution of 414-nm absorbance due to ABTS•+ 
was used as an index for the peroxidase activity. 
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Fig. S1  Schematic representation of parallel G-quadruplex DNAs formed from d(TTAGGG), 
d(TTAGGGp), d(TTAGGGT), and non-standard base inosine(I)-containing sequence 
d(TAGGGTGGGTTGGGTGIG), i.e., [d(TTAGGG)]4 (A), [d(TTAGGGp)]4 (B), [d(TTAGGGT)]4 
(C) and (NG18I) (D), respectively.3,7 The inosine base represented a red colour in the NG18I.   
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Fig. S2  Mass spectra of MP11 (A) and AcMP11 (B). The concentrations of MP11 and AcMP11 
samples are ~15 and ~150 μM, respectively. In the case of MP11, one major ion was observed at 
m/z 620.9177, which indicated z = 3. Whereas, in the case of AcMP11, one major ion was observed 
at m/z 973.3765, which indicated z = 2. The theoretical molecular weight (MW) values of MP11 and 
AcMP11 are 1861.94 and 1946.01, respectively. The experimentally observed MW values are in 
good agreement with the theoretical values.  
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Fig. S3  Down-shifted portions of the 1H NMR spectra of the AcMP11–[d(TTAGGG)]4 hybrid-
complex in 90% 1H2O/10% 2H2O, 300 mM KCl, 50 mM potassium phosphate buffer at 25 ºC and 
the indicated pHs (left). The plot of the observed shifts of the hemin methyl proton signal against 
the pHs (right). The hemin methyl proton signals in the spectra of each hybrid-complex are 
connected by dotted lines. The molecular structure of the c-type hemin is schematically illustrated 
in the upper right corner. A pKa value was observed at ~11.5.  
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Fig. S4  1H NMR spectra of the AcMP11–[d(TTAGGG)]4 hybrid-complex in 90% 1H2O/10% 2H2O 
(A and A’) and 2% 1H2O/98% 2H2O (B and B’), with 300 mM KCl and 50 mM potassium 
phosphate buffer at pH6.80 and 25 °C. The molecular structure of the G-quartet is schematically 
illustrated in the upper left corner. Peaks a’ ‒ c’ and a ‒ b are due to guanine imino protons of the 
free and AcMP11-bound [d(TTAGGG)]4, respectively.  
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Table S1  The DNA base protons shifts (ppm) of [d(TTAGGG)]4 and AcMP11–
[d(TTAGGG)]4 complex in 90% H2O/10% 2H2O, 300 mM KCl, 50 mM potassium 
phosphate buffer, pH6.80, and 25 °C 

 
NH 

 
H2/H8  H6 

G6 G5 G4 A3 T2 T1 

Free 10.42 10.80 11.20  8.00/8.28  7.20 7.30

Complex n.d.b 9.26 9.99  7.75/8.08  7.06 7.20

∆δa n.d.b –1.54 –1.21  –0.25/–0.20  –0.14–0.10

a) The differences in the shift between the corresponding signals of AcMP11–[d(TTAGGG)]4 complex 
and [d(TTAGGG)]4, i.e., ∆δ = δcomplex – δG4. b) Not determined due to extremely large line broadening. 
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Fig. S6  Portions of the 1H-1H NOESY spectrum of [d(TTAGGG)]4 in the present of 0.9 equivalent 
of AcMP11 in 90% 1H2O/10% 2H2O, 300 mM KCl and 50 mM potassium phosphate buffer at 
pH6.80 and 25 °C. Schematic representation of structure of the [d(TTAGGG)]4 is illustrated in the 
under right corner. A mixing time of 100 ms was used to record the NOESY spectrum. Signal 
assignments of the selected proton signals are shown with the spectra. For example, Gn-NHF and 
Gn-NHC, were n = 4, 5, or 6, represent the free [d(TTAGGG)]4 and AcMP11–[d(TTAGGG)]4 
complex, respectively. 
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Fig. S7  Portions of the 1H-1H TOCSY spectrum of [d(TTAGGG)]4 in the present of 0.9 equivalent 
of AcMP11 in 90% 1H2O/10% 2H2O, 300 mM KCl and 50 mM potassium phosphate buffer at 
pH6.80 and 25 °C. A mixing time of 80 ms was used to record the spectrum. Signal assignments of 
the selected protons of T1-Me, T1-H6, T2-Me and T2-H6 are shown with the spectra. For example, 
Tn-H6F and Tn-H6C, were n = 1 or 2, represent the free [d(TTAGGG)]4 and AcMP11–
[d(TTAGGG)]4 complex, respectively. 
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Fig. S8  Absorption spectra of AcMP11 (black) and AcMP11–[d(TTAGGG)]4 hybrid-complex 
(red) in 300 mM KCl and 50 mM potassium phosphate buffer at pH6.80 and 25 °C. Magnified 
spectrum (×5) in the 550 ‒ 700 nm region is also shown. The absorbance at ~625 nm is 
characteristic of a ferric high-spin (S = 5/2) hemin.8 
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Fig. S9  (A) Absorption spectra, 320 – 500 nm, of hemin in the presence of various concentrations 
of [d(TTAGGG)]4, in 300 mM KCl and 50 mM potassium phosphate buffer, pH6.80, together with 
0.08 w/v% Triton X-100 and 0.5 v/v% DMSO, at 25 °C. (B) Plot of the 403 nm absorbance against 
concentration of [d(TTAGGG)]4. A hemin binding constant (Ka) value of 21.46 ± 1.85 μM−1 was 
obtained for the hemin–[d(TTAGGG)]4 complex. The Ka value was in agreement with that reported 
previously for the hemin–[d(TTAGGG)]4 complex.9 
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Fig. S10  Absorption spectra, 370 – 435 nm, of AcMP11 in the presence of various concentrations 
of NG8I (A), [d(TTAGGGp)]4 (B), and [d(TTAGGGT)]4 (C), respectively, in 300 mM KCl and 50 
mM potassium phosphate buffer at pH6.80 and 25 °C. Plots of the 396 nm absorbance against 
concentrations of NG8I (A’), [d(TTAGGGp)]4 (B’), and [d(TTAGGGT)]4 (C’), respectively. The 
AcMP11 binding constant (Ka) values of 5.32 ± 0.45 μM−1, 1.50 ± 0.42 μM−1, and 0.14 ± 0.01 μM−1 
were obtained for the AcMP11–NG18I, AcMP11–[d(TTAGGGp)]4, and AcMP11–
[d(TTAGGGT)]4 hybrid-complexes, respectively.  
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Fig. S11  Time-evolution of 414 nm absorbance due to ABTS oxidation by the AcMP11–
[d(TTAGGG)]4 (●), AcMP11–NG18I (▲), AcMP11–[d(TTAGGGp)]4 (■), and AcMP11–
[d(TTAGGGT)]4 (◆) complexes. Samples comprised 0.1 μM catalyst, 0.5 mM ABTS, and 4 mM 
H2O2 in 100 mM KCl and 50 mM potassium phosphate buffer, pH6.80 at 25 °C. 
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Fig. S12  Time-evolution of 414 nm absorbance due to ABTS oxidation by the (A) AcMP11–
[d(TTAGGG)]4, (B) AcMP11–NG18I, and (C) AcMP11–[d(TTAGGGp)]4 hybrid-complexes. 
Samples comprised 0.1 μM catalyst, 0.5 mM ABTS, and 0 – 8 mM H2O2 in 100 mM KCl and 50 
mM potassium phosphate buffer, pH6.80 at 25 °C. 
 


