Synthesis of Complex Aryl MIDA Boronates by Rh-Catalyzed [2+2+2] Cycloaddition

John M. Halford-McGuff, David B. Cordes, and Allan J. B. Watson*

EaSTCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, U.K.

*Email: <u>aw260@st-andrews.ac.uk</u>

Supporting Information

Contents

1	General	S2
2	General Procedures and Synthesis of Starting Materials	S2
3	Optimization Data	S5
4	Product Characterisation Data	S6
5	General Procedure for Electronic Competition Experiments	S19
6	General Procedure for Steric Competition Experiments	S20
7	X-ray Diffraction Data	S22
8	References	S23
9	Spectra	S24

1. General

Reagents and solvents were obtained from commercial suppliers and were not purified further unless specified. Purification (where specified) was performed following the standard procedures.¹ Dry solvents (THF, CH₂Cl₂) were provided by a PureSolv SPS-400-5 solvent purification system.

Reactions were carried out in standard borosilicate glassware or 2 mL microwave vials with septum caps. Glassware was either flame-dried under vacuum or allowed to dry in a 180 °C oven for 24 h before use and then sparged with nitrogen. Room temperature was approximately 18 °C. Reactions at high temperature were heated using a DrySyn metal heating baths or a silicone oil bath. Reactions at 0 °C were performed using and ice/water bath, -5 °C reaction temperatures were achieved with ice/brine mixture, and -78 °C was using dry ice/acetone baths. Degassing was performed by the freeze-pump-thaw technique over three cycles. Additions over times greater than 1 h were performed using either a kdScientific 200 or a World Precision Instruments Aladdin-220 syringe pump.

TLC was carried out using Merck aluminium-backed silica plates coated with F_{254} fluorescent indicator, analysed under UV light and developed using aqueous KMnO₄ or ethanolic vanillin solutions, where appropriate. Flash column chromatography performed using silica gel (40-62 μ m, Fluorochem).

¹H, ¹³C (DEPTQ) and ¹⁹F NMR spectra were recorded by either a Bruker AVII 400 (BBFO probe) or AVIII-HD 500 (and AVIII 500 with BBFO+ and Prodigy BBFO probes, respectively) at 400-101-376 MHz or at 500-126-377 MHz, respectively. ¹¹B NMR spectra were recorded on a Bruker AV300 spectrometer at 128 MHz. All spectra were recorded at room temperature with the deuterated solvents used as a lock for spectra and internal reference (dchloroform: ¹H, 7.26 ppm; ¹³C, 77.16 ppm; *d*₆-acetone: ¹H, 2.05 ppm, ¹³C, 29.8 ppm; *d*₆-dimethylsulfoxide: ¹H 2.50 ppm, ¹³C 39.5 ppm; d₃-acetonitrile: ¹H 1.94 ppm, ¹³C 1.3 ppm). For ¹¹B NMR, samples were externally referenced to F₃B•OEt₂ in CDCl₃. NMR spectra are reported as follows: chemical shift/ppm (multiplicity, coupling constant(s), number of nuclei, assignment). Multiplicity given as br (broad), s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), h (hextet), m (multiplet), and combinations thereof. Throughout, ¹³C signals adjacent to boron were not observed. Signals which overlap with one another are described as multiplets. ¹¹B NMRs are often contaminated by BF4 ion, leading to intense signal at ~0 ppm, this signal dominates spectra but integrates to very small area compared to product signal due to both the sharpness of the BF_4 and the broadness of the BMIDA signals. Note that restricted rotation around the C-B axis led to signal broadening. Where impurities are present in NMR spectra, they are assigned a grey chemical shift marker. The NMR solvents are assigned with a red chemical shift marker. IR spectra were recorded using a Shimadzu IT Affinity-1 Fourier transform IR spectrophotometer with a Specac Quest ATR (diamond puck). The spectra were recorded as specified in the procedure as films (using CH_2Cl_2), as solids or as neat liquids. Transmittance is recorded with maximal absorption wavenumbers given as cm⁻¹. Mass spectra were recorded on a Bruker micrOTOF benchtop ESI with either positive or negative electrospray ionisation or EI using a Thermo Mat 900XP, Double Focusing Hi-resolution mass spectrometer. The number of decimal places is determined by the accuracy of the machine (i.e., both 4 and 5 digits given).

2. General Procedures and Synthesis of Starting Materials

Synthetic procedures of alkyne BMIDA starting materials to produce **3–8**, **10**, **11**, **13** can be found in the literature.^{2,3} Preparations of the following molecules can be found in corresponding references:

5-(prop-2-yn-1-yloxy)benzo[d][1,3]dioxole⁴

(but-3-yn-1-yloxy)(tert-butyl)dimethylsilane⁵

N,N-dibenzylbut-3-yn-1-amine⁶

Syntheses of diyne starting materials for products are reported in the corresponding references 3–17,⁷ 18,¹ 19,⁸ 20,⁷ 21,⁹ 22,¹¹ 26.¹² Diynes for 23, 24, and 25 are commercially available.

General procedure A: Synthesis of alkyne BMIDA through metalation-borylation.

A flame-dried flask was charged with the relevant alkyne (1.00 equiv) and dissolved in dry THF (750 mM) under nitrogen and the solution was cooled to 0 °C. EtMgBr solution (\sim 3.00 M in Et₂O, 1.20 equiv) was added dropwise and the mixture was allowed to stir for 10 mins before allowing to warm to RT. Another flame-dried flask was

charged with B(OMe)₃ (2.00 equiv) in dry THF (1.50 M) under nitrogen and cooled to -78 °C. The metallated alkyne solution was added dropwise to the trimethylborate solution then the solution was stirred at -78 °C for 1 h before allowing to warm to RT over 2 h. MIDA acid (2.00 equiv) and DMSO (1.00 mL/mmol alkyne) were added, and volatiles were removed *via* rotary evaporation. DMSO was then removed *via* high vacuum distillation and after cooling to RT, brine:H₂O (1:1, ~7 mL/mmol alkyne) was added. The mixture was extracted with EtOAc:acetone (3:2, ~7 mL/mmol alkyne) twice. The combined organic extracts were washed with H₂O, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to yield the crude product which was purified *via* recrystallisation or flash column chromatography to yield the desired product.

General procedure B: Synthesis of alkyne BMIDA through Sonogashira coupling

An oven-dried microwave vial was charged with acetylene BMIDA (1.20 equiv), $[Pd^{II}]$ complex (either Pd(PPh_3)_2Cl_2 or Pd(dppf)Cl_2, 5.00 mol%), and CuI (10.0 mol%). After evacuating and backfilling with nitrogen, DMF (200 mM) was added followed by NEt₃ (3.00 equiv) and the aryl halide (1.00 equiv). The mixture was allowed to stir at RT for 16 h before undergoing work up. See individual compounds for work up procedures.

General procedure C: [2+2+2] Cycloaddition of diynes and internal borylated alkynes

An oven dried microwave vial was charged with the relevant alkyne BMIDA (1.00 equiv), $[Rh(COD)(MeCN)_2]BF_4$ (20.0 mol%), and BINAP (40.0 mol%). The vial was then sealed, evacuated, and backfilled with nitrogen. Acetone (100 mM/2) was added, and the solution was heated to 60 °C. A separate flask was charged with the diyne (6.00 equiv) and acetone (100 mM/2), this solution was added over 15 h using syringe pump addition. Once addition was complete, the mixture was allowed to stir for a further 1 h before allowing to cool to RT. The mixture was then filtered through celite and concentrated *in vacuo* to yield the crude product, which was purified by flash column chromatography.

2-((3-acetylphenyl)ethynyl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (S5)

Prepared according to **General Procedure B** from 3-bromoacetophenone (55.0 μ L, 418 μ mol, 1.20 equiv) and acetylene BMIDA (63.0 mg, 347 mmol, 1.00 equiv) using Pd(dppf)Cl₂. Work up procedure was dilution of reaction mixture with acetone, filtering through celite, and concentrating *in vacuo* to yield the crude which was purified by flash column chromatography (silica, 0–10% MeCN in CH₂Cl₂) to yield the desired product as a white solid (95.0 mg, 91%)

¹H NMR (500 MHz, Acetone- d_6) δ_H 8.08 (td, J = 1.77, 0.58 Hz, 1H), 8.00 (ddd, J = 7.87, 1.79, 1.15 Hz, 1H), 7.74 (dt, J = 7.72, 1.48 Hz, 1H), 7.55 (td, J = 7.75, 0.63 Hz, 1H), 4.37 (d, J = 16.95 Hz, 2H), 4.22 (d, J = 16.93 Hz, 2H), 3.37 (s, 3H), 2.62 (s, 3H).

¹³C NMR (126 MHz, Acetone-*d*₆) δ_C 196.5, 167.7, 137.5, 135.7, 131.3, 128.9, 128.3, 123.6, 98.6, 61.5, 47.7, 25.9.

¹¹B NMR (96 MHz, Acetone- d_6) δ_B 6.6.

IR (ATR, solid): 1767, 1682, 1275, 1223, 1098, 1069, 1024, 1009, 993, 959 cm⁻¹.

HRMS (ESI): Calculated for 300.1038 m/z, found 300.1035 m/z [C₁₅H₁₄BNO₅+H]⁺.

2-(4-((*tert*-butyldimethylsilyl)oxy)but-1-yn-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (S9)

TBSO

Prepared according to **General Procedure A** from (but-3-yn-1-yloxy)(*tert*-butyl)dimethylsilane (13.8 g, 75 mmol, 1.0 equiv.). Purified by flash column chromatography (silica, 0-25% MeCN in CH₂Cl₂) to give the desired product as a white solid (8.14 g, 32%).

¹H NMR (500 MHz, Acetone- d_6) $\delta_{\rm H}$ 4.25 (d, J = 16.87 Hz, 2H), 4.05 (d, J = 16.98 Hz, 2H), 3.77 (t, J = 6.96 Hz, 2H), 3.21 (s, 3H), 2.44 (t, J = 6.97 Hz, 2H), 0.91 (s, 9H), 0.09 (s, 6H).

¹³C NMR (126 MHz, Acetone- d_6) δ_C 167.7, 98.7, 61.7, 61.3, 47.4, 25.4, 23.5, 17.9, -6.0.

¹¹B NMR (96 MHz, Acetone- d_6) δ_B 6.0.

IR: (ATR, solid): 2955, 2930, 2857, 2208, 1759, 1462, 1337, 1252, 1024 cm⁻¹.

HRMS (ESI): Calculated for 362.1581 *m/z*, found 362.1560 *m/z* [C₁₅H₂₆BNO₅Si+Na]⁺.

4-((6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)ethynyl)phenyl acetate (S12)

Prepared according to **General Procedure B** from 4-iodophenyl acetate (262 mg, 1.00 mmol, 1.00 equiv) using [Pd(PPh₃)₂]Cl₂. Work up procedure was dilution of reaction mixture with EtOAc followed by three washings with 10% aqueous LiCl. The organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo* to yield the crude product which was purified *via* trituration with Et₂O to yield the desired product as a beige solid (244 mg, 77%).

¹H NMR (500 MHz, Acetone- d_6) $\delta_{\rm H}$ 7.61 – 7.51 (m, 2H), 7.19 – 7.11 (m, 2H), 4.35 (d, J = 16.95 Hz, 2H), 4.20 (d, J = 16.90 Hz, 2H), 3.34 (s, 3H), 2.28 (s, 3H).

¹³C NMR (126 MHz, Acetone- d_6) δ_C 168.6, 167.7, 151.2, 132.8, 122.1, 120.5, 99.3, 61.5, 47.6, 20.1.

¹¹B NMR (96 MHz, Acetone- d_6) δ_B 6.7.

IR (ATR, solid): 1769, 1290, 1181, 1022, 472, 422 cm⁻¹.

HRMS (ESI): Calculated for 316.0987 *m/z*, found 316.0990 *m/z* [C₁₅H₁₄BNO₆+H]⁺.

2-(4-(dibenzylamino)but-1-yn-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (S14)

Bn₂N、

BMIDA

Prepared according to a modified General Procedure A: flame-dried 25 mL Schlenk flask was charged with N,Ndibenzyl-3-butyn-1-amine (623 mg, 2.50 mmol, 1.00 equiv) and the flask was evacuated and re-filled with N_2 three times. Anhydrous THF (5.00 mL) was added and the mixture was cooled to -5 °C in an ice/brine bath. To this was added, dropwise, EtMgBr (2.36 M in Et₂O, 1.11 mL, 2.63 mmol, 1.05 equiv). After complete addition, the resultant suspension was stirred for a further 30 minutes at -5 °C before being gradually warmed to RT and stirring for a further 1 h. In a separate flame-dried 50 mL flask, B(OMe)₃ (360 µL, 3.23 mmol, 1.29 equiv) was dissolved in anhydrous THF (5.0 mL) and cooled to -78 °C. The metalated alkyne solution was added to this solution dropwise and the resulting solution was stirred at -78 °C for 45 minutes. The mixture was then allowed to warm to RT and stirred for a further 1 hour. After this point, ethereal HCl (2.00 M in Et₂O, 3.75 mL, 7.50 mmol, 3.00 equiv) was added dropwise followed by the addition of anhydrous DMF (7.00 mL). The volatiles were removed in vacuo and the remaining DMF solution was transferred to an oven-dried microwave vial then MIDA anhydride (968 mg, 7.50 mmol, 3.00 equiv) and H₂O (47.0 uL, 2.60 mmol, 1.00 equiv) were added. The vial was sealed and the mixture was stirred at 70 °C for 1.5 h then allowed to cool to RT. 10% aqueous LiCl (10 mL) was added followed by EtOAc:acetone (3:2, 10.0 mL), the pH of the aqueous phase was adjusted to 7 by the addition of saturated aqueous NaHCO₃ solution, and the biphasic system was extracted with EtOAc:acetone (3:2, 3×20 mL). The combined organic fractions were washed with three further portions of 10% aqueous LiCl (3×-10 mL) then the organic phase

was dried over Na_2SO_4 , filtered, and concentrated *in vacuo* to yield the crude which was purified by flash column chromatography (silica, 0–20% MeCN in CH₂Cl₂) to yield the desired product as a white solid (730 mg, 72%).

¹H NMR (400 MHz, Acetonitrile- d_3) $\delta_{\rm H}$ 7.47 – 7.35 (d, J = 7.2 Hz, 4H), 7.32 (t, J = 7.4 Hz, 4H), 7.28 – 7.20 (m, 2H), 3.94 (d, J = 17.0 Hz, 2H), 3.78 (d, J = 17.0 Hz, 2H), 3.60 (s, 4H), 2.92 (s, 3H), 2.63 (t, J = 7.2 Hz, 2H), 2.43 (t, J = 7.2 Hz, 2H).

¹³C NMR (101 MHz, Acetonitrile-*d*₃) δ_C 168.8, 140.7, 129.7, 129.2, 127.9, 101.0 62.2, 58.5, 52.7, 48.5, 18.3.

¹¹B NMR (96 MHz, Acetonitrile- d_3) δ_B 6.1.

IR: (ATR, film): 2205, 1763, 1452, 1281, 1165, 1028, 988, 735, 698 cm⁻¹

HRMS (ESI): Calculated for 427.1800 *m/z*, found 427.1798 *m/z* [C₂₃H₂₅BN₂O₄+Na]⁺.

2-(3-(benzo[d][1,3]dioxol-5-yloxy)prop-1-yn-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (S15)

BMIDA

Prepared according to **General Procedure A** from 5-(prop-2-yn-1-yloxy)benzo[d][1,3]dioxole (705 mg, 4.00 mmol, 1.00 equiv.). Purified by flash column chromatography (silica, 10–20% MeCN in CH₂Cl₂) followed by recrystallisation from EtOAc:Acetone to yield the desired product as a white solid (331 mg, 25%).

¹H NMR (500 MHz, DMSO-*d*₆) $\delta_{\rm H}$ 6.82 (d, *J* = 8.53 Hz, 1H), 6.69 (d, *J* = 2.50 Hz, 1H), 6.44 (dd, *J* = 8.52, 2.55 Hz, 1H), 5.97 (s, 2H), 4.74 (s, 2H), 4.27 (d, *J* = 17.18 Hz, 2H), 4.06 (d, *J* = 17.15 Hz, 2H), 2.93 (s, 3H).

¹³C NMR (126 MHz, DMSO-*d*₆) δ_C 169.1, 153.1, 148.3, 142.1, 108.4, 106.9, 101.6, 98.7, 96.0, 61.9, 57.3, 48.3.

¹¹B NMR (96 MHz, DMSO- d_6) δ_B 5.8.

IR (ATR, solid): 1761, 1487, 1284, 1268, 1180, 1132, 1030, 1011, 988, 870, 775 cm⁻¹.

HRMS (ESI): Calculated for 354.0756 *m*/*z*, found 354.0755 *m*/*z* [C₁₅H₁₄BNO₇+Na]⁺.

2-(1-ferrocenylethynyl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (S16)

Prepared according to **General Procedure A** from ethynlferrocene (840 mg, 4.00 mmol, 1.00 equiv.). Purified by flash column chromatography (silica, 0-30% MeCN in CH₂Cl₂) to give the desired product as a red solid (750 mg, 51%).

¹H NMR (500 MHz, DMSO-*d*₆) $\delta_{\rm H}$ 4.50 (t, *J* = 1.86 Hz, 2H), 4.31 – 4.27 (m, 4H), 4.24 (s, 5H), 4.12 (d, *J* = 17.15 Hz, 2H), 3.05 (s, 3H).

¹³C NMR (126 MHz, DMSO-*d*₆) δ_C 169.2, 99.1, 71.7, 70.2, 69.3, 64.8, 62.0, 48.4.

¹¹B NMR (96 MHz, DMSO- d_6) δ_B 6.5.

IR (ATR, solid): 2187, 1765, 1452, 1072, 1001 cm⁻¹.

HRMS (ESI): Calculated for 365.0522 *m/z*, found 365.0516 *m/z* [C₁₇H₁₆BFeNO₄]⁺.

3. Optimization Data

Table 1: Selected optimization data.²

(6.0	e	q	ui	v)
over	٢	1	5	h

Entry	Deviation from Standard Conditions	Yield (%) ^a
1		75
2	10 mol% Rh, 20 mol% ligand	39
3	PPh ₃ as ligand	<5
4	dppp as ligand	10
5	[Rh(COD)Cl] ₂ (10 mol%)	NR
6	[Ru(COD)Cp*]Cl	<5
7	RT	32
8	80 °C	70
9	Diyne added at outset (no slow addition)	22

^{*a*}Yields determined by quantitative NMR spectroscopy against internal standard (1,4-dinitrobenzene). NR = [2+2+2] reaction not observed.

4. Product Characterisation Data

6-methyl-2-(6-methyl-2-tosylisoindolin-5-yl)-1,3,6,2-dioxazaborocane-4,8-dione (3)

Prepared according to **General Procedure C** from 6-methyl-2-(prop-1-yn-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione (19.5 mg, 100 μ mol, 1.00 equiv.) and 4-methyl-*N*,*N*-di(prop-2-yn-1-yl)benzenesulfonamide (148 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–10% MeCN in CH₂Cl₂) to yield the desired product as a white powder (32.3 mg, 73%).

¹H NMR (500 MHz, Acetone-*d*₆) $\delta_{\rm H}$ 7.85 – 7.76 (m, 2H), 7.48 – 7.41 (m, 2H), 7.34 (s, 1H), 7.07 (s, 1H), 4.57 (s, 4H), 4.35 (d, *J* = 17.16 Hz, 2H), 4.15 (d, *J* = 17.13 Hz, 2H), 2.74 (s, 3H), 2.40 (m, 6H).

 13 C NMR (101 MHz, Acetone- d_6) $\delta_{\rm C}$ 169.3, 144.6, 143.0, 138.4, 134.9, 134.2, 130.8, 129.1, 128.6, 125.9, 63.6, 54.5, 54.4, 48.3, 23.1, 21.4.

¹¹B NMR (96 MHz, Acetonitrile-d₃) δ_B 12.2.

Spectral data consistent with the literature.²

6-methyl-2-(6-(thiophen-2-yl)-2-tosylisoindolin-5-yl)-1,3,6,2-dioxazaborocane-4,8-dione (4)

Prepared according to **General Procedure C** from 6-methyl-2-(thiophen-2-ylethynyl)-1,3,6,2-dioxazaborocane-4,8-dione (26.3 mg, 100 μ mol, 1.00 equiv.) and 4-methyl-*N*,*N*-di(prop-2-yn-1-yl)benzenesulfonamide (148 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–15% MeCN in CH₂Cl₂) to yield the desired product as a white powder (25.3 mg, 50%).

¹H NMR (500 MHz, Acetone- d_6) $\delta_{\rm H}$ 7.83 – 7.77 (m, 2H), 7.67 (s, 1H), 7.45 – 7.40 (m, 3H), 7.18 (s, 1H), 7.01 (dd, J = 3.51, 1.18 Hz, 1H), 6.96 (dd, J = 5.14, 3.49 Hz, 1H), 4.68 – 4.61 (m, 4H), 4.10 (d, J = 16.96 Hz, 2H), 3.53 (d, J = 16.93 Hz, 2H), 2.66 (s, 3H), 2.39 (s, 3H).

¹³C NMR (126 MHz, Acetone-*d*₆) δ _C 167.7, 143.8, 143.5, 139.0, 137.3, 136.0, 133.8, 129.9, 128.9, 128.5, 127.7, 127.2, 126.6, 125.7, 62.7, 53.6, 53.5, 47.6, 20.5.

¹¹B NMR (96 MHz, Acetone- d_6) δ_B 11.9.

IR (ATR, film): 1769, 1705, 1339, 1161, 1096, 1030, 1005, 667, 575, 546 cm⁻¹.

HRMS (ESI): Calculated for 511.1163 *m/z*, found 511.1168 *m/z* [C₂₄H₂₃BN₂O₆S₂+H]⁺.

2-(6-(3-acetylphenyl)-2-tosylisoindolin-5-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (5)

Prepared according to **General Procedure** C from 2-((3-acetylphenyl)ethynyl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (26.3 mg, 100 μ mol, 1.00 equiv.) and 4-methyl-*N*,*N*-di(prop-2-yn-1-yl)benzenesulfonamide (148 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–15% MeCN in CH₂Cl₂) to yield the desired product as a white powder (25.3 mg, 50%).

¹H NMR (500 MHz, Acetone- d_6) $\delta_{\rm H}$ 7.93 – 7.88 (m, 2H), 7.86 – 7.82 (m, 2H), 7.68 (s, 1H), 7.54 (dt, J = 7.61, 1.46 Hz, 1H), 7.51 – 7.44 (m, 3H), 7.08 (d, J = 0.96 Hz, 1H), 4.70 (d, J = 2.27 Hz, 2H), 4.66 (m, 2H), 4.06 (brd, J = 16.73 Hz, 2H), 3.75 – 3.21 (m, 2H), 2.62 (s, 3H), 2.60 (s, 3H), 2.43 (s, 3H).

¹³C NMR (126 MHz, Acetone-*d*₆) δ_C 197.1, 167.5, 146.7, 143.8, 143.5, 137.4, 136.6, 135.3, 133.9, 133.8, 130.1, 129.9, 128.7, 128.2, 127.8, 126.3, 125.2, 62.5, 53.6, 53.6, 47.6, 26.0, 20.5.

¹¹B NMR (96 MHz, Acetone- d_6) δ_B 11.8.

IR (ATR, film): 1763, 1682, 1339, 1289, 1250, 1184, 1161, 1121, 1096, 1055, 1030, 667, 575, 548 cm⁻¹.

HRMS (ESI): Calculated for 569.1524 *m/z*, found 569.1507 *m/z* [C₂₈H₂₇BN₂O₇S+Na]⁺.

2-(6-(4-methoxyphenyl)-2-tosylisoindolin-5-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (6)

Prepared according to **General Procedure C** from 2-((4-methoxyphenyl)ethynyl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (28.7 mg, 100 μ mol, 1.00 equiv.) and 4-methyl-*N*,*N*-di(prop-2-yn-1yl)benzenesulfonamide (148 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–10% MeCN in CH₂Cl₂) to yield the desired product as a white powder (54.1 mg, >99%).

¹H NMR (500 MHz, Acetone- d_6) $\delta_{\rm H}$ 7.84 – 7.79 (m, 2H), 7.64 (s, 1H), 7.43 (m, 2H), 7.22 – 7.17 (m, 2H), 7.01 – 6.98 (m, 1H), 6.89 – 6.84 (m, 2H), 4.66 – 4.63 (m, 2H), 4.62 – 4.60 (m, 2H), 4.00 (d, *J* = 16.86 Hz, 2H), 3.79 (s, 3H), 3.39 (d, *J* = 16.85 Hz, 2H), 2.58 (s, 3H), 2.40 (s, 3H).

¹³C NMR (126 MHz, Acetone-*d*₆) δ_C 167.6, 158.8, 147.3, 143.7, 137.1, 135.4, 134.6, 133.8, 130.9, 129.9, 128.5, 127.8, 125.4, 113.4, 62.6, 54.7, 53.6, 53.6, 47.4, 20.5.

¹¹B NMR (96 MHz, Acetone- d_6) δ_B 12.2.

IR (ATR, film): 1763, 1707, 1339, 1223, 1161, 1094, 1028, 667, 548, 530 cm⁻¹.

HRMS (ESI): Calculated for 535.1705 *m/z*, found 535.1710 *m/z* [C₂₇H₂₇BN₂O₇S+H]⁺.

2-(6-cyclopropyl-2-tosylisoindolin-5-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (7)

BMIDA TsN

Prepared according to **General Procedure C** from 2-(cyclopropylethynyl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (22.1 mg, 100 µmol, 1.00 equiv.) and 4-methyl-*N*,*N*-di(prop-2-yn-1-yl)benzenesulfonamide (148 mg, 600

 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–10% MeCN in CH₂Cl₂) to yield the desired product as a white powder (30.4 mg, 65%).

¹H NMR (500 MHz, Acetone- d_6) $\delta_{\rm H}$ 7.80 – 7.76 (m, 2H), 7.43 – 7.39 (m, 2H), 7.34 (s, 1H), 6.85 (s, 1H), 4.54 (appq, J = 2.48 Hz, 4H), 4.34 (d, J = 17.18 Hz, 2H), 4.13 (d, J = 17.18 Hz, 2H), 2.81 (s, 3H), 2.38 (s, 3H), 2.31 (tt, J = 8.44, 5.39 Hz, 1H), 0.94 – 0.89 (m, 2H), 0.70 – 0.64 (m, 2H).

 13 C NMR (126 MHz, Acetone-*d*₆) $\delta_{\rm C}$ 169.3, 148.5, 144.5, 138.6, 134.8, 133.8, 130.7, 129.0, 128.6, 118.9, 63.5, 54.6, 54.3, 48.4, 21.4, 15.4, 9.9.

¹¹B NMR (128 MHz, Acetone- d_6) δ_B 12.5.

IR (ATR, film): 1763, 1707, 1339, 1190, 1161, 1096, 1053, 1026, 667, 550 cm⁻¹.

HRMS (ESI): Calculated for 469.1599 *m/z*, found 469.1603 *m/z* [C₂₃H₂₅BN₂O₆S+H]⁺.

2-(6-(1-acetyl-1*H*-indol-5-yl)-2-tosylisoindolin-5-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (8)

Prepared according to **General Procedure C** 2-((1-acetyl-1*H*-indol-5-yl)ethynyl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (33.8 mg, 100 μ mol, 1.00 equiv.) and 4-methyl-*N*,*N*-di(prop-2-yn-1-yl)benzenesulfonamide (148 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–15% MeCN in CH₂Cl₂) to yield the desired product as a brown solid (52.0 mg, 89%).

¹H NMR (500 MHz, Acetone- d_6) δ_H 8.36 (d, J = 8.44 Hz, 1H), 7.87 – 7.80 (m, 2H), 7.76 (d, J = 3.76 Hz, 1H), 7.69 (s, 1H), 7.52 (dd, J = 1.84, 0.69 Hz, 1H), 7.47 – 7.40 (m, 2H), 7.24 (dd, J = 8.44, 1.82 Hz, 1H), 7.06 (s, 1H), 6.66 (dd, J = 3.74, 0.74 Hz, 1H), 4.68 (s, 2H), 4.65 (m, 2H), 3.96 (brm, 2H), 3.60 – 3.10 (brm, 2H), 2.69 (s, 3H), 2.63 (s, 3H), 2.41 (s, 3H).

¹³C NMR (126 MHz, Acetone-*d*₆) δ _C 169.0, 167.6, 147.8, 143.8, 138.5, 137.1, 134.7, 134.4, 133.8, 130.3, 129.9, 128.5, 127.8, 127.1, 126.4, 125.7, 122.3, 115.6, 108.6, 62.6, 53.6, 53.6, 47.5, 23.1, 20.6.

¹¹B NMR (96 MHz, Acetone d_6) δ_B 11.7.

IR (ATR, film): 2363, 1767, 1706, 1331, 1161, 1026, 667 cm⁻¹.

HRMS (ESI): Calculated for 608.1633 *m*/*z*, found 608.1633 *m*/*z* [C₃₀H₂₈BN₃O₇S+Na]⁺.

2-(6-(2-((*tert*-butyldimethylsilyl)oxy)ethyl)-2-tosylisoindolin-5-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (9)

TsN o^{Si}

Prepared according to **General Procedure C** from 2-(4-((*tert*-butyldimethylsilyl)oxy)but-1-yn-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (33.9 mg, 100 μ mol, 1.00 equiv.) and 4-methyl-*N*,*N*-di(prop-2-yn-1-yl)benzenesulfonamide (148 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–15% MeCN in CH₂Cl₂) to yield the desired product as a white solid (30.6 mg, 52%).

¹H NMR (500 MHz, Acetonitrile- d_3) $\delta_{\rm H}$ 7.75 (d, J = 8.33 Hz, 2H), 7.40 – 7.35 (m, 2H), 7.23 (s, 1H), 7.11 (s, 1H), 4.58 (s, 2H), 4.55 (s, 2H), 4.06 (d, J = 17.20 Hz, 2H), 3.89 (d, J = 17.22 Hz, 2H), 3.78 (t, J = 6.56 Hz, 2H), 2.80 (t, J = 6.57 Hz, 2H), 2.47 (s, 3H), 2.39 (s, 3H), 0.82 (s, 9H), -0.07 (s, 6H).

 13 C NMR (126 MHz, Acetonitrile-*d*₃) $\delta_{\rm C}$ 168.4, 144.1, 143.6, 137.2, 133.9, 133.4, 129.9, 128.1, 127.6, 125.6, 64.4, 62.3, 53.6, 53.6, 47.4, 38.8, 25.3, 20.5, 17.9, -6.2.

¹¹B NMR (96 MHz, Acetonitrile- d_3) δ_B 12.1.

IR (ATR, film): 1763, 1709, 1163, 1034, 835, 667, 550, 530 cm⁻¹.

HRMS (ESI): Calculated for 587.2413 *m/z*, found 587.2418 *m/z* [C₂₈H₃₉BN₂O₇SSi+H]⁺.

2-(6-(((*tert*-butyldimethylsilyl)oxy)methyl)-2-tosylisoindolin-5-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (10)

Prepared according to **General Procedure C** from 2-(3-((*tert*-butyldimethylsilyl)oxy)prop-1-yn-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (32.5 mg, 100 μ mol, 1.00 equiv.) and 4-methyl-*N*,*N*-di(prop-2-yn-1-yl)benzenesulfonamide (148 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–15% MeCN in CH₂Cl₂) to yield the desired product as a white solid (11.3 mg, 20%).

¹H NMR (500 MHz, Acetonitrile- d_3) $\delta_{\rm H}$ 7.77 – 7.73 (m, 2H), 7.39 – 7.35 (m, 2H), 7.31 (s, 1H), 7.28 (s, 1H), 4.78 (s, 2H), 4.61 – 4.58 (m, 4H), 4.08 (d, J = 17.21 Hz, 2H), 3.93 (d, J = 17.22 Hz, 2H), 2.48 (s, 3H), 2.38 (s, 3H), 0.92 (s, 9H), 0.11 (s, 6H).

¹³C NMR (126 MHz, Acetonitrile-*d*₃) δ _C 168.5, 144.8, 144.1, 137.7, 135.1, 133.5, 129.8, 128.4, 127.6, 122.9, 65.2, 62.8, 53.7, 53.6, 48.3, 25.5, 20.5, 18.3, -6.0.

¹¹B NMR (96 MHz, Acetonitrile- d_3) δ_B 12.1.

IR (ATR, film): 1767, 1341, 1163, 1098, 1045, 837, 667 cm⁻¹.

HRMS (ESI): Calculated for 573.2257 *m/z*, found 573.2276 *m/z* [C₂₇H₃₇BN₂O₇SSi+H]⁺.

6-methyl-2-(6-phenyl-2-tosylisoindolin-5-yl)-1,3,6,2-dioxazaborocane-4,8-dione (11)

Prepared according to **General Procedure** C from 6-methyl-2-(phenylethynyl)-1,3,6,2-dioxazaborocane-4,8-dione (25.7 mg, 100 μ mol, 1.00 equiv.) and 4-methyl-*N*,*N*-di(prop-2-yn-1-yl)benzenesulfonamide (148 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–20% MeCN in CH₂Cl₂) to yield the desired product as a pale-yellow solid (44.5 mg, 88%).

¹H NMR (400 MHz, Acetonitrile- d_3) $\delta_{\rm H}$ 7.77 (d, J = 8.24 Hz, 2H), 7.58 (s, 1H), 7.41 – 7.38 (m, 2H), 7.36 – 7.30 (m, 3H), 7.24 – 7.18 (m, 2H), 6.96 (d, J = 1.01 Hz, 1H), 4.65 (m, 2H), 4.65 – 4.58 (m, 2H), 3.76 (d, J = 16.94 Hz, 2H), 3.29 (d, J = 17.03 Hz, 2H), 2.40 (m, 6H).

¹³C NMR (101 MHz, Acetonitrile-*d*₃) δ_C 167.8, 147.4, 144.2, 143.2, 137.2, 135.0, 133.5, 129.9, 129.6, 128.4, 127.9, 127.6, 127.0, 125.1, 62.5, 53.6, 53.6, 47.6, 17.8.

¹¹B NMR (128 MHz, Acetonitrile- d_3) δ_B 11.3.

IR (ATR, film): 1761, 1709, 1337, 1290, 1161, 1096, 1030, 665, 548, 530 cm⁻¹.

HRMS (ESI): Calculated for 505.1599 *m/z*, found 505.1604 *m/z* [C₂₆H₂₆BN₂O₆S+H]⁺.

4-(6-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-2-tosylisoindolin-5-yl)phenyl acetate (12)

BMIDA TsN

Prepared according to **General Procedure C** from 4-((6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)ethynyl)phenyl acetate (31.5 mg, 100 μ mol, 1.00 equiv.) and 4-methyl-*N*,*N*-di(prop-2-yn-1-yl)benzenesulfonamide (148 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–15% MeCN in CH₂Cl₂) to yield the desired product as a pale-yellow solid (10.9 mg, 19%).

¹H NMR (500 MHz, Acetone- d_6) $\delta_{\rm H}$ 7.87 – 7.81 (m, 2H), 7.66 (s, 1H), 7.49 – 7.43 (m, 2H), 7.34 – 7.28 (m, 2H), 7.09 – 7.03 (m, 3H), 4.70 – 4.66 (m, 2H), 4.66 – 4.63 (m, 2H), 4.04 (d, J = 16.95 Hz, 2H), 3.46 (d, J = 16.92 Hz, 2H), 2.61 (s, 3H), 2.42 (s, 3H), 2.28 (s, 3H).

¹³C NMR (126 MHz, Acetone- d_6) δ_C 168.7, 167.5, 150.0, 146.7, 143.8, 140.7, 137.2, 135.0, 133.8, 130.8, 129.9, 128.6, 127.8, 125.3, 121.2, 62.6, 53.6, 53.6, 47.5, 20.5, 20.1.

¹¹B NMR (96 MHz, Acetone- d_6) δ_B 12.2.

IR (ATR, film): 1749, 1707, 1339, 1221, 1194, 1161, 1096, 667, 586, 559, 542 cm⁻¹.

HRMS (ESI): Calculated for 585.14734 *m/z*, found 585.14532 *m/z* [C₂₈H₂₇BN₂O₈S+Na]⁺.

2-(6-(cyclohex-1-en-1-yl)-2-tosylisoindolin-5-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (13)

Prepared according to **General Procedure C** from 2-(cyclohex-1-en-1-ylethynyl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (31.5 mg, 100 μ mol, 1.00 equiv.) and 4-methyl-*N*,*N*-di(prop-2-yn-1yl)benzenesulfonamide (148 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–15% MeCN in CH₂Cl₂) followed by recrystallisation (Acetone-CH₂Cl₂-hexane) to yield the desired product as a paleyellow solid (10.9 mg, 19%).

¹H NMR (500 MHz, Acetonitrile- d_3) δ_H 7.85 – 7.73 (m, 2H), 7.41 – 7.35 (m, 3H), 6.86 (s, 1H), 5.38 – 5.30 (m, 1H), 4.62 – 4.55 (m, 4H), 4.01 (d, J = 17.14 Hz, 2H), 3.81 (brd, J = 17.51 Hz, 2H), 2.44 (s, 3H), 2.40 (s, 3H), 2.02 (s, 2H), 1.79 – 1.69 (m, 2H), 1.64 (m, 2H). One remaining CH₂ at around 2.20 ppm overlaps with residual water in NMR solvent.

 13 C NMR (126 MHz, Acetone- d_6) δ_C 168.5*, 150.1, 143.7, 143.5, 137.1, 133.9, 133.9, 129.8, 128.2, 127.7, 123.4, 123.3, 62.8, 53.6, 53.4, 48.3, 25.0, 25.0, 22.2, 21.4, 20.5. Peak assigned through HMBC as desired peak broadened into baseline.

¹¹B NMR (96 MHz, Acetone- d_6) δ_B 12.3.

IR (ATR, film): 1773, 1341, 1161, 1034, 669, 411 cm⁻¹.

HRMS (ESI): Calculated for 531.17316 *m/z*, found 531.17177 *m/z* [C₂₆H₂₉BN₂O₆S+Na]⁺.

2-(6-(2-(dibenzylamino)ethyl)-2-tosylisoindolin-5-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (14)

TsN BMIDA NBn₂

Prepared according to **General Procedure C** from 2-(4-(dibenzylamino)but-1-yn-1-yl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (404 mg, 1.00 mmol, 1.00 equiv.) and 4-methyl-N,N-di(prop-2-yn-1yl)benzenesulfonamide (1.48 mg, 6.00 mmol, 6.00 equiv.). Purified by flash column chromatography (silica, 0– 15% MeCN in CH₂Cl₂) to yield the desired product as a brown solid (413 mg, 63%).

¹H NMR (400 MHz, Acetonitrile- d_3) $\delta_{\rm H}$ ¹H NMR (500 MHz, Acetonitrile- d_3) δ 7.78 – 7.74 (m, 2H), 7.39 – 7.35 (m, 2H), 7.34 – 7.31 (m, 4H), 7.29 – 7.25 (m, 4H), 7.25 – 7.20 (m, 2H), 7.16 (s, 1H), 6.93 (s, 1H), 4.56 (s, 2H), 4.52 (d, *J* = 2.08 Hz, 2H), 4.02 (d, *J* = 17.21 Hz, 2H), 3.82 (d, *J* = 17.20 Hz, 2H), 3.64 (s, 4H), 2.85 (dd, *J* = 8.82, 6.11 Hz, 2H), 2.65 – 2.59 (m, 2H), 2.37 (s, 3H), 2.34 (s, 3H).

¹³C NMR (126 MHz, Acetonitrile-*d*₃) $\delta_{\rm C}$ 168.41, 145.2, 144.1, 139.9, 137.4, 133.7, 133.4, 129.9, 128.7, 128.1, 128.1, 127.6, 126.8, 124.8, 117.4, 62.2, 57.7, 56.0, 53.6, 53.5, 47.1, 32.8, 20.5.

¹¹B NMR (96 MHz, Acetonitrile- d_3) δ_B 12.7.

IR (ATR, film): 1763, 1618, 1341, 1161, 1096, 1028, 702, 667, 548, 409, 401 cm⁻¹.

HRMS (ESI): Calculated for 674.24666 *m/z*, found 674.24452 *m/z* [C₃₆H₃₈BN₃O₆S+Na]⁺.

2-(6-((benzo[d][1,3]dioxol-5-yloxy)methyl)-2-tosylisoindolin-5-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (15)

Prepared according to **General Procedure C** from the 2-(3-(benzo[d][1,3]dioxol-5-yloxy)prop-1-yn-1-yl)-6methyl-1,3,6,2-dioxazaborocane-4,8-dione (33.1 mg, 100 µmol, 1.00 equiv.) and 4-methyl-N,N-di(prop-2-yn-1yl)benzenesulfonamide (148 mg, 600 µmol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–10% MeCN in CH₂Cl₂) to yield the desired product as an off-white solid (31.9 mg, 55%).

¹H NMR (500 MHz, Acetone- d_6) $\delta_{\rm H}$ 7.85 – 7.79 (m, 2H), 7.49 (s, 1H), 7.45 – 7.41 (m, 3H), 6.74 (d, J = 8.45 Hz, 1H), 6.59 (d, J = 2.56 Hz, 1H), 6.44 (dd, J = 8.50, 2.55 Hz, 1H), 5.95 (s, 2H), 5.11 (s, 2H), 4.66 – 4.65 (m, 2H), 4.64 (s, 2H), 4.36 (d, J = 17.19 Hz, 2H), 4.14 (d, J = 17.19 Hz, 2H), 2.83 (s, 3H), 2.40 (s, 3H).

¹³C NMR (126 MHz, Acetone-*d*₆) δ _C 168.1, 154.2, 148.3, 143.7, 141.9, 140.8, 137.6, 136.0, 133.9, 129.8, 128.9, 127.7, 124.5, 107.9, 105.9, 101.2, 97.7, 71.2, 63.2, 53.6, 53.5, 48.7, 20.5.

¹¹B NMR (96 MHz, Acetone- d_6) δ_B 12.5.

IR (ATR, film): 1763, 1487, 1341, 1184, 1161, 1096, 1034, 667, 548 cm⁻¹.

HRMS (ESI): Calculated for 493.15751 *m/z*, found 493.11013 *m/z* [C₂₃H₂₇BN₂O₆S+Na]⁺.

6-methyl-2-(6-ferrocenyl-2-tosylisoindolin-5-yl)-1,3,6,2-dioxazaborocane-4,8-dione (16)

Prepared according to **General Procedure C** from the 6-methyl-2-(ferrocenyl)-1,3,6,2-dioxazaborocane-4,8-dione (36.5 mg, 100 µmol, 1.00 equiv.) and 4-methyl-*N*,*N*-di(prop-2-yn-1-yl)benzenesulfonamide (148 mg, 600 µmol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–5% MeCN in CH₂Cl₂) followed by recrystallisation (CH₂Cl₂-Et₂O-hexane) to yield the desired product as a red-brown solid (24.0 mg, 39%). ¹H NMR (500 MHz, Acetone-*d*₆) $\delta_{\rm H}$ 8.09 (s, 1H), 7.87 – 7.83 (m, 2H), 7.52 (s, 1H), 7.49 – 7.45 (m, 2H), 4.74 – 4.69 (m, 2H), 4.65 – 4.59 (m, 2H), 4.49 (t, *J* = 1.82 Hz, 2H), 4.25 – 4.18 (m, 7H), 4.01 (d, *J* = 16.79 Hz, 2H), 3.39 (d, *J* = 16.85 Hz, 2H), 2.43 (s, 3H), 2.37 (s, 3H).

 13 C NMR (126 MHz, Acetone-*d*₆) $\delta_{\rm C}$ 167.8, 143.7, 142.8, 137.0, 134.2, 133.9, 129.8, 128.1, 127.9, 127.8, 92.6, 72.0, 69.5, 67.5, 62.9, 53.7, 53.6, 47.1, 20.5.

¹¹B NMR (96 MHz, Acetone- d_6) δ_B 12.0.

IR (ATR, film): 1763, 1339, 1292, 1277, 1161, 1098, 1055, 1028, 829, 667, 581, 548, 407 cm⁻¹.

HRMS (ESI): Calculated for 612.11833 *m/z*, found 612.11615 *m/z* [C₃₀H₂₉BFeN₂O₆S]⁺.

2-(5-methyl-2',2'-dimethyl-4',6'-dioxo-1,3-dihydrospiro[indene-2,5'-[1,3]dioxan]-6-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (17)

Prepared according to **General Procedure C** from the 6-methyl-2-(prop-1-yn-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione (19.5 mg, 100 μ mol, 1.00 equiv.) 2,2-dimethyl-5,5-di(prop-2-yn-1-yl)-1,3-dioxane-4,6-dione (132 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–15% MeCN in CH₂Cl₂) to yield the desired product as a white solid (29.9 mg, 72%).

¹H NMR (500 MHz, Acetonitrile-*d*₃) $\delta_{\rm H}$ 7.29 (s, 1H), 7.09 (s, 1H), 4.09 (d, *J* = 17.22 Hz, 2H), 3.93 (d, *J* = 17.24 Hz, 2H), 3.68 (d, *J* = 4.53 Hz, 4H), 2.57 (s, 3H), 2.40 (s, 3H), 1.84 - 1.79 (m, 6H).

¹³C NMR (126 MHz, Acetonitrile-*d*₃) $\delta_{\rm C}$ 170.5, 168.6, 141.7, 141.3, 136.5, 129.5, 126.5, 105.4, 62.5, 52.3, 47.4, 45.2, 44.9, 28.1, 28.1, 22.0.

¹¹B NMR (96 MHz, Acetonitrile- d_3) δ_B 12.6.

IR (ATR, film): 1763, 1736, 1300, 1299, 1098, 1036, 953, 855 cm⁻¹.

HRMS (ESI): Calculated for 438.1331 *m/z*, found 438.1329 *m/z* [C₂₀H₂₂BNO₈+Na]⁺.

6-methyl-2-(4,4,5'-trimethyl-2,6-dioxo-1',3'-dihydrospiro[cyclohexane-1,2'-inden]-6'-yl)-1,3,6,2-dioxazaborocane-4,8-dione (18)

Prepared according to **General Procedure C** from 6-methyl-2-(prop-1-yn-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione (19.5 mg, 100 μ mol, 1.00 equiv.)and 5,5-dimethyl-2,2-di(prop-2-yn-1-yl)cyclohexane-1,3-dione (130 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–5% MeCN in CH₂Cl₂) to yield the desired product as a white solid (12.3 mg, 30%).

¹H NMR (500 MHz, Acetonitrile- d_3) $\delta_{\rm H}$ 7.20 (s, 1H), 7.03 (s, 1H), 4.07 (d, J = 17.20 Hz, 2H), 3.89 (d, J = 17.18 Hz, 2H), 3.41 (appd, J = 5.12 Hz, 4H), 2.79 (d, J = 14.28 Hz, 2H), 2.68 (d, J = 14.25 Hz, 2H), 2.54 (s, 3H), 2.36 (s, 3H), 1.04 (s, 3H), 0.98 (s, 3H).

¹³C NMR (126 MHz, Acetonitrile-*d*₃) δ _C 207.2, 168.6, 141.9, 141.2, 136.7, 129.7, 126.8, 71.0, 62.5, 54.2, 50.8, 47.4, 39.0, 37.3, 30.1, 27.6, 27.0, 22.0.

¹¹B NMR (96 MHz, Acetonitrile- d_3) δ_B 12.1.

IR (ATR, film): 1763, 1692, 1030, 434, 426, 411 cm⁻¹.

HRMS (ESI): Calculated for 434.17454 *m/z*, found 434.17349 *m/z* [C₂₂H₂₆BNO₆+Na]⁺.

diethyl 5-methyl-6-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-1,3-dihydro-2*H*-indene-2,2dicarboxylate (19)

Prepared according to **General Procedure C** from 6-methyl-2-(prop-1-yn-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione (19.5 mg, 100 μ mol, 1.00 equiv.) and diethyl 2,2-di(prop-2-yn-1-yl)malonate (142 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–10% MeCN in CH₂Cl₂) to yield the desired product as an off-white solid (9.06 mg, 21%).

¹H NMR (500 MHz, Acetonitrile-*d*₃) $\delta_{\rm H}$ 7.26 (s, 1H), 7.06 (s, 1H), 4.18 (q, *J* = 7.11 Hz, 4H), 4.08 (d, *J* = 17.22 Hz, 2H), 3.92 (d, *J* = 17.24 Hz, 2H), 3.52 (s, 4H), 2.54 (s, 3H), 2.37 (s, 3H), 1.23 (t, *J* = 7.10 Hz, 6H).

¹³C NMR (126 MHz, Acetonitrile- d_3) δ_C 171.6, 168.6, 141.7, 141.2, 137.2, 129.7, 126.8, 62.6, 61.6, 60.0, 47.5, 40.0, 39.8, 22.0, 13.3.

¹¹B NMR (96 MHz, Acetonitrile- d_3) δ_B 12.6.

IR (ATR, film): 1724, 1275, 1233, 1179, 1069, 1051, 1028, 1011, 993, 978, 851 cm⁻¹.

HRMS (ESI): Calculated for 454.16437 *m/z*, found 454.16287 *m/z* [C₂₁H₂₆BNO₈+Na]⁺.

2-(2,2-bis(hydroxymethyl)-6-methyl-2,3-dihydro-1*H*-inden-5-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (20)

BMIDA HOH₂C HOH₂C

Prepared according to **General Procedure C** from 6-methyl-2-(prop-1-yn-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione (19.5 mg, 100 µmol, 1.00 equiv.) and 2,2-di(prop-2-yn-1-yl)propane-1,3-diol (91.3 mg, 600 µmol, 6.00 equiv.).

Purified by flash column chromatography (silica, 0-100% MeCN in CH_2Cl_2) to yield the desired product as an off-white solid (19.3 mg, 56%).

¹H NMR (500 MHz, Acetonitrile- d_3) $\delta_{\rm H}$ 7.21 (s, 1H), 7.02 (s, 1H), 4.07 (d, J = 17.16 Hz, 2H), 3.91 (d, J = 17.17 Hz, 2H), 3.53 (d, J = 5.41 Hz, 4H), 2.99 (t, J = 5.41 Hz, 2H), 2.74 (d, J = 7.76 Hz, 4H), 2.55 (s, 3H), 2.36 (s, 3H).

¹³C NMR (126 MHz, Acetonitrile- d_3) δ_C 168.6, 144.0, 140.3, 139.4, 130.3, 127.5, 66.4, 62.5, 49.4, 47.4, 37.7, 37.4, 22.0.

¹¹B NMR (96 MHz, Acetonitrile- d_3) δ_B 12.3.

IR (ATR, film): 3404, 1763, 1744, 1703, 1026 cm⁻¹.

HRMS (ESI): Calculated for 370.14324 *m/z*, found 370.14223 *m/z* [C₁₇H₂₂BNO₆+Na]⁺.

6-methyl-2-(4,6,7-trimethyl-2-tosylisoindolin-5-yl)-1,3,6,2-dioxazaborocane-4,8-dione (21)

Prepared according to **General Procedure C** from the propyne BMIDA ester (19.5 mg, 100 μ mol, 1.00 equiv.) and *N*,*N*-di(but-2-yn-1-yl)-4-methylbenzenesulfonamide (165 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–15% MeCN in CH₂Cl₂) to yield the desired product as an off-white solid (13.3 mg, 28%).

¹H NMR (500 MHz, Acetonitrile- d_3) $\delta_{\rm H}$ 7.80 (d, J = 8.30 Hz, 2H), 7.44 – 7.38 (m, 2H), 4.64 – 4.57 (m, 4H), 4.12 (d, J = 17.61 Hz, 2H), 4.01 (d, J = 17.61 Hz, 2H), 2.67 (s, 3H), 2.41 (s, 3H), 2.17 (s, 3H), 2.11 (s, 3H), 2.09 (s, 3H).

¹³C NMR (126 MHz, Acetonitrile-*d*₃) δ _C 168.6, 144.1, 142.2, 136.1, 135.5, 133.5, 133.5, 129.9, 129.1, 127.6, 64.3, 54.5, 54.2, 48.8, 20.5, 20.0, 19.4, 16.0.

¹¹B NMR (96 MHz, Acetonitrile- d_3) δ_B 13.1.

IR (ATR, film): 1763, 1705, 1335, 1161, 1098, 667, 548, 409 cm⁻¹.

HRMS (ESI): Calculated for 493.15751 *m/z*, found 493.15793 *m/z* [C₂₃H₂₇BN₂O₆S+Na]⁺.

6-methyl-2-(6-methyl-2-(phenylsulfonyl)isoindolin-5-yl)-1,3,6,2-dioxazaborocane-4,8-dione (22)

PhO₂SN

Prepared according to **General Procedure C** from 6-methyl-2-(prop-1-yn-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione (19.5 mg, 100 μ mol, 1.00 equiv.) and *N*,*N*-di(prop-2-yn-1-yl)benzenesulfonamide (140 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–20% MeCN in CH₂Cl₂) to yield the desired product as an off-white solid (41.2 mg, 96%).

¹H NMR (500 MHz, Acetone- d_6) $\delta_{\rm H}$ 7.96 – 7.90 (m, 2H), 7.69 – 7.60 (m, 3H), 7.35 (s, 1H), 7.07 (s, 1H), 4.63 – 4.56 (m, 4H), 4.36 (d, J = 17.18 Hz, 2H), 4.15 (d, J = 17.17 Hz, 2H), 2.73 (s, 3H), 2.40 (s, 3H).

¹³C NMR (126 MHz, Acetone-*d*₆) δ _C 168.4, 142.1, 137.4, 136.9, 133.2, 132.9, 129.3, 128.2, 127.6, 124.9, 62.6, 53.6, 53.5, 47.4, 22.2.

¹¹B NMR (96 MHz, Acetone- d_6) δ_B 12.3.

IR (ATR, film): 1763, 1339, 1296, 1165, 1098, 1032, 720, 608, 575 cm⁻¹.

HRMS (ESI): Calculated for 429.1286 *m/z*, found 429.1290 *m/z* [C₂₀H₂₁BN₂O₆S+H]⁺.

6-methyl-2-(6-methyl-2,3-dihydro-1*H*-inden-5-yl)-1,3,6,2-dioxazaborocane-4,8-dione (23)

BMIDA

Prepared according to **General Procedure C** from 6-methyl-2-(prop-1-yn-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione (19.5 mg, 100 μ mol, 1.00 equiv.) and 1,6-heptadiyne (55.3 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–1% MeCN in CH₂Cl₂) followed by crystallisation form CH₂Cl₂:hexane:Et₂O to yield the desired product as an off-white solid (7.5 mg, 26%).

¹H NMR (500 MHz, Acetone- d_6) δ_H 7.31 (s, 1H), 7.02 (s, 1H), 4.33 (d, J = 17.10 Hz, 2H), 4.13 (d, J = 17.14 Hz, 2H), 2.82 (s, 4H), 2.75 (s, 3H), 2.38 (s, 3H), 2.03 – 1.97 (m, 2H).

¹³C NMR (126 MHz, Acetone-*d*₆) δ_C 168.5, 145.1, 140.6, 140.0, 129.7, 127.0, 62.6, 47.3, 32.4, 32.1, 25.1, 22.1.

¹¹B NMR (96 MHz, Acetone- d_6) δ_B 12.6.

IR (ATR, film): 3348, 1751m 1086, 1044, 880 cm⁻¹.

HRMS (ESI): Calculated for 288.1402 *m/z*, found 288.1398 *m/z* [C₁₅H₁₈BNO₄+H]⁺.

6-methyl-2-(3-methyl-5,6,7,8-tetrahydronaphthalen-2-yl)-1,3,6,2-dioxazaborocane-4,8-dione (24)

Prepared according to **General Procedure C** from 6-methyl-2-(prop-1-yn-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione (19.5 mg, 100 μ mol, 1.00 equiv.) and 1,7-octadiyne (63.7 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–5% MeCN in CH₂Cl₂) followed by crystallisation form CH₂Cl₂:hexane:Et₂O to yield the desired product as an off-white solid (4.7 mg, 16%).

¹H NMR (500 MHz, Acetone- d_6) δ_H 7.15 (s, 1H), 6.85 (s, 1H), 4.34 (d, J = 17.15 Hz, 2H), 4.14 (d, J = 17.18 Hz, 2H), 2.77 (s, 3H), 2.75 – 2.64 (m, 4H), 2.35 (s, 3H), 1.77 (p, J = 3.22 Hz, 4H).

¹³C NMR (126 MHz, Acetone-*d*₆) δ _C 168.5, 138.9, 137.6, 135.0, 133.3, 131.5, 62.5, 47.3, 28.8, 28.8, 23.4*, 23.2*, 21.7.

¹¹B NMR (96 MHz, Acetonitrile- d_3) δ_B 12.5.

IR (ATR, film): 1763, 1298, 1238, 1105, 1032, 993, 702, 540 cm⁻¹.

HRMS (ESI): Calculated for 302.1558 *m/z*, found 302.1568 *m/z* [C₁₆H₂₀BNO₄+H]⁺.

*Overlap with solvent signal, presence confirmed by ¹H ¹³C HSQC analysis.

6-methyl-2-(6-methyl-1,3-dihydroisobenzofuran-5-yl)-1,3,6,2-dioxazaborocane-4,8-dione (25)

BMIDA Ó

Prepared according to **General Procedure C** from 6-methyl-2-(prop-1-yn-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione (195 mg, 1.00 mmol, 1.00 equiv.) and propargyl ether (565 mg, 6.00 mmol, 6.00 equiv.). Purified by flash column chromatography (silica, 0-20% MeCN in CH₂Cl₂) followed by recrystallisation from CH₂Cl₂ and Et₂O to yield the desired product as an off-white solid (253 mg, 88%).

¹H NMR (500 MHz, Acetonitrile- d_3) $\delta_{\rm H}$ 7.34 (s, 1H), 7.13 (s, 1H), 5.09 – 4.98 (m, 4H), 4.10 (d, J = 17.24 Hz, 2H), 3.93 (d, J = 17.21 Hz, 2H), 2.56 (s, 3H), 2.42 (s, 3H).

¹³C NMR (126 MHz, Acetonitrile- d_3) δ_C 168.6, 141.6, 141.0, 136.6, 132.7, 126.5, 123.5, 72.8, 72.8, 62.6, 47.5, 22.1.

¹¹B NMR (96 MHz, Acetonitrile- d_3) δ_B 12.0.

IR (ATR, film): 1753, 1300, 1099, 1084, 1030, 856 cm⁻¹.

HRMS (ESI): Calculated for 290.1194 *m/z*, found 290.1202 *m/z* [C₁₄H₁₆BNO₅+H]⁺.

methyl 5-methyl-6-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-2,3-dihydro-1*H*-indene-2-carboxylate (26)

Prepared according to **General Procedure C** from 6-methyl-2-(prop-1-yn-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione (19.5 mg, 100 μ mol, 1.00 equiv.) and methyl 2-(prop-2-yn-1-yl)pent-4-ynoate (90.1 mg, 600 μ mol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–15% MeCN in CH₂Cl₂) to yield the desired product as a yellow solid (22.2 mg, 64%).

¹H NMR (500 MHz, Acetonitrile-*d*₃) $\delta_{\rm H}$ 7.27 (s, 1H), 7.06 (s, 1H), 4.24 – 4.03 (m, 2H), 3.92 (d, *J* = 17.23 Hz, 2H), 3.68 (s, 3H), 3.35 (appp, *J* = 8.12 Hz, 1H), 3.23 – 3.11 (m, 4H), 2.55 (s, 3H), 2.37 (s, 3H).

¹³C NMR (126 MHz, Acetonitrile-*d*₃) δ_C 175.7, 168.7, 168.7, 143.3, 140.8, 138.8, 129.8, 127.0, 62.5, 62.5, 51.4, 47.5, 43.0, 35.8, 35.6, 22.1.

¹¹B NMR (96 MHz, Acetonitrile- d_3) δ_B 12.2.

IR (ATR, film): 1765, 1452, 1339, 1296, 1209, 1028, 849, 411 cm⁻¹.

HRMS (ESI): Calculated for 368.12759 *m/z*, found 368.12724 *m/z* [C₁₇H₂₀BNO₆+Na]⁺.

6-methyl-1,3-dihydroisobenzofuran-5-ol (27)

A flask was charged with **25** (28.9 mg, 100 μ mol, 1.00 equiv.) and THF (400 μ L, 250 mM). K₃PO₄ (63.7 mg, 300 μ mol, 3.00 equiv.) and H₂O₂ (30% in H₂O, 100 μ L, 980 μ mol, 9.80 equiv.) were added and the mixture was allowed to stir at RT for 16 h. The mixture was then quenched by the addition of sodium metabisulfite and then suspended between water and ethyl acetate. The aqueous layer was extracted with ethyl acetate (3 × 10 mL) and the combined organic layers were dried over Na₂SO₄, filtered, and concentrated *in vacuo* to yield the crude product which was purified by flash column chromatography (silica, 0–100% CH₂Cl₂ in hexane) to yield the desired product as a white powder (11.8 mg, 79%).

 1 H NMR (500 MHz, Chloroform-*d*) $\delta_{\rm H}$ 6.98 (s, 1H), 6.65 (s, 1H), 5.08 – 4.98 (m, 4H), 2.25 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ_C 153.6, 138.2, 131.0, 123.2, 116.2, 107.5, 73.5, 73.4, 16.1.

IR (ATR, film): 3318, 2922, 1302, 1260, 1225, 1030, 893, 851 cm⁻¹.

HRMS (ESI): Calculated for 173.05730 *m/z*, found 173.05678 *m/z* [C₉H₁₀O₂+Na]⁺.

N-(4-fluorophenyl)-6-methyl-1,3-dihydroisobenzofuran-5-amine (28)

An oven-dried microwave vial was charged with **25** (28.9 mg, 100 μ mol, 1.00 equiv.), Cu(OAc)₂ (23.6 mg, 130 μ mol, 1.30 equiv.) and DMAP (15.9 mg, 130 μ mol, 1.30 equiv.). The vial was capped and MeCN (200 μ L, 500 mM) followed by 4-fluoroaniline (20.0 μ L, 208 μ mol, 2.08 equiv.). The mixture was heated to 80 °C to stir for 36 h before allowing to cool, filtering through celite and diluting with CH₂Cl₂ and 10% aqueous ammonia. The mixture was extracted with CH₂Cl₂ (3 × 10 mL) and the organic layers were combined, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to yield the crude product. This was purified by flash column chromatography (silica, 0–5% EtOAc in hexane) to yield the desired product as a yellow solid (8.0 mg, 33%)

¹H NMR (500 MHz, Chloroform-*d*) $\delta_{\rm H}$ 7.09 (s, 1H), 7.04 – 6.93 (m, 5H), 5.29 (brs, 1H), 5.08 (m, 2H), 5.05 (m, 2H), 2.28 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ_{C} 157.9 (d, ¹*J*_{CF} = 239.8 Hz), 139.8 (d, ⁴*J*_{CF} = 2.1 Hz), 138.0, 132.1, 126.7, 123.2, 120.2 (d, ³*J*_{CF} = 7.7 Hz), 116.0 (d, ²*J*_{CF} = 22.4 Hz), 109.9, 73.6, 73.4, 18.1.

¹⁹F NMR (471 MHz, Chloroform-*d*) δ_F –122.58 (m).

IR (ATR, film): 1505, 1362, 1310, 1211, 1042, 895, 828, 783, 503, 488, 432 cm⁻¹.

HRMS (ESI): Calculated for 244.11322 *m/z*, found 244.11245 *m/z* [C₁₅H₁₄FNO+H]⁺.

3-(6-methyl-1,3-dihydroisobenzofuran-5-yl)pyridine (29)

An oven dried microwave vial was charged with **25** (28.9 mg, 100 μ mol, 1.00 equiv.), [Pd(dppf)]Cl₂ (2.9 mg, 4.00 μ mol, 4.00 mol%) and K₃PO₄ (63.7 mg, 300 μ mol, 3.00 equiv.). The vial was capped, evacuated and backfilled with nitrogen and then 3-bromopyridine (15.0 μ L, 154 μ mol, 1.54 equiv.), water (25.0 μ L, 302 μ mol, 3.02 equiv.) and THF (400 μ L, 250 mM) were added. The mixture was heated to 90 °C to stir for 24 h before cooling to RT and diluting with EtOAc and water. The aqueous layer was extracted with EtOAc (3 × 10 mL) and the combined organic layers were dried over Na₂SO₄, filtered, and concentrated *in vacuo* to yield the crude product which was purified by flash column chromatography (silica, 1:99 NEt₃:hexane – 1:20:79 NEt₃:EtOAc:hexane) to yield the desired product as a white solid (10.2 mg, 48%).

¹H NMR (500 MHz, Chloroform-*d*) $\delta_{\rm H}$ 8.65 (brm 2H), 7.67 (dt, J = 7.91, 1.61 Hz, 1H), 7.40 (t, J = 6.23 Hz, 1H), 7.21 (s, 1H), 7.11 (s, 1H), 5.16 (m, 4H), 2.29 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ_C 150.0, 148.2, 139.3, 137.6, 137.4, 137.2, 136.5, 134.9, 123.2, 122.9, 122.3, 73.4, 73.4, 20.5.

IR (ATR, film): 2922, 2853, 1765, 1472, 1454, 1404, 1364, 1049, 1011, 901, 872, 812, 718 cm⁻¹.

HRMS (ESI): Calculated for 212.10699 *m/z*, found 212.10626 *m/z* [C₁₄H₁₃NO+H]⁺.

trifluoro(6-methyl-1,3-dihydroisobenzofuran-5-yl)-λ4-borane, potassium salt (30)

BF₃K O

A flask was charged with **25** (28.9 mg, 100 μ mol, 1.00 equiv.) and methanol (4.00 mL, 25.0 mM). KHF₂ (4.5 M in H₂O, 90.0 μ L, 405 μ mol, 4.05 equiv.) was added and the solution was heated to 70 °C for 2 h. After cooling to RT, the solvent was removed *in vacuo* and the mixture was suspended in hot acetone then filtered. The filtrate was reconcentrated *in vacuo* and the crude product was recrystallised from acetone and hexane to yield the desired product as a white crystalline solid (19.3 mg, 80%)

¹H NMR (500 MHz, Acetone- d_6) $\delta_{\rm H}$ 7.38 (s, 1H), 6.83 (s, 1H), 4.91 (m, 4H), 2.43 (s, 3H).

¹³C NMR (126 MHz, Acetone-*d*₆) δ_C 140.3, 135.9, 133.9, 124.0, 120.4, 73.1, 73.0, 21.3.

¹¹B NMR (96 MHz, Acetone- d_6) δ_B 3.6 (q, J = 59.2 Hz).

¹⁹F NMR (471 MHz, Acetone- d_6) δ_F –140.66 (m).

IR (ATR, film): 1404, 1194, 1171, 1076, 1044, 1036, 1001, 953, 934, 918, 901, 887, 858, 610 cm⁻¹.

HRMS (ESI): Calculated for 201.0699 *m*/*z*, found 201.0700 *m*/*z* [C₉H₉BF₃]⁻.

5-(allyloxy)-6-methyl-1,3-dihydroisobenzofuran (31)

O

An oven dried microwave vial was charged with **25** (28.9 mg, 100 μ mol, 1.00 equiv.), Cu(OAc)₂ (23.6 mg, 130 μ mol, 1.30 equiv.) and DMAP (15.9 mg, 130 μ mol, 1.30 equiv.). The vial was capped and MeCN (200 μ L, 500 mM) followed by allyl alcohol (14.0 μ L, 206 μ mol, 2.06 equiv.) were added. The mixture was heated to 80 °C to stir for 36 h before allowing to cool, filtering through celite and diluting with CH₂Cl₂ and 10% aqueous ammonia. The mixture was extracted with CH₂Cl₂ (3 × 10 mL) and the organic layers were combined, dried over Na₂SO₄, filtered and concentrated *in vacuo* to yield the crude product. This was purified by flash column chromatography (silica, 0–3% EtOAc in hexane) to yield the desired product as a white solid (7.5 mg, 39%).

¹H NMR (500 MHz, Chloroform-*d*) $\delta_{\rm H}$ 7.03 (s, 1H), 6.71 (s, 1H), 6.10 (ddt, J = 17.29, 10.32, 4.99 Hz, 1H), 5.46 (dq, J = 17.31, 1.70 Hz, 1H), 5.35 – 5.29 (m, 1H), 5.10 – 5.08 (m, 2H), 5.08 – 5.06 (m, 2H), 4.56 (dt, J = 5.03, 1.67 Hz, 2H), 2.28 (s, 3H).

 ^{13}C NMR (126 MHz, Chloroform-*d*) δ_{C} 156.5, 137.5, 133.5, 130.5, 126.4, 122.8, 117.1, 104.1, 73.8, 73.5, 69.0, 16.6.

IR (ATR, film): 2924, 2853, 1497, 1281, 1206, 1049, 419 cm⁻¹.

HRMS (ESI): Calculated for 189.0910 *m/z*, found 189.0912 *m/z* [C₁₂H₁₄O₂-H]⁺.

3-(6-methyl-1,3-dihydroisobenzofuran-5-yl)cyclopentan-1-one (32)

An oven dried microwave vial was charged with **25** (28.9 mg, 100 μ mol, 1.00 equiv.), K₃PO₄ (42.5 mg, 200 μ mol, 2.00 equiv.) and [Rh(COD)(NCMe)₂]BF₄ (1.90 mg, 5.00 μ mol, 5.00 mol%) then capped, evacuated and backfilled with nitrogen. Toluene (900 μ L), H₂O (150 μ L) and 2-cyclopenten-1-one (17.0 μ L, 203 μ mol, 2.03 equiv.) were added and the mixture was heated to 100 °C for 24 h. The reaction flask was allowed to cool before adding saturated aqueous NaHCO₃. The mixture was extracted with EtOAc (3 × 10 mL) and the combined organic layers were dried over Na₂SO₄, filtered and concentrated *in vacuo* to yield the crude product which was purified by flash column chromatography (silica, 0–20% EtOAc in hexane) to yield the product as a white solid (9.2 mg, 43%)

 $^{1}\text{H NMR (500 MHz, Chloroform-d) } \delta_{\text{H}} \ 7.12 \ (\text{s}, 1\text{H}), \ 7.10 \ (\text{s}, 1\text{H}), \ 5.11 - 5.06 \ (\text{m}, 4\text{H}), \ 3.69 - 3.60 \ (\text{m}, 1\text{H}), \ 2.71 - 2.65 \ (\text{m}, 1\text{H}), \ 2.55 - 2.47 \ (\text{m}, 1\text{H}), \ 2.45 - 2.25 \ (\text{m}, 6\text{H}), \ 2.07 - 1.98 \ (\text{m}, 1\text{H}).$

¹³C NMR (126 MHz, Chloroform-*d*) δ_C 218.5, 140.3, 137.5, 137.2, 135.2, 123.0, 117.3, 73.5, 73.4, 45.5, 38.5, 38.3, 30.2, 19.9.

IR (ATR, film): 2853, 1736, 1153, 1040, 901, 866, 419 cm⁻¹.

HRMS (ESI): Calculated for 239.10425 *m/z*, found 239.10349 *m/z* [C₁₄H₁₆O₂+Na]⁺.

6-tosyl-3,5,6,7-tetrahydro-2*H*-furo[2,3-*f*]isoindole (33)

A flask was charged with **10** (58.7 mg, 100 μ mol, 1.00 equiv.) and THF (500 μ L, 200 mM). Pyridine-HF (70% HF, 100 μ L, 1.11 mmol, 11.1 equiv.) was added and the mixture was allowed to stir for 1 h at RT. One drop of water was then added followed by the addition of excess NaHCO₃. Excess Na₂SO₄ was added, and the mixture was suspended in acetone then filtered. The filtrated was concentrated *in vacuo* then transferred to an oven-dried microwave vial with Cu(OAc)₂ (23.6 mg, 130 μ mol, 1.30 equiv.) and DMAP (15.9 mg, 130 μ mol, 1.30 equiv.). The vial was capped and MeCN (200 μ L, 500 mM) was added then the mixture was heated to 80 °C to stir for 24 h before allowing to cool, filtering through celite and diluting with CH₂Cl₂ and 10% aqueous ammonia. The mixture was extracted with CH₂Cl₂ (3 × 10 mL) and the organic layers were combined, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to yield the crude product. This was purified by flash column chromatography (silica, 0–3% EtOAc in hexane) to yield the desired product as a white solid (23.3 mg, 74%).

¹H NMR (500 MHz, Chloroform-*d*) $\delta_{\rm H}$ 7.78 (d, J = 8.16 Hz, 2H), 7.33 (d, J = 8.02 Hz, 2H), 6.97 (s, 1H), 6.57 (s, 1H), 4.63 – 4.51 (m, 6H), 3.16 (t, J = 8.63 Hz, 2H), 2.42 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ_C 160.2, 143.5, 135.9, 134.0, 129.8, 127.7, 127.6, 127.3, 118.9, 103.5, 71.7, 53.7, 53.3, 29.5, 21.5.

IR (ATR, film): 1339, 1161, 1096, 1059, 665, 602, 550 cm⁻¹.

HRMS (ESI): Calculated for 338.08214 *m/z*, found 338.08115 *m/z* [C₁₇H₁₇NO₃S+Na]⁺.

1-benzyl-6-tosyl-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]indole (34)

An oven-dried microwave vial was charged with **15** (65.2 mg, 100 μ mol, 1.00 equiv.) and palladium on carbon (10%, 10.6 mg, 10.0 μ mol, 10.0 mol%) before sealing, evacuating, and backfilling with nitrogen. A hydrogen balloon was then added followed by dioxane (500 μ L, 200 mM) and acetic acid (120 μ L, 2.09 mmol, 20.9 equiv.). The mixture was heated to 80 °C and stirred under an atmosphere of hydrogen for 16 h before allowing to cool to RT, diluting with acetone, filtering through celite and concentrating *in vacuo* to yield the crude. This was transferred to another oven-dried microwave vial and Cu(OAc)₂ (26.0 mg, 130 μ mol, 1.30 equiv.) and DMAP (15.9 mg, 130 μ mol, 1.30 equiv.) were added. The vial was sealed and MeCN (200 μ L, 500 mM) was added, and the mixture was heated to 80 °C to stir for 24 h. After this period, the mixture was added. This was extracted with CH₂Cl₂ (3 × 10 mL) and the organic layers were combined, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to yield the crude product which was purified by flash column chromatography (silica, 0–20% EtOAc in hexane) to yield the desired product as a pale-yellow solid (3.3 mg, 8%).

¹H NMR (500 MHz, Chloroform-*d*) $\delta_{\rm H}$ 7.80 – 7.74 (m, 2H), 7.40 – 7.30 (m, 7H), 6.87 (s, 1H), 6.24 (s, 1H), 4.52 (m, 4H), 4.21 (s, 2H), 3.34 (t, *J* = 8.25 Hz, 2H), 2.93 (t, *J* = 8.24 Hz, 2H), 2.42 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ_C 152.8, 143.5, 138.0, 135.1, 133.8, 130.6, 129.7, 128.6, 127.7, 127.6, 127.3, 124.6, 118.6, 100.6, 54.0, 54.0, 53.5, 53.5, 28.2, 21.5.

IR (ATR, film): 2922, 2361, 1344, 1161, 1096, 667, 550, 405 cm⁻¹.

HRMS (ESI): Calculated for 404.1559 *m/z*, found 404.1551 *m/z* [C₂₄H₂₄N₂O₂S]⁺.

1-benzyl-6-tosyl-1,5,6,7-tetrahydropyrrolo[3,4-f]indole (35)

Prepared from same procedure as **34**. Purified by flash column chromatography (silica, 0–20% EtOAc in hexane) to yield the desired product as a yellow solid (15.6 mg, 38%).

¹H NMR (500 MHz, Chloroform-*d*) $\delta_{\rm H}$ 7.79 – 7.73 (m, 2H), 7.39 – 7.38 (m, 1H), 7.32 – 7.23 (m, 5H), 7.12 (d, *J* = 3.21 Hz, 1H), 7.06 – 7.03 (m, 2H), 7.02 – 7.00 (m, 1H), 6.48 (dd, *J* = 3.18, 0.84 Hz, 1H), 5.29 – 5.25 (m, 2fH), 4.68 – 4.66 (m, 2H), 4.66 – 4.63 (m, 2H), 2.38 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ_C 143.5, 137.2, 136.2, 133.6, 130.3, 129.7, 129.3, 128.9, 128.9, 127.8, 127.7, 127.7, 126.6, 114.4, 103.5, 101.5, 53.6, 53.3, 50.2, 21.5.

IR (ATR, film): 2922, 1716, 1341, 1161, 1096, 667 cm⁻¹.

HRMS (ESI): Calculated for 425.12942 *m/z*, found 425.12839 *m/z* [C₂₄H₂₂N₂O₂S+Na]⁺.

2-(pent-1-yn-1-yl)-2,3-dihydro-1*H*-naphtho[1,8-*de*][1,3,2]diazaborinine (36)

Prepared according to a modified **General Procedure A:** flame-dried flask was charged with 1-pentyne (300 μ L, 3.04 mmol, 1.00 equiv) and THF (10.0 mL, ~300 mM) and cooled to -78 °C. *n*-Butyllithium solution (2.27 M in hexane, 1.80 mL, 4.08 mmol, 1.34 equiv) was added dropwise and the resulting solution was allowed to stir for 1 h. Triisopropylborate (700 μ L, 3.04 mmol, 1.00 equiv) was added and the mixture was stirred at -78 °C for a further 2 h. HCl (2.0 M in Et₂O, 1.60 mL, 3.20 mmol, 1.05 equiv) was added and the solution was allowed to come up to RT to stir for 0.5 h. The magnetic stirrer was removed and the mixture was concentrated *in vacuo* and the resulting solution was suspended in MTBE (~ 10 mL) and then filtered through celite. The mixture was reconcentrated *in vacuo* to yield the crude diisopropyl boronic ester which was dissolved in PhMe (15.0 mL, ~200 mM) and 1,8-diaminonaphthalene (481 mg, 3.04 mmol, 1.00 equiv). The mixture was then stirred at 120 °C for 1 h before concentrating *in vacuo* to yield the crude product which was purified by flash column chromatography (silica, 0– 5% EtOAc in hexane) to yield the desired product as a white solid (320.2 mg, 42%).

¹H NMR (500 MHz, Chloroform-*d*) $\delta_{\rm H}$ 7.10 (dd, J = 8.31, 7.25 Hz, 2H), 7.03 (dd, J = 8.32, 1.02 Hz, 2H), 6.30 (dd, J = 7.26, 1.04 Hz, 2H), 5.88 – 5.73 (m, 2H), 2.30 (t, J = 7.07 Hz, 2H), 1.62 (h, J = 7.24 Hz, 2H), 1.06 (t, J = 7.38 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ_C 140.8, 136.3, 127.5, 119.8, 117.8, 105.7, 78.7, 21.9, 21.6, 13.6.

¹¹B NMR (96 MHz, Chloroform-*d*) δ_B 21.9.

IR: (ATR, film): 3385, 2201, 1597, 1506, 1406, 1371, 1329, 1196, 1071, 820, 764, 658 cm⁻¹

HRMS (ESI): Calculated for 235.1401 *m/z*, found 245.1402 *m/z* [C₁₅H₁₅BN₂+H]⁺.

2-(6-propyl-2-tosylisoindolin-5-yl)-2,3-dihydro-1*H*-naphtho[1,8-*de*][1,3,2]diazaborinine (37)

Prepared according to **General Procedure C** from 2-(pent-1-yn-1-yl)-2,3-dihydro-1*H*-naphtho[1,8-de][1,3,2]diazaborinine (25.0 mg, 100 µmol, 1.00 equiv.) and 4-methyl-*N*,*N*-di(prop-2-yn-1-yl)benzenesulfonamide (148 mg, 600 µmol, 6.00 equiv.). Purified by flash column chromatography (silica, 0–30% Et₂O in hexane) to yield the desired product as a white solid (25.7 mg, 53%).

¹H NMR (500 MHz, Acetonitrile-*d*₃) $\delta_{\rm H}$ 7.27 (s, 1H), 7.06 (s, 1H), 4.24 – 4.03 (m, 2H), 3.92 (d, *J* = 17.23 Hz, 2H), 3.68 (s, 3H), 3.35 (app p, *J* = 8.12 Hz, 1H), 3.23 – 3.11 (m, 4H), 2.55 (s, 3H), 2.37 (s, 3H).

¹³C NMR (126 MHz, Acetonitrile- d_3) δ_C 175.7, 168.7, 168.7, 143.3, 140.8, 138.8, 129.8, 127.0, 62.5, 62.5, 51.4, 47.5, 43.0, 35.8, 35.6, 22.1.

¹¹B NMR (96 MHz, Acetonitrile- d_3) δ_B 12.2.

IR (ATR, film): 1597, 1512, 1416, 1398, 1327, 1319, 1159, 1096, 820, 768, 667, 548 cm⁻¹.

HRMS (ESI): Calculated for 481.1990 *m/z*, found 481.2003 *m/z* [C₂₈H₂₈BN₃O₂S]⁺.

Failed examples

5. General Procedure for Electronic Competition Experiments

An oven-dried microwave vial was charged with the relevant BMIDA alkyne (50.0 μ mol, 0.50 equiv) and its competing partner BMIDA alkyne (50.0 μ mol, 0.50 equiv). [Rh(COD)(NCMe)₂]BF₄ (7.6 mg, 20.0 μ mol, 20.0 mol%), and BINAP (24.9 mg, 40.0 μ mol, 40.0 mol%) were added and the vial was capped, evacuated and backfilled with nitrogen. Acetone (0.5 mL) was added to the vial and then heated to 60 °C. A separate flask was charged with 4-methyl-*N*,*N*-di(prop-2-yn-1-yl)benzenesulfonamide (148 mg, 600 μ mol, 6.00 equiv) and acetone (0.5 mL) was added *via* syringe pump over 15 h and the final solution was stirred for 1 h before allowing to cool to RT, filtering through celite and concentrating *in vacuo* to yield the crude mixture. 1,4-dinitrobenzene (4.8 mg, 25.0 μ mol, 0.25 equiv) added and *d*₆-acetone was added until the mixture was homogeneous, then a sample was taken for quantitative NMR analysis to determine the product ratio.

Entry	R ₁	R ₂	σ(R 1)	σ(R2)	$\Delta \sigma$	NMR yield (R ₁)	NMR yield (R ₂)	Ratio (R ₁ /R ₂)
1	Н	4-OMe	0	-0.27	0.27	38	39	0.9744
2	4-OAc	Н	0.31	0	0.31	26	29	0.8966
3	4-OAc	4-OMe	0.31	-0.27	0.58	37	39	0.9487
4	3-Ac	Н	0.38	0	0.38	12	15	0.8000
5	3-Ac	4-OMe	0.38	-0.27	0.65	15	16	0.9375
6	3-Ac	4-OAc	0.38	0.31	0.07	53	58	0.9138

Table 1: Electronic competition experiments results¹²

Figure 1: Electronic competition experiments results.

6. General Procedure for Steric Competition Experiments

An oven-dried microwave vial was charged with the relevant BMIDA alkyne (50.0 μ mol, 0.50 equiv) and its competing partner BMIDA alkyne (50.0 μ mol, 0.5 equiv). [Rh(COD)(NCMe)₂]BF₄ (7.6 mg, 20.0 μ mol, 20.0 mol%), and BINAP (24.9 mg, 40.0 μ mol, 40.0 mol%) were added and the vial was capped, evacuated, and backfilled with nitrogen. Acetone (0.5 mL) was added to the vial and then heated to 60 °C. A separate flask was charged with 4-methyl-*N*,*N*-di(prop-2-yn-1-yl)benzenesulfonamide (148 mg, 600 μ mol, 6.00 equiv) and acetone (0.5 mL) was added. The diyne solution was added *via* syringe pump over 15 h and the final solution was stirred for 1 h before allowing to cool to RT, filtering through celite and concentrating *in vacuo* to yield the crude mixture. 1,4-dinitrobenzene (4.8 mg, 25.0 μ mol, 0.25 equiv) was added and *d*₆-acetone was added until the mixture was homogeneous, then a sample was taken for quantitative NMR analysis to determine the product ratio.

Entry	R ₁	R ₂	A(R ₁)	A(R ₂)	$\Delta \mathbf{A}$	NMR yield (R ₁)	NMR yield (R ₂)	Ratio (R ₁ /R ₂)
1	Me	<i>c</i> -Pr	1.7	2.15	0.45	37	31	1.19354839
2	Me	Ph	1.7	3	1.3	50	20	2.5
3	<i>c</i> -Pr	Ph	2.15	3	0.85	46	27	1.7037037
4	Me	<i>n</i> -Pr	1.7	1.8	0.1	39	30	1.3
5	<i>n</i> -Pr	<i>c</i> -Pr	1.8	2.15	0.35	30	21	1.42857143
6	<i>n</i> -Pr	Ph	1.8	3	1.2	24	16	1.5

 Table 2: Steric competition experiments results¹³⁻¹⁶

Assumed A(c-Pr) = A(i-Pr) = 2.15; A(n-Pr) = A(Et) = 1.8.

Figure 2: Steric competition experiments results.

Figure 3: Combined data results from Figures 1 and 2.

7. X-ray Diffraction Data

X-ray diffraction data for compound **18** were collected at 173 K using a Rigaku MM-007HF High Brilliance RA generator/confocal optics with XtaLAB P200 diffractometer [Cu K α radiation (λ = 1.54187 Å)]. Data for compounds **25** and **33** were collected at 173 K using a Rigaku FR-X Ultrahigh Brilliance Microfocus RA generator/confocal optics with XtaLAB P200 diffractometer [Mo K α radiation (λ = 0.71075 Å)]. Intensity data for all compounds were collected using ω steps accumulating area detector images spanning at least a hemisphere of reciprocal space. Data were collected using CrystalClear¹⁷ or CrysAlisPro¹⁸ and processed (including correction for Lorentz, polarization and absorption) using CrysAlisPro. The structure was solved by direct (SIR2011¹⁹) or dual-space (SHELXT²⁰) methods and refined by full-matrix least-squares against F² (SHELXL-2013²¹). Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were refined using a riding model. The structure of **33** showed disorder in the orientation of the tricyclic ring system which was modelled over two sites with occupancies of 0.55:0.45. Restraints to bond distances and to thermal motion were used for the disordered atoms. All calculations were performed using the Olex2²² interface. Selected crystallographic data are presented in Table S#. Deposition numbers 2181492-2181494 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

	18	25	33
formula	C ₂₂ H ₂₆ BNO ₆	C ₁₇ H ₂₂ BNO ₆	$C_{17}H_{17}NO_3S$
fw	411.25	347.16	315.37
crystal description	Colourless plate	Colourless prism	Colourless plate
crystal size [mm ³]	0.15×0.04×0.01	0.07×0.04×0.02	0.30×0.24×0.03
space group	Pc	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> [Å]	15.3311(2)	13.1060(4)	15.1250(4)
<i>b</i> [Å]	10.06926(11)	9.9589(3)	7.7985(2)
<i>c</i> [Å]	13.62417(19)	13.1775(5)	12.6248(3)
β[°]	101.3120(13)	91.771(4)	95.692(2)
vol [Å] ³	2062.35(5)	1719.14(10)	1481.78(7)
Ζ	4	4	4
ρ (calc) [g/cm ³]	1.324	1.341	1.414
$\mu [{ m mm}^{-1}]$	0.782	0.100	0.231
F(000)	872	736	664
reflections collected	29685	11853	19815
independent reflections (R_{int})	7388 (0.0267)	3951 (0.0257)	3514 (0.0405)
parameters, restraints	549, 2	230, 0	300, 380
GOF on F^2	1.061	1.034	0.0986
$R_{I}\left[I > 2\sigma(I)\right]$	0.0430	0.0402	0.0393
wR_2 (all data)	0.1224	0.1031	0.1017
largest diff. peak/hole [e/Å ³]	0.498, -0.184	0.295, -0.164	0.299, -0.339
Flack parameter	-0.04(7)	-	-
L	1	1	

Table 2: Selected	crystallogi	aphic data.
-------------------	-------------	-------------

8. References

- (1) W. L. F. Armarego and C. Chai, Purification of Laboratory Chemicals, 6th Ed., Elsevier: Oxford, 2009.
- (2) J. M. Halford-McGuff, A. M. Z. Slawin and A. J. B. Watson, ACS Catal., 2023, 13, 3463-3470.
- (3) G. E. Bell, J. W. B. Fyfe, E. M. Israel, A. M. Z. Slawin, M. Campbell and A. J. B. Watson, *Org. Lett.* **2022**, *24*, 3024–3027.
- (4) Y.-Y. Chen, K.-L. Chen, Y.-C. Tyan, C.-F. Liang and P.-C. Lin, Tetrahedron, 2015, 36, 6210–6218.
- (5) H. F. Sneddon, M. J. Gaunt and S. V. Ley, Org. Lett. 2003, 5, 1147–1150.
- (6) N. Gathergood and P. J. Scammells, Org. Lett. 2003, 5, 921–923.
- (7) T. Gläsel, H. Jiao and M. Hapke, ACS Catal. 2021, 11, 13434–13444.
- (8) J. Vila, R. Vinardell, M. Solà, A. Pla-Quintana and A. A. Roglans, Adv. Synth. Catal., 2022, 364, 206-217.
- (9) N. Mayumi, H. Shiga and M. Mori, J. Org. Chem. 1998, 63, 8606–8608
- (10) A. Padwa. H. Nimmesgern and G. S. K. Wong, J. Org. Chem., 1985, 50, 5620-5627.
- (11) J. M. Carney, P. J. Donoghue, W. M. Wuest, O. Wiest and P. Helquist, Org. Lett. 2008, 10, 3903–3906.
- (12)C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165–195.
- (13) E. L. Eliel, S. H. Wilen and L. N. Mander, Stereochemistry of Organic Compounds, Wiley: New York, 1994.
- (14)E. L. Eliel, N. L. Allinger, S. J. Angyal and G. A. Morrison, *Conformational Analysis*, Interscience Publishers: New York, 1965.
- (15)J. A. Hirsch, *Table of Conformational Energies* in *Topics in Stereochemistry*, E. L. Allinger and E. L. Eliel, Eds., John Wiley & Sons: New York, 1967, pp 199–222.
- (16)C. Romers, C. Altona, H. R. Buys and E. Havinga, Geometry and Conformational Properties of Some Fiveand Six-Membered Heterocyclic Compounds Containing Oxygen or Sulfur in Topics in Stereochemistry, E. L. Allinger, and E. L. Eliel, Eds., John Wiley & Sons: New York, 1969, pp 39–97.
- (17) CrystalClear-SM Expert v2.1. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan, 2015.
- (18) CrysAlisPro v1.171.38.46. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, U.K., 2015.
- (19) M. C. Burla, R. Caliandro, M. Camalli, B, Carrozzini, G. L. Cascarano, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori and R. Spagna, *J. Appl. Crystallogr.* **2012**, *45*, 357-361.
- (20)G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3-8.
- (21)G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8.
- (22)O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.

9. Spectra (S5) ¹H NMR

(89) ¹H NMR

(S12) ¹H NMR

(S14) ¹H NMR

¹³C

(S15) ¹H NMR

¹³C

(S16) ¹H NMR

(4) ¹H NMR

(5) ¹H NMR

(7)¹H NMR

 $\underbrace{}_{-0.10}^{-0.10}$

0.79

(10)¹H NMR

(11) ¹H NMR

(12) ¹H NMR

(13) ¹H NMR

(14) ¹H NMR

(15) ¹H NMR

(16) ¹H NMR

(17) ¹H NMR

(18) ¹H NMR

(19) ¹H NMR

(20) ¹H NMR

(21) ¹H NMR

(22) ¹H NMR

(23) ¹H NMR

(24) ¹H NMR

(25) ¹H NMR

(26)¹H NMR

(27) ¹H NMR

(28) ¹H NMR

¹⁹F

(31) ¹H NMR

(32) ¹H NMR

(33) ¹H NMR

(34) ¹H NMR

¹³C DEPTQ

(35) ¹H NMR

