Supplementary Information

Coupling Cu doping and oxygen vacancies in Co₃O₄ for efficient electrochemical

nitrate conversion to ammonia

Bo Li, ^a Pengfei Xue, ^a Yu Bai, ^a Qin Tang, ^b Man Qiao, ^a and Dongdong Zhu *^a

^a School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China E-mail: <u>dd.zhu@nuist.edu.cn</u>

^b School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China

1. Experimental section

1.1 Materials: Cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O), urea (CO(NH₂)₂), ammonium fluoride (NH₄F), Sodium nitrate (NaNO₃), sodium nitrite (NaNO₂), sodium sulfate (Na₂SO₄), ammonium chloride (NH₄Cl), sodium salicylate (C₇H₅N_aO₃), trisodium citrate dihydrate (C₆H₅Na₃O₇·2H₂O), ammonium chloride (NH₄Cl), sodium hydroxide (NaOH), sodium nitroferricyanide dihydrate (C₅FeN₆Na₂O·2H₂O), sulfamic acid solution (H₃NO₃S), sodium hypochlorite solution (NaClO), Copper(II) Chloride Dihydrate (CuCl₂·2H₂O), and N-(1-naphthyl) ethylenediamine dihydrochloride (C₁₂H₁₄N₂) were purchased from Aladdin Ltd. (Shanghai, China). Sulfuric acid (H₂SO₄), hydrogen peroxide (H₂O₂), hydrochloric acid (HCl) and ethanol (C₂H₃OH) were bought from China National Pharmaceutical Group Corp. (China). All reagents used in this work were analytical grade without further purification.

1.2 Preparation of Cu-Co₃O_{4-x}, Cu-Co₃O₄ and Co₃O₄: Cu-Co₃O_{4-x} nanowire grown on CC was prepared as following: Firstly, 2.5 mmol of Co(NO₃)₂·6H₂O, 5.0 mmol of NH₄F and 12.5 mmol of urea were dissolved in 35.0 mL deionized water. After the solution was stirred for 5 mins, the pretreated CC (3 \times 3 \text{ cm}^2) substrate was immersed into the solution and transferred into a 50.0 mL Teflon-lined autoclave. The autoclave was then sealed and maintained at 120 °C for 6 h. When the autoclave cools down to room temperature, the Co-based precursor on CC was washed several times with distilled water and anhydrous ethanol. Secondly, the obtained Co-based precursor was immersed in 10.0 mM CuCl₂ solution for 12 h to go through a cation exchange process. After ion exchange, the product was dried at 60 °C for 2 h, and then annealed in air at 400 °C for 2 h to obtain Cu-Co₃O₄ sample. Finally, in-situ electrochemical reduction step was carried out on Cu-Co₃O₄ sample, which was performed with chronoamperometry method at -0.8 \text{ V} *vs.* **RHE in neutral electrolyte for 12 h to obtain Cu-Co₃O_{4-x}. Co₃O₄ was prepared via directly annealing Cobased precursor in air at 400 °C for 2 h.**

1.3 Electrochemical measurements: All electrochemical measurements were carried out in a Htype electrolytic cell separated by a treated Nafion 117 membrane using the CHI 760E electrochemical workstation (Shanghai, Chenhua) under the ambient conditions. The Cu-Co₃O₄ $(0.5 \times 0.5 \text{ cm}^2)$, saturated calomel electrode (SCE), and platinum foil were used as the working electrode, reference electrode and counter electrode, respectively. The electrolyte used in both the cathode and anode was $0.25 \text{ M Na}_2\text{SO}_4$ with different concentrations of NO_3^- . A stir bar was used in the H-type cell with a stirring rate of 350 rpm to minimize the mass transfer limitation. All the potentials were converted to the reversible hydrogen electrode (RHE). The chronoamperometry test was performed at different potentials for 1.0 h. We collected the product data for three times at each fixed potential, then the average results were obtained and used.

1.4 Determination of NH₃: Concentration of produced NH₃ was quantitatively determined by the indophenol blue method. In brief, 5.0 g of sodium salicylate and 5.0 g of trisodium citrate dihydrate were dissolved in 100.0 mL of 1.0 M NaOH (Reagent A). Reagent B is then configured with 0.05 M NaClO. 0.20 g of sodium nitroferricyanide was dissolved in 20.0 mL of deionized water (Reagent C). 2 mL of the diluted catholyte was obtained from the cathodic chamber and mixed with 2.0 mL of Reagent A, 1.0 mL of Reagent B and 0.20 mL of Reagent C. After standing for 2 h at room temperature, the ultraviolet-visible absorbance was measured at 655 nm. The concentration-absorbance calibration curve was obtained using standard NH₄Cl solution with varying concentration.

1.5 Determination of NO₂-: For chromogenic reagent preparation, 0.50 g of sulfanilamide was dissolved in 50.0 mL of 2.0 M HCl solution to prepare sulfanilamide solution (reagent A) and 20.0 mg of N-(1-Naphthyl) ethylenediamine dihydrochloride was dissolved in 20.0 mL of deionized water (reagent B). A certain amount of electrolyte was removed from the electrolytic cell and diluted to 5.0 mL to detection range. Then, 0.1 mL of reagent A were immersed into the dilution solution (5.0 mL). After standing for 10 minutes, 0.1 mL of reagent B were immersed into the aforementioned solution. After standing for 30 minutes at room temperature, the ultraviolet-visible absorption was measured at a wavelength of 540 nm and 650 nm. The final absorbance value is difference at 540 nm and 650 nm. The concentration-absorbance calibration curve was obtained using standard NaNO₂ solution with varying concentration.

1.6 Calculations of FE and yield of NH₃:

 $\mathrm{FE} = \left(8 \times \mathrm{F} \times [\mathrm{NH_3}] \times \mathrm{V}\right) / \left(M_{\mathrm{NH3}} \times \mathrm{Q}\right) \times 100\%$

NH₃ yield = ([NH₃] × V) / (($M_{NH3} \times t \times S$)

Where F is the Faradic constant (96485 C mol⁻¹), $[NH_3]$ is the measured NH₃ concentration, V is the volume of electrolyte in the anode compartment (40 mL), M_{NH3} is the molar mass of NH₃, Q is the total quantity of applied electricity, t is the electrolysis time (1.0 h), S is the loaded area of catalyst (0.5 × 0.5 cm²).

2. Supplementary Figures and Tables

Figure S1. SEM image of Co₃O₄.

Figure S2. SEM image of Cu-Co₃O₄.

Figure S3. SEM image of Cu-Co₃O_{4-x}.

Figure S4. The concentration-absorbance calibration curves of (a) ammonia-N, (b) nitrite-N.

Figure S5. (a) LSV curves of Cu-Co₃O₄ tested in 0.25 M Na₂SO₄ with or without 2000 ppm NO₃⁻,
(b) LSV curves of Cu-Co₃O_{4-x} tested in 0.25 M Na₂SO₄ with or without 2000 ppm NO₃⁻.

Figure S6. LSV curves of bare CC tested in 0.25 M Na₂SO₄ with or without 2000 ppm NO₃⁻.

Figure S7. FEs of NH₃, and NO₂⁻ on Cu-Co₃O_{4-x} at different applied potentials.

Figure S8. NH₃ yields and FEs of Cu-Co₃O_{4-x} sample prepared via changing the in-situ electrochemical reduction time to 24 hours at different applied potentials in 0.25 M Na₂SO₄ with 2000 ppm NO₃⁻. Though the NO₃RR performance of the obtained Cu-Co₃O_{4-x} sample is slightly worse than the Cu-Co₃O_{4-x} sample prepared via 12-hour in-situ electrochemical reduction, it is still better than Cu-Co₃O₄ sample, highlighting the importance of oxygen vacancies.

Figure S9. NH_3 yields and FEs of Cu-Co₃O_{4-x} samples with different Cu content prepared via using (a) 5 mM CuCl₂, and (b) 20 mM CuCl₂ solution in the cation exchange step at different applied potentials in 0.25 M Na₂SO₄ with 2000 ppm NO₃⁻.

Figure S10. (a) Cyclic voltammograms (CV) curves for $Cu-Co_3O_{4-x}$ at the scan rates from 20 to 100 mV s⁻¹. (b) Current density as a function of the scan rate to give the double-layer capacitance (C_{dl}) for Cu-Co₃O_{4-x}.

Figure S11. (a) Cyclic voltammograms (CV) curves for $Cu-Co_3O_4$ at the scan rates from 20 to 100 mV s⁻¹. (b) Current density as a function of the scan rate to give the double-layer capacitance (C_{dl}) for $Cu-Co_3O_4$.

Figure S12. (a) Cyclic voltammograms (CV) curves for Co_3O_4 at the scan rates from 20 to 100 mV s⁻¹. (b) Current density as a function of the scan rate to give the double-layer capacitance (C_{dl}) for Co_3O_4 .

Figure S13. LSV curves of Cu-Co $_3O_{4-x}$ tested with different NO_3^- concentrations.

Figure S14. NH₃ yields and FEs of Cu-Co₃O_{4-x} tested at -0.95V vs. RHE in 0.25 M Na₂SO₄ with low NO₃⁻ concentrations.

Figure S15. (a) XRD patterns of Cu-Co₃O_{4-x} sample before and after the NO₃RR cycling test, (b) SEM image of Cu-Co₃O_{4-x} sample after the NO₃RR cycling test. The XRD results display that the intrinsic structure of Cu-Co₃O_{4-x} was well preserved after NO₃RR cycling test, as the significant (400) peak of Co₃O₄ can be clearly observed. The SEM image shows that the nanoarray configuration of Cu-Co₃O_{4-x} was maintained after the cycling test.

Catalyst	Electrolyte	Potential	Performance	Ref.
Cu-Co ₃ O _{4-x}	0.25 M Na ₂ SO ₄	-1.05 V	FE = 88.9%	This
	2000 ppm NO ₃ ⁻	(V vs. RHE)	NH_3 yield = 0.83 mmol h ⁻¹ cm ⁻²	work
TiO _{2-x}	0.50 M Na ₂ SO ₄	-1.6 V	FE = 85%	1
	$0.50 \mathrm{mg} \mathrm{L}^{-1} \mathrm{NO_3}^{-1}$	(V vs. SCE)	NH_3 yield = 0.045 mmol h ⁻¹ mg ⁻¹	
Cu/Cu ₂ O	0.50 M Na ₂ SO ₄	-0.85 V	FE = 95.8%	2
	200 ppm NO ₃ ⁻	(V vs. RHE)	NH_3 yield = 0.245 mmol h ⁻¹ cm ⁻²	
Fe SAC	0.10 M K ₂ SO ₄	-0.66 V	FE = 75%	3
	0.50 M KNO ₃	(V vs. RHE)	NH_3 yield = 0.46 mmol h ⁻¹ cm ⁻²	
Co/CoO NSA	0.10 M K ₂ SO ₄	-1.3 V	FE = 93.8%	4
	200 ppm NO ₃ ⁻	(V vs. SCE)	NH_3 yield = 0.20 mmol h ⁻¹ cm ⁻²	
Co ₃ O4/NiO	0.50 M Na ₂ SO ₄	-0.8 V	FE = 55%	5
HNTs	200 ppm NO ₃ ⁻	(V vs. RHE)	NH_3 yield = 6.9 mmol h ⁻¹ g ⁻¹	
Pd _{Octohedron}	0.10 M Na ₂ SO ₄	-0.7 V	FE = 79.91%	6
	0.10 M NO ₃ ⁻	(V vs. RHE)	NH_3 yield = 0.549 mmol h ⁻¹ cm ⁻²	
Cu-PTCDA	0.10 M PBS	-0.4 V	FE = 85.9%	7
	500 ppm NO ₃ ⁻	(V vs. RHE)	NH_3 yield = 436 µg h ⁻¹ cm ⁻²	
Fe-SnS ₂	0.50 M Na ₂ SO ₄	-0.7 V	FE = 85.6%	8
	0.10 M NO ₃ ⁻	(V vs. RHE)	NH_3 yield = 7.2 mg h ⁻¹ cm ⁻²	
B-MoS ₂	0.50 M Na ₂ SO ₄	-0.7 V	FE = 92.3%	9
	0.10 M NO ₃ ⁻	(V vs. RHE)	NH_3 yield = 10.8 mg h ⁻¹ cm ⁻²	
meso-PdN NCs	0.10 M Na ₂ SO ₄	-0.7 V	FE = 96.1%	10
	0.005 M NO ₃ ⁻	(V vs. RHE)	NH ₃ yield = 3760 μ g h ⁻¹ mg ⁻¹	

Table S1. Summary of the performance of recently reported NO₃RR electrocatalysts in the neutral electrolytes.

References

- 1 R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu and B. Zhang, ACS Catal., 2020, 10, 3533-3540.
- 2 Y. Wang, W. Zhou, R. Jia, Y. Yu and B. Zhang, Angew. Chem. Int. Ed., 2020, 59, 5350-5354.
- 3 Z.-Y. Wu, M. Karamad, X. Yong, Q. Huang, D. A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F.-Y. Chen, J. Y. Kim, Y. Xia, K. Heck, Y. Hu, M. S. Wong, Q. Li, I. Gates, S. Siahrostami and H. Wang, *Nat. Commun.*, 2021, **12**, 2870.
- 4 Y. Yu, C. Wang, Y. Yu, Y. Wang and B. Zhang, Sci. China Chem., 2020, 63, 1469-1476.
- 5 Y. Wang, C. Liu, B. Zhang and Y. Yu, Sci. China Mater., 2020, 63.
- 6 Y. Han, X. Zhang, W. Cai, H. Zhao, Y. Zhang, Y. Sun, Z. Hu, S. Li, J. Lai and L. Wang, J. Colloid Interface Sci., 2021, 600, 620-628.
- 7 G.-F. Chen, Y. Yuan, H. Jiang, S.-Y. Ren, L.-X. Ding, L. Ma, T. Wu, J. Lu and H. Wang, *Nat. Energy*, 2020, 5, 605-613.
- 8 K. Chen, Y. Luo, P. Shen, X. Liu, X. Li, X. Li and K. Chu, *Dalton Trans.*, 2022, **51**, 10343-10350.
- 9 Y. Luo, K. Chen, P. Shen, X. Li, X. Li, Y. Li and K. Chu, J. Colloid Interface Sci., 2023, 629, 950-957.
- 10 L. Sun and B. Liu, Adv. Mater., 2023, 35, 2207305.