Supporting Information

Electrochemical Site-Selective direct C-H Sulfenylation and Selenylation of Chromone-Fused-Indolizine (CFI) Skeleton

Pooja Kumari Jat,[‡] Lalit Yadav,[‡] Amreen Chouhan, Kusum Ucheniya, Satpal Singh Badsara* MFOS Laboratory, Department of Chemistry, Centre of Advanced Study, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India. E-mail: <u>badsarass4@uniraj.ac.in; badsarass4@gmail.com</u>

	Contents	Page No.
(<i>i</i>)	General Information & General procedure	2
(i)	General Procedure, results of Cyclic Voltametry (CV) and CV graphs	3-5
(ii)	Control experiments	6
(iii)	¹ H NMR, ¹³ C NMR, ¹⁹ F-NMR and Mass Data of compound 3aa- 3hb , 5aa-5ga	6- 26
(iv)	¹ H NMR, ¹³ C NMR, ¹⁹ F-NMR and Mass Spectral Data of compound 3aa-3hb , 5aa-5ga	27- 143

General information:

All the chemicals and reagents were purchased from commercially suppliers and used without prior any purification. Column chromatography was performed over silica-gel (particle size: 100-200 Mesh) using hexanes and ethyl acetate as eluent. The aluminium supported silica plate Si 60 F₂₅₄ was used for the thin layer chromatography. ¹H NMR, ¹³C NMR, and HRMS techniques were used for the analysis of synthesized compounds. ¹H NMR and ¹³C NMR spectra were recorded on JEOL ECS-400 instrument in CDCl₃ solvent. Chemical shifts reported in parts per million (ppm) with referencing the TMS at 0.00 ppm and coupling constants (J) were given in Hz. ¹H NMR peak signals were reported as s (singlet), d (doublet), dd (double doublet), td (triplet of doublet), ddd (doublet of double doublet), and m (multiplet). In the ¹³C NMR, Chemical shifts were reported in ppm with referencing the center line of a triplet of Chloroform-d at 77.10 ppm. High-resolution mass spectra (HRMS) were recorded on a Xevo G2-S Q Tof (Waters, USA) mass spectrometer and Agilent technologies Q-TOF B.06.01 mass spectrometer. All electrocatalytic reactions were carried out in IKA ElectraSyn 2.0 instrument. All the starting precursors were synthesized using reported literature.¹

General procedure for Table 2

In an undivided Electrasyn 2.0 cell equipped with a graphite anode and a platinum cathode was charged with chromone-fused-indazoline **1** (0.25 mmol), disulfides **2** (0.20 mmol), KI (50 mol %), and *n*-Bu₄NPF₆ (50 mol %) in acetonitrile (4 mL) solvent. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA at room temperature for the 4-6 h *via* the manual programming of IKA ElectraSyn 2.0 instrument. After the completion of the reaction, the acetonitrile solvent was evaporated and the crude was diluted with water (20 mL) followed by extracted with chloroform (3x20 mL). The combined organic layers were concentrated under reduced to get crude product which were further purified by trituration process in EtOAc: Hexanes to afford the corresponding products **3** except **3ai**, **3aj**, **3ed**, **3ak**, **3al**, **3am**, **3gb**, **3hb** which were purified through column chromatography using EtOAc: Hexanes as an eluent.

General Procedure for and results of Cyclic Voltammetry (CV):

Cyclic voltammetry was performed in a three electrode cell at room temperature. The working electrode was a glassy electrode and the counter electrode was a platinum electrode. The reference was an Ag/AgCl electrode submerged in 3M KCl solution, and separated from the reaction by a salt bridge. 8 mL of CH₃CN containing 0.05 M and 0.025 M KI were used in the all electrochemical cyclic voltammograms experiments. The scan rate is 0.2 V/s.

The CV of *n*-Bu₄NPF₆ (0.5 M) showed no oxidation peak. The CV of *n*-Bu₄NPF₆ (0.5 M) and KI 0.025 M showed a oxidation peak at +1.27 V which indicates that iodide ion gets oxidized into iodine radical or iodine (curve blank). The CV of the **2a** (5 mM), KI (0.025M), and *n*-Bu₄NPF₆ (0.05 M) demonstrated an apparent oxidation peak at +2.30 V (curve 2a) whereas the CV of the **1a** (5 mM), KI (0.025M), and *n*-Bu₄NPF₆ (0.05 M) showed an apparent oxidation peak at +2.64V (curve 1a). The CV of the mixture of **1a**, **2a**, KI (0.025 M) and *n*-Bu₄NPF₆ (0.05 M) demonstrated apparent oxidation peaks at +2.06 and +2.75 V (curve 1a+2a), due to the possible chemical interaction between the compounds **1a** and **2a**.

Figure S1. Cyclic voltammograms of reactants and mixture in 0.1 M *n*-Bu₄NPF₆/ CH₃CN (3:2) using a glassy carbon disk electrode, Pt electrode as counter electrode and Ag/AgCl as reference

electrode; Cyclic voltammograms of salt and salt with KI at a 200 mVS⁻¹ (curve-salt): n-Bu₄NPF₆ (0.05 M); (curve salt+KI): n-Bu₄NPF₆ (0.05 M), KI (0.025M).

Figure S2. Cyclic voltammograms of reactants and mixture in 0.1 M *n*-Bu₄NPF₆/ CH₃CN using

a glassy carbon disk electrode, Pt electrode as counter electrode and Ag/AgCl as reference electrode, at a 200 mVS⁻¹; (curve 2a+KI): *n*-Bu₄NPF₆ (0.05 M), KI (0.025M)

Cyclic Voltammograms graph for 1a

Figure S3. Cyclic voltammograms of reactants and mixture in 0.1 M *n*-Bu₄NPF₆/ CH₃CN using a glassy carbon disk electrode, Pt electrode as counter electrode and Ag/AgCl as reference electrode, at a 200 mVS⁻¹ (Curve **1a**): **1a** (5 mM) + *n*-Bu₄NPF₆ (0.05 M), KI (0.025M)

Cyclic Voltammograms graph for 1a+2a

Figure S4. Cyclic voltammograms of reactants and mixture in 0.1 M n-Bu₄NPF₆/ CH₃CN (3:2)

using a glassy carbon disk electrode, Pt electrode as counter electrode and Ag/AgCl as reference electrode, at a 200 mVS⁻¹; (Curve 1a+2a): **1a** (5 mM) + **2a** (5 mM)+ *n*-Bu₄NPF₆ (0.05 M), KI (0.025M).

Control experiments

To gain the intrinsic reaction pathway of this interesting electrochemical C-H chalcogenation protocol, we carried out some control experiments as shown in Scheme 1. The essential role of electricity and iodo source were already established during optimization studies (Table 1, entries 2-3). To check the radical involvement in this C-H chalcogenation process, radical scavenger experiments were conducted. The reaction of **1a** with **2a** was performed in the presence of TEMPO or galvinoxyl free radicals under optimized reaction conditions which provided the **3aa** in 50% and 40% respectively. The formation of TEMPO-adduct **6** was also confirmed by HRMS data analysis which supports the possible radical pathway. However, since the reactions were not fully quenched, ionic pathway also cannot be ruled out.

11-(Phenylthio)-12*H*-chromeno[3,2-*b*]indolizin-12-one (3*aa*):

The title compound was prepared following the general procedure for Table 2, using 12*H*-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and diphenyl disulfide **2a** (0.2 mmol, 0.044 g), after trituration

process in 10-15% EtOAc/Hexanes) obtained **3aa** as a yellow solid; Yield: 0.079 g, 92%; M.P.: 182 °C ¹H NMR (400 MHz, CDCl₃): δ 8.29 (dd, J = 8.0 & 1.6 Hz, 1H), 8.02 (d, J = 7.2 Hz, 1H), 7.62-7.57 (m, 2H), 7.48 (d, J = 8.4 Hz, 1H), 7.32 (td, J = 8.0 & 1.2 Hz, 1H), 7.15-7.13 (m, 2H), 7.10-7.06 (m, 2H), 6.99-6.95 (m, 1H), 6.80-6.76 (m, 1H), 6.64 (td, J = 7.2 & 1.2, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 174.1, 153.7, 141.5, 139.3, 133.1, 132.0, 128.7, 127.0, 126.9, 125.3, 124.6, 123.7, 121.2, 120.6, 118.8, 117.3, 112.8, 109.4, 92.6; HRMS (ESI) exact mass calcd for $C_{21}H_{13}NO_2S + H (M + H)$, 344.0740; Found: 344.0741.

11-(*p*-Tolylthio)-12*H*-chromeno[3,2-*b*]indolizin-12-one (3*ab*):

The title compound was prepared following the general procedure for Table 2, using 12H-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and bis(4-methylphenyl)

disulfide **2b** (0.2 mmol, 0.049 g), after trituration process in 10-15% EtOAc/Hexanes) obtained **3ab** as a yellow solid; Yield: 0.083 g, 93%; M.P.: 164 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.40 (dd, J = 8.0 & 1.7 Hz, 1H), 8.12 (d, J = 7.2 Hz, 1H), 7.74-7.67 (m, 2H), 7.58 (d, J = 8.4 Hz, 1H), 7.42 (t, J = 8.0 Hz, 1H), 7.17 (d, J = 8.0 Hz, 2H), 6.98 (d, J = 8.0 Hz, 2H), 6.89-6.85 (m, 1H), 6.73 (t, J = 7.2 Hz, 1H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.2, 153.8, 141.6, 135.6, 135.3, 133.2, 131.8, 129.6, 127.6, 127.1, 124.6, 123.8, 121.0, 120.5, 119.0, 117.3, 112.8, 109.4, 93.6, 21.0; HRMS (ESI) exact mass calcd for C₂₂H₁₅NO₂S + H (M + H), 358.0896; Found: 358.0892.

11-((4-Methoxyphenyl)thio)-12*H*-chromeno[3,2-*b*]indolizin-12-one (3*ac*):

The title compound was prepared following the general procedure for Table 2, using 12H-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and bis(4-methoxyphenyl)

disulfide **2c** (0.2 mmol, 0.056 g), after trituration process in 10-15% EtOAc/Hexanes obtained **3ac** as a yellow solid; Yield: 0.090 g, 96%; M.P.: 182 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.41 (dd, J = 8.0 & 1.6 Hz, 1H), 8.08 (d, J = 7.2 Hz, 1H), 7.77 (d, J = 9.2 Hz, 1H), 7.70-7.66 (m, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.42 (td, J = 8.0 & 1.2 Hz, 1H), 7.38-7.34 (m, 2H), 6.88-6.85 (m, 1H), 6.75-6.69 (m, 3H), 3.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.3, 158.3, 153.8, 141.5, 113.1, 131.5, 130.6, 129.7, 127.1, 124.6, 123.8, 120.9, 120.5, 119.0, 117.3, 114.5, 112.7, 109.3, 95.2, 55.3.

11-((2-Bromophenyl)thio)-12*H*-chromeno[3,2-*b*]indolizin-12-one (3*ad*):

The title compound was prepared following the general procedure for Table 2, using 12*H*-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and bis(2-bromophenyl) disulfide **2d** (0.2 mmol, 0.075 g), after trituration process in 10-15% EtOAc/Hexanes obtained **3ad** as a

yellow solid; Yield: 0.087 g, 82%; M.P.: 194 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.32 (dd, J = 8.0 & 1.6 Hz, 1H), 8.12 (d, J = 7.2 Hz, 1H), 7.67-7.62 (m, 2H), 7.55 (d, J = 7.6 Hz, 1H), 7.43 (dd, J = 8.0 & 1.6 Hz, 1H), 7.39-7.35 (m, 1H), 6.90 (td, J = 7.6 & 1.2 Hz, 1H), 6.87-6.81 (m, 2H), 6.74-6.70 (m, 1H), 6.62 (dd, J = 7.6 & 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 174.1, 153.9, 141.9, 140.7, 133.3, 132.6, 132.4, 127.5, 127.2, 126.7, 125.9, 124.8, 123.8, 121.6, 120.8, 120.1, 119.0, 117.4, 113.1, 109.6, 91.1; HRMS (ESI) exact mass calcd for C₂₁H₁₂BrNO₂S + H (M + H), 421.9845; Found: 421.9844.

11-((3-Bromophenyl)thio)-12*H*-chromeno[3,2-*b*]indolizin-12-one (3*ae*):

The title compound was prepared following the general procedure for Table 2, using 12*H*-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and bis(3-bromophenyl) disulfide **2e** (0.2 mmol, 0.075 g), after trituration process in 10-15% EtOAc/Hexanes obtained **3ae** as a

yellow solid; Yield: 0.093 g, 88%; M.P.: 152 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.39 (dd, J = 8.0 & 1.6 Hz, 1H), 8.16 (dt, J = 7.2 & 1.2 Hz, 1H), 7.73-7.66 (m, 2H), 7.60 (dd, J = 8.4 & 1.2 Hz, 1H), 7.45-7.41 (m, 1H), 7.24-7.23 (m, 1H), 7.19-7.13 (m, 2H), 7.03 (t, J = 8.0 Hz, 1H), 6.95-6.90 (m, 1H), 6.80-6.76 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 174.2, 153.8, 142.0, 141.8, 133.3, 132.3, 130.1, 128.8, 128.2, 127.1, 125.0, 124.8, 123.8, 122.9, 121.7, 120.8, 118.7, 117.4,

113.0, 109.3, 91.1; HRMS (ESI) exact mass calcd for $C_{21}H_{12}BrNO_2S + H (M + H)$, 421.9845; Found: 421.9854.

11-((4-Bromophenyl)thio)-12*H*-chromeno[3,2-*b*]indolizin-12-one (3*af*):

The title compound was prepared following the general procedure for Table 2, using 12*H*-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and bis(4-bromophenyl) disulfide **2f** (0.2 mmol,

0.075 g), after trituration process in 10-15% EtOAc/Hexanes obtained **3af** as a yellow solid; Yield: 0.095 g, 90%; M.P.: 184 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.35 (d, J = 8.0 Hz, 1H), 8.11 (d, J = 7.2 Hz, 1H), 7.69-7.63 (m, 2H), 7.56 (d, J = 10.0 Hz, 1H), 7.41-7.38 (m, 1H), 7.26-7.23 (m, 2H), 7.06-7.04 (m, 2H), 6.89-6.86 (m, 1H), 6.75-6.72 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 174.2, 153.8, 141.7, 138.7, 133.3, 132.0, 131.7, 128.3, 127.0, 124.8, 123.7, 121.5, 120.7, 118.9, 118.7, 117.4, 113.0, 109.3, 91.8; HRMS (ESI) exact mass calcd for C₂₁H₁₂BrNO₂S + H (M + H), 421.9845; Found: 421.9850.

11-((4-Chlorophenyl)thio)-12*H*-chromeno[3,2-*b*]indolizin-12-one (3*ag*):

The title compound was prepared following the general procedure for Table 2, using 12*H*-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and bis(4-chlorophenyl) disulfide **2g** (0.2 mmol,

0.057 g), after trituration process in 10-15% EtOAc/Hexanes obtained **3ag** as a yellow solid; Yield: 0.085 g, 90%; M.P.: 182 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.32 (dd, J = 8.0 & 2.0 Hz, 1H), 8.08 (d, J = 7.2 Hz, 1H), 7.66-7.61 (m, 2H), 7.52 (d, J = 8.4 Hz, 1H), 7.36 (t, J = 8.0, 1H), 7.09-7.04 (m, 4H), 6.84 (t, J = 8.0 Hz, 1H), 6.70 (t, J = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 174.2, 153.8, 141.7, 137.9, 133.3, 132.0, 131.1, 128.8, 128.1, 127.1, 124.8, 123.8, 121.5, 120.7, 118.7, 117.4, 113.0, 109.3, 92.1; HRMS (ESI) exact mass calcd for C₂₁H₁₂ClNO₂S + H (M + H), 378.0350; Found: 378.0351.

11-((3-Chlorophenyl)thio)-12*H*-chromeno[3,2-*b*]indolizin-12-one (3*ah*):

The title compound was prepared following the general procedure for Table 2, using 12*H*-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and bis(3-chlorophenyl) disulfide **2h** (0.2 mmol, 0.057 g), after trituration process in 10-15% EtOAc/Hexanes obtained **3ah** as a

yellow solid; Yield: 0.082 g, 87%; M.P.: 156 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.37 (d, J = 8.0 Hz, 1H), 8.15 (d, J = 7.2 Hz, 1H), 7.72-7.65 (m, 2H), 7.59 (d, J = 8.4 Hz, 1H), 7.42 (t, J = 8.0 Hz, 1H), 7.09-7.06 (m, 3H), 7.03-6.99 (m, 1H), 6.91 (t, J = 6.8 Hz, 1H), 6.77 (t, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 174.1, 153.8, 141.79, 141.74, 134.6, 133.3, 132.3, 129.7, 127.0, 125.9, 125.3, 124.8, 124.5, 123.7, 121.7, 120.7, 118.7, 117.4, 113.0, 109.3, 91.1; HRMS (ESI) exact mass calcd for C₂₁H₁₂ClNO₂S + H (M + H), 378.0350; Found: 378.0351.

11-((4-Nitrophenyl)thio)-12*H*-chromeno[3,2-*b*]indolizin-12-one (3*ai*):

The title compound was prepared following the general procedure for Table 2, using 12H-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and bis(4-nitrophenyl) disulfide **2i**

(0.2 mmol, 0.062 g), after column chromatography (20-25% EtOAc/Hexanes) obtained **3ai** as a yellow solid; Yield: 0.074 g, 76%; M.P.: 210 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.36 (d, *J* = 8.0 Hz, 1H), 8.23 (d, *J* = 7.2 Hz, 1H), 8.01 (d, *J* = 8.8 Hz, 2H), 7.74 (t, *J* = 8.0 Hz, 1H), 7.66-7.64 (m, 2H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.19 (d, *J* = 8.8 Hz, 2H), 7.00-6.96 (m, 1H), 6.84 (t, *J* = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 174.2, 153.9, 149.8, 145.1, 142.0, 133.6, 132.4, 127.1, 125.3, 125.0, 124.0, 123.7, 122.3, 121.0, 118.4, 117.5, 113.2, 109.3, 89.1; HRMS (ESI) exact mass calcd for C₂₁H₁₂N₂O₄S + H (M + H), 389.0591; Found: 389.0591.

11-(Pyridin-2-ylthio)-12*H*-chromeno[3,2-*b*]indolizin-12-one (3*aj*):

The title compound was prepared following the general procedure for Table 2, using 12*H*-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and 2,2-dipyridyl disulfide **2j** (0.2 mmol, 0.044 g), after

column chromatography (25-30% EtOAc/Hexanes) obtained **3aj** as a yellow solid; Yield: 0.060 g, 70%; M.P.: 88 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.38-8.34 (m, 2H), 8.15 (dt, J = 7.2 & 1.2 Hz, 1H), 7.72-7.66 (m, 2H), 7.60 (dd, J = 8.4 & 1.2 Hz, 1H), 7.43-7.35 (m, 2H), 6.94-6.87 (m, 3H), 6.78-6.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 174.2, 162.2, 153.8, 149.3, 141.8, 136.5, 133.2, 132.1, 127.0, 124.7, 123.8, 121.4, 120.7, 120.1, 119.5, 118.9, 117.4, 112.9, 109.4, 90.3; HRMS (ESI) exact mass calcd for C₂₀H₁₂N₂O₂S + H (M + H), 345.0692; Found: 345.0691.

11-(Hexylthio)-12*H*-chromeno[3,2-*b*]indolizin-12-one (3*ak*):

The title compound was prepared following the general procedure for Table 2, using 12H-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and and 1,2-dihexyldisulfane **2k**

(0.2 mmol, 0.047 g), after column chromatography process in 20-25% EtOAc/Hexanes) obtained **3ak** as a yellow solid; Yield: 0.051 g, 58%; M.P.: 52 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.37 (dd, J = 8.0 & 1.6 Hz, 1H), 7.99 (br, 1H), 7.64-7.60 (m, 2H), 7.51 (d, J = 9.6 Hz, 1H), 7.39-7.35 (m, 1H), 6.71 (br, 1H), 6.59 (t, J = 7.2 Hz, 1H), 2.96 (br, 2H), 1.47-1.39 (m, 2H), 1.34-1.27 (m, 2H), 1.17-1.11 (m, 4H), 0.75 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.6, 153.8, 141.5, 133.1, 130.9, 127.0, 124.6, 123.8, 120.2, 119.8, 119.4, 117.3, 112.5, 109.6, 96.5, 37.0, 31.5, 29.4, 28.4, 22.6, 14.0; HRMS (ESI) exact mass calcd for C₂₁H₂₁NO₂S + H (M + H), 352.1366; Found: 352.1365.

11-(Benzo[d]thiazol-2-ylthio)-12H-chromeno[3,2-b]indolizin-12-one (3al):

The title compound was prepared following the general procedure for Table 2, using 12*H*-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and 2-mercaptobenzothiazole **2l** (0.38 mmol, 0.063

g), after column chromatography process in 25-30% EtOAc/Hexanes) obtained **3al** as a yellow solid; Yield: 0.075 g, 75%; M.P.: 210 °C ¹H NMR (400 MHz, CDCl₃): δ 8.32 (dd, J = 8.0 & 1.6 Hz, 1H), 8.18 (d, J = 7.2 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.68-7.65 (m, 2H), 7.57 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.40-7.36 (m, 1H), 7.30-7.26 (m, 1H), 7.13-7.09 (m, 1H), 6.98- (ddd, J = 9.2, 6.4 & 1.2 Hz, 1H), 6.79 (td, J = 6.8, & 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 174.0, 154.0, 153.0, 142.1, 135.1, 133.6, 133.0, 127.1, 126.2, 125.0, 124.1, 123.8, 123.0, 121.5, 121.1, 120.8, 118.4, 117.5, 113.5, 109.0, 88.6; HRMS (ESI) exact mass calcd for C₂₂H₁₂N₂O₂S₂ + H (M + H), 401.0413; Found: 401.0412.

11-(Benzo[d]oxazol-2-ylthio)-12H-chromeno[3,2-b]indolizin-12-one (3am):

The title compound was prepared following the general procedure for Table 2, using 12H-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and 2-mercaptobenzoxazole **2m**

(0.38 mmol, 0.057 g), after column chromatography process in 25-30% EtOAc/Hexanes) **3am** as a yellow solid; Yield: 0.067 g, 70%; M.P.: 230 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.31 (dd, J = 8.0 & 1.6 Hz, 1H), 8.15 (d, J = 6.8 Hz, 1H), 7.68-7.64 (m, 2H), 7.56 (d, J = 8.4 Hz, 1H), 7.45-7.43 (m, 1H), 7.38 (td, J = 7.2 & 1.2 Hz, 1H), 7.32-7.29 (m, 1H), 7.15-7.09 (m, 2H), 6.94 (ddd, J = 9.2, 6.4 & 1.2 Hz, 1H), 6.76 (td, J = 7.2 & 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 174.1, 154.0, 152.0, 142.1, 141.7, 133.4, 132.3, 131.8, 127.1, 125.3, 124.2, 123.9, 122.5, 121.1, 119.3, 118.5, 117.1, 113.1, 110.1, 109.2., 84.11; HRMS (ESI) exact mass calcd for C₂₂H₁₂N₂O₃S + H (M + H), 385.0642; Found: 385.0643.

2-Methoxy-11-(phenylthio)-12*H*-chromeno[3,2-*b*]indolizin-12-one (3ba):

The title compound was prepared following the general procedure for Table 2, using 2-methoxy-12*H*-chromeno[3,2-*b*]indolizin-12-one **1b** (0.25 mmol, 0.067 g) and diphenyl

disulfide **2a** (0.2 mmol, 0.044 g), after trituration process in 10-15% EtOAc/Hexanes obtained **3ba** as a yellow solid; Yield: 0.088 g, 94%; M.P.: 220 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 7.2 Hz, 1H), 7.78 (d, *J* = 3.2 Hz, 1H), 7.71 (d, *J* = 9.6 Hz, 1H), 7.52 (d, *J* = 8.8 Hz, 1H), 7.29-7.26 (m, 1H), 7.24-7.22 (m, 2H), 7.18-7.14 (m, 2H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.90-6.86 (m, 1H), 6.73 (t, *J* = 7.6 Hz, 1H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.1, 156.5, 148.4, 141.9, 139.4, 132.1, 128.8, 126.9, 125.3, 124.3, 122.7, 121.2, 120.6, 119.0, 118.6, 112.7, 109.0, 106.7, 92.5, 55.9; HRMS (ESI) exact mass calcd for C₂₂H₁₅NO₃S + H (M + H), 374.0846; Found: 374.0847.

11-((2-Bromophenyl)thio)-2-methoxy-12H-chromeno[3,2-b]indolizin-12-one (3bd):

The title compound was prepared following the general procedure for Table 2, using 2-methoxy-12*H*-chromeno[3,2*b*]indolizin-12-one **1b** (0.25 mmol, 0.067 g) and bis(2bromophenyl) disulfide **2d** (0.2 mmol, 0.075 g), after trituration

process in 10-15% EtOAc/Hexanes obtained **3bd** as a yellow solid; Yield: 0.095 g, 84%; M.P.: 88 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.17 (d, J = 7.2 Hz, 1H), 7.77 (d, J = 2.8 Hz, 1H), 7.70 (d, J = 9.2 Hz, 1H), 7.55 (d, J = 8.8 Hz, 1H), 7.50 (dd, J = 8.0 & 1.6 Hz, 1H), 7.29 (dd, J = 9.2, 3.2 Hz, 1H), 6.98 (td, J = 7.6 & 1.6 Hz, 1H), 6.94-6.88 (m, 2H), 6.78 (t, J = 7.6 Hz, 1H), 6.70 (dd, J = 7.6 & 1.6 Hz, 1H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.9, 156.6, 148.5, 142.2, 140.7, 132.6, 132.4, 127.5, 126.7, 125.9, 124.3, 122.8, 121.6, 120.8, 120.1, 118.9, 118.6, 112.9, 109.1, 106.7, 90.8, 55.9; HRMS (ESI) exact mass calcd for C₂₂H₁₄BrNO₃S + H (M + H),

11-((4-Chlorophenyl)thio)-2-methoxy-12*H*-chromeno[3,2-*b*]indolizin-12-one (3*bg*):

The title compound was prepared following the general procedure for Table 2, using 2-methoxy-12*H*-chromeno[3,2-*b*]indolizin-12-one **1b** (0.25 mmol, 0.067 g) and bis(4-

chlorophenyl) disulfide **2g** (0.2 mmol, 0.057 g), after trituration process in 10-15% EtOAc/Hexanes obtained **3bg** as a yellow solid; Yield: 0.094 g, 92%; M.P.: 174 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.13 (dt, J = 7.2 & 1.2 Hz, 1H), 7.76 (d, J = 3.2 Hz, 1H), 7.69 (dt, J = 9.6 & 1.2 Hz, 1H), 7.52 (d, J = 9.2 Hz, 1H), 7.29-7.26 (m, 1H), 7.16-7.11 (m, 4H), 6.93-6.89 (m, 1H), 6.75 (td, J = 7.2 & 1.2 Hz, 1H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.0, 156.6, 148.4, 142.0, 138.0, 132.1, 131.1, 128.8, 128.1, 124.3, 122.8, 121.5, 120.7, 118.7, 118.6, 112.8, 108.8, 106.7, 91.9, 55.9; HRMS (ESI) exact mass calcd for C₂₂H₁₄ClNO₃S + H (M + H), 408.0456; Found: 408.0457.

3-Methoxy-11-(*p*-tolylthio)-12*H*-chromeno[3,2-*b*]indolizin-12-one (3*cb*):

The title compound was prepared following the general procedure for Table 2, using 3-methoxy-12*H*-chromeno[3,2-*b*]indolizin-12-one **1c** (0.25 mmol, 0.067 g)

and bis(4-methylphenyl) disulfide **2b** (0.2 mmol, 0.049 g), after trituration process in 10-15% EtOAc/Hexanes obtained **3cb** as a yellow solid; Yield: 0.093 g, 96%; M.P.: 182 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.29 (d, J = 8.8 Hz, 1H), 8.07 (d, J = 7.2 Hz, 1H), 7.72 (d, J = 9.6 Hz, 1H), 7.18 (d, J = 8.0 Hz, 2H), 6.99-6.95 (m, 4H), 6.85 (ddd, J = 9.2, 6.4 & 1.2 Hz, 1H), 6.73-6.69 (m, 1H), 3.94 (s, 3H), 2.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.9, 163.7, 155.4, 141.5, 135.7, 135.2, 131.5, 129.5, 128.4, 127.6, 120.7, 120.4, 119.0, 117.7, 113.0, 112.7, 109.3, 100.5, 93.6, 55.9, 21.0; HRMS (ESI) exact mass calcd for C₂₃H₁₇NO₃S + H (M + H), 388.1002; Found:

388.1005.

13-((4-Methoxyphenyl)thio)-14*H*-benzo[5,6]chromeno[3,2-*b*]indolizin-14-one (3*dc*):

The title compound was prepared following the general procedure for Table 2, using 14*H*-benzo[5,6]chromeno[3,2-*b*]indolizin-14-one **1d** (0.25 mmol, 0.072 g) and bis(4-

methoxyphenyl) disulfide **2c** (0.2 mmol, 0.056 g), after trituration process in 10-15% EtOAc/Hexanes obtained **3dc** as a yellow solid; Yield: 0.102 g, 96%; M.P.: 232 °C; ¹H NMR (400 MHz, CDCl₃): δ 10.33 (d, J = 8.8 Hz, 1H), 8.16 (d, J = 7.2 Hz, 1H), 8.11 (d, J = 9.2 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 9.2 Hz, 1H), 7.77-7.73 (m, 1H), 7.67 (d, J = 9.2 Hz, 1H), 7.60 (td, J = 8.0 & 1.2 Hz, 1H), 7.36 (d, J = 8.4 Hz, 2H), 6.93-6.89 (m, 1H), 6.77-6.74 (m, 3H), 3.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 167.4, 157.6, 154.7, 139.4, 135.5, 132.4, 131.7, 130.7, 130.0, 129.1, 128.1, 127.5, 125.8, 121.0, 120.6, 118.6, 117.2, 114.5, 112.2, 107.0, 91.8, 55.8; HRMS (ESI) exact mass calcd for C₂₆H₁₇NO₃S + H (M + H), 424.1002; Found: 424.1007.

2-Bromo-11-(phenylthio)-12*H*-chromeno[3,2-*b*]indolizin-12-one (3ea):

The title compound was prepared following the general procedure for Table 2, using 2-bromo-12*H*-chromeno[3,2-*b*]indolizin-12-one **1e** (0.25 mmol, 0.079 g) and diphenyl disulfide **2a** (0.2 mmol,

0.044 g), after trituration process in 10-15% EtOAc/Hexanes obtained **3ea** as a yellow solid; Yield: 0.087 g, 82%; M.P.: 192 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.51 (d, J = 2.4 Hz, 1H), 8.13 (d, J = 6.8 Hz, 1H), 7.78 (dd, J = 8.8 & 2.4 Hz, 1H), 7.74 (d, J = 9.2 Hz, 1H), 7.50 (d, J =8.8 Hz, 1H), 7.23-7.15 (m, 4H), 7.07 (t, J = 7.2 Hz, 1H), 6.94-6.70 (m, 1H), 6.78 (t, J = 6.8 Hz, 1H) ; ¹³C NMR (100 MHz, CDCl₃): δ 173.0, 152.6, 141.3, 139.0, 136.0, 132.2, 129.8, 128.8, 127.1, 125.5, 124.9, 121.5, 120.6, 119.3, 119.1, 118.0, 113.1, 109.4, 93.2; HRMS (ESI) exact mass calcd for C₂₁H₁₂BrNO₂S + H (M + H), 421.9845; Found: 421.9847.

2-Bromo-11-((4-methoxyphenyl)thio)-12*H*-chromeno[3,2-*b*]indolizin-12-one (3*ec*):

The title compound was prepared following the general procedure for Table 2, using 2-bromo-12*H*-chromeno[3,2-*b*]indolizin-12-one **1e** (0.25 mmol, 0.079 g) and bis(4-

methoxyphenyl) disulfide **2c** (0.2 mmol, 0.056 g), after trituration process in 10-15% EtOAc/Hexanes obtained **3ec** as a yellow solid; Yield: 0.096 g, 85%; M.P.: 139 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.47 (d, J = 2.4 Hz, 1H), 8.03 (d, J = 7.2 Hz, 1H), 7.76-7.70 (m, 2H), 7.43 (d, J = 8.8 Hz, 1H), 7.32 (d, J = 8.8 Hz, 2H), 6.90-6.84 (m, 1H), 6.72-6.68 (m, 3H), 3.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.6, 166.5, 163.9, 158.9, 154.5, 141.6, 133.4, 131.4, 129.5, 123.6, 120.8, 120.4, 120.1, 114.7, 112.8, 109.5, 104.4, 104.2, 89.5, 55.2.

2-Bromo-11-((2-bromophenyl)thio)-12H-chromeno[3,2-b]indolizin-12-one (3ed):

The title compound was prepared following the general procedure for Table 2, using 2-bromo-12*H*-chromeno[3,2-*b*]indolizin-12-one **1e** (0.25 mmol, 0.079 g) and bis(2-bromophenyl) disulfide **2d** (0.2 mmol, 0.075 g), after column chromatography (20-25%)

EtOAc/Hexanes) obtained **3ed** as a yellow solid; Yield: 0.093 g, 74%; M.P.: 158 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.45 (d, J = 2.4 Hz, 1H), 8.15 (d, J = 7.2 Hz, 1H), 7.77 (dd, J = 8.8 & 2.4 Hz, 1H), 7.68 (d, J = 9.2 Hz, 1H), 7.52-7.49 (m, 2H), 6.99-6.89 (m, 3H), 6.81(t, J = 8.0 Hz, 1H), 6.68 (dd, J = 8.0 & 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 172.6, 152.6, 141.7, 140.4, 136.1, 132.7, 132.5, 129.7, 127.5, 126.8, 126.1, 125.1, 121.9, 120.7, 120.3, 119.3, 118.9, 118.1, 109.5, 91.4; HRMS (ESI) exact mass calcd for C₂₁H₁₁Br₂NO₂S + H (M + H), 499.8950; Found: 499.8946.

3-Fluoro-11-((4-methoxyphenyl)thio)-12H-chromeno[3,2-b]indolizin-12-one (3fc):

The title compound was prepared following the general procedure for Table 2, using 3-fluoro-12*H*-chromeno[3,2-b]indolizin-12-one **1f** (0.25 mmol, 0.064 g) and bis(4-

methoxyphenyl) disulfide **2c** (0.2 mmol, 0.056 g), after trituration process in 10-15% EtOAc/Hexanes obtained **3fc** as a yellow solid; Yield: 0.090 g, 92%; M.P.: 182 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.44-8.40 (m, 1H), 8.06 (d, J = 7.2 Hz, 1H), 7.78 (d, J = 9.6 Hz, 1H), 7.35 (d, J = 8.8 Hz, 2H), 7.28-7.25 (m, 1H), 7.18-7.13 (m, 1H), 6.88 (t, J = 8.0 Hz, 1H), 6.78-6.72 (m, 3H), 3.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 173.4, 165.2 ($J_{C-F} = 253.0$ Hz), 158.4, 154.6 ($J_{C-F} = 13.0$ Hz), 141.4, 131.5, 130.7, 129.4 ($J_{C-F} = 10.0$ Hz), 121.0, 120.7, 120.4, 119.0, 114.5, 113.1 ($J_{C-F} = 22.0$ Hz), 113.0, 109.2, 104.3 ($J_{C-F} = 25.0$ Hz), 104.2, 95.4, 55.3; ¹⁹F NMR (376 MHz, CDCl₃): -103.8; HRMS (ESI) exact mass calcd for C₂₂H₁₄FNO₃S + H (M + H), 392.0751; Found: 392.0752.

2,8-Dibromo-11-(*p*-tolylthio)-12*H*-chromeno[3,2-*b*]indolizin-12-one (3*gb*):

The title compound was prepared following the general procedure for Table 2, using 2,8-dibromo-12*H*-chromeno[3,2-b]indolizin-12-one **1g** (0.25 mmol, 0.098 g) and bis(4-methylphenyl) disulfide **2b** (0.2 mmol, 0.049 g), after column

chromatography process in 20-25% EtOAc/Hexanes) obtained **3gb** as a yellow solid; Yield: 0.084 g, 65%; M.P.: 200 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.38 (d, J = 2.4 Hz, 1H), 8.17 (s, 1H), 7.69 (dd, J = 8.8 & 2.4 Hz, 1H), 7.56 (d, J = 9.6 Hz, 1H), 7.38 (d, J = 8.8 Hz, 1H), 7.09 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 6.85 (dd, J = 9.6 & 1.6 Hz, 1H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.5, 152.5, 140.9, 136.3, 135.9, 134.6, 129.9, 129.79, 129.72, 128.2, 125.1, 124.8, 120.2, 119.8, 119.2, 118.2, 109.4, 108.5, 96.6, 21.0; HRMS (ESI) exact mass calcd for $C_{22}H_{13}Br_2NO_2S + H (M + H)$, 513.9107; Found: 513.9108.

7-(*p*-Tolylthio)-8*H*-chromeno[3',2':4,5]pyrrolo[1,2-*a*]quinolin-8-one (3*hb*):

The title compound was prepared following the general procedure for Table 2, using 8*H*-chromeno[3',2':4,5]pyrrolo[1,2-*a*]quinolin-8-one **1h** (0.25 mmol, 0.071 g) and bis(4-methylphenyl) disulfide **2b** (0.2 mmol, 0.049 g), after column chromatography process in

25-30% EtOAc/Hexanes) obtained **3hb** as a yellow solid; Yield: 0.061 g, 60%; M.P.: 218 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.96 (d, J = 8.4 Hz, 1H), 8.43 (d, J = 8.8 Hz, 1H), 7.75-7.72 (m, 2H), 7.69-7.64 (m, 3H), 7.49-7.45 (m, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 9.6 Hz, 1H), 6.99 (d, J = 8.0 Hz, 2H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.6, 153.9, 145.5, 135.4, 135.1, 133.1, 131.3, 129.6, 128.8, 128.7, 127.8, 127.0, 125.7, 125.3, 125.0, 123.3, 117.6, 117.2, 110.2, 98.1, 21.0; HRMS (ESI) exact mass calcd for C₂₆H₁₇NO₂S + H (M + H), 408.1053; Found: 408.1052.

General procedure for Table 3

In an undivided Electrasyn 2.0 cell equipped with a graphite anode and a platinum cathode was charged chromone-fused-indazoline **1** (0.25 mmol), diselenides **4** (0.20 mmol), KI (50 mol%), and *n*-Bu₄NPF₆ (50 mol%) in acetonitrile (4 mL) solvent. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA at room temperature for the 4-7 h *via* the manual programming of IKA ElectraSyn 2.0 instrument. After the completion of the reaction, the acetonitrile solvent was evaporated and the crude was diluted with water (20 mL) followed by extracted with chloroform (3x20 mL). The combined organic layers were concentrated under reduced to get crude product which were further purified by trituration process in EtOAc:Hexanes to afford the corresponding products **5** except **5cc**, **5ec**, **5ga** which were purified through column chromatography using EtOAc[:] Hexanes as an eluent.

11-(Phenylselanyl)-12*H*-chromeno[3,2-*b*]indolizin-12-one (5*aa*):

The title compound was prepared following the general procedure for Table 2, using 12*H*-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and diphenyl diselenide **4a** (0.2 mmol, 0.062 g), after

trituration process in 10-15% EtOAc/Hexanes obtained **5aa** as a yellow solid; Yield: 0.090 g, 92%; M.P.: 180 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.40 (d, *J* = 8.0 Hz, 1H), 8.07 (d, *J* = 7.2 Hz, 1H), 7.69-7.65 (m, 2H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.38 (d, *J* = 7.2 Hz, 2H), 7.15-7.07 (m, 3H), 6.85-6.81 (m, 1H), 6.70 (t, *J* = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 174.4, 153.7, 141.7, 134.0, 133.1, 131.9, 129.9, 129.0, 127.1, 126.1, 124.6, 123.8, 121.0, 120.6, 119.9, 117.3, 112.7, 109.7, 87.4; HRMS (ESI) exact mass calcd for C₂₁H₁₃NO₂Se + H (M + H), 392.0185; Found: 392.0183.

11-(*p*-Tolylselanyl)-12*H*-chromeno[3,2-*b*]indolizin-12-one (5*ab*):

The title compound was prepared following the general procedure for Table 2, using 12H-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and bis(*p*-tolyl) diselenide **4b** (0.2

mmol, 0.068 g), after trituration process in 10-15% EtOAc/Hexanes obtained **5ab** as a yellow solid; Yield: 0.095 g, 94%; ¹H NMR (400 MHz, CDCl₃): δ 8.33 (dd, J = 8.0 & 2.0 Hz, 1H), 7.98 (d, J = 6.8 Hz, 1H), 7.62-7.57 (m, 2H), 7.48 (d, J = 8.4 Hz, 1H), 7.33 (t, J = 6.8 Hz, 1H), 7.27 (d, J = 8.0 Hz, 2H), 6.88 (d, J = 8.0 Hz, 2H), 6.75-6.71(m, 1H), 6.60 (t, J = 8.0 Hz, 1H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.4, 153.7, 141.7, 136.1, 133.0, 131.6, 130.6, 130.0, 129.8, 127.1, 124.5, 123.8, 120.8, 120.5, 120.0, 117.3, 112.6, 109.7, 88.2, 21.0.

11-(*o*-Tolylselanyl)-12*H*-chromeno[3,2-*b*]indolizin-12-one (5*ac*):

The title compound was prepared following the general procedure for Table 2, using 12*H*-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and bis(*o*-tolyl) diselenide **4c** (0.2 mmol, 0.068 g), after trituration process in 10-15% EtOAc/Hexanes obtained **5ac** as a yellow

solid; Yield: 0.081 g, 80%; M.P.: 154 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.40 (dd, J = 8.0 & 1.6 Hz, 1H), 8.12 (d, J = 7.2 Hz, 1H), 7.71-7.70 (m, 1H), 7.62-7.58 (m, 2H), 7.44-7.40 (m, 1H), 7.11 (d, J = 7.2 Hz, 1H), 6.99 (td, J = 7.2 & 1.6 Hz, 1H), 6.89 (dd, J = 8.0 & 1.6 Hz, 1H), 6.86-6.81 (m, 2H), 6.74-6.70 (m, 1H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.4, 153.8, 141.9, 136.6, 134.8, 133.1, 132.1, 129.9, 128.6, 127.1, 126.4, 125.7, 124.6, 123.8, 121.0, 120.7, 120.0, 117.3, 112.7, 110.0, 86.2, 21.5; HRMS (ESI) exact mass calcd for C₂₂H₁₅NO₂Se + H (M + H), 406.0341; Found: 406.0342.

11-((4-Methoxyphenyl)selanyl)-12H-chromeno[3,2-b]indolizin-12-one (5ad):

The title compound was prepared following the general procedure for Table 2, using 12*H*-chromeno[3,2-*b*]indolizin-12one **1a** (0.25 mmol, 0.059 g) and bis(4-methoxyphenyl)

diselenide **4d** (0.2 mmol, 0.074 g), after trituration process in 10-15% EtOAc/Hexanes obtained **5ad** as a yellow solid; Yield: 0.099 g, 94%; M.P.: 178 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.44 (dd, J = 8.0 & 1.6 Hz, 1H), 8.06 (d, J = 6.4 Hz, 1H), 7.74 (d, J = 9.2 Hz, 1H), 7.71-7.66 (m, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.51 (d, J = 8.8 Hz, 2H), 7.43 (t, J = 7.6 Hz, 1H), 6.81 (br, 1H), 6.73-6.67 (m, 3H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.6, 158.8, 153.7, 141.7, 133.3, 133.1, 131.4, 127.1, 124.6, 123.8, 120.7, 120.5, 120.1, 117.3, 114.7, 112.6, 109.6, 89.3, 55.2; HRMS (ESI) exact mass calcd for C₂₂H₁₅NO₃Se + H (M + H), 422.0290; Found: 422.0285.

11-((4-Bromophenyl)selanyl)-12*H*-chromeno[3,2-*b*]indolizin-12-one (5*ae*):

The title compound was prepared following the general procedure for Table 2, using 12*H*-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and bis(4-bromophenyl) diselenide **4e** (0.2 mmol,

0.094 g), after trituration process in 10-15% EtOAc/Hexanes obtained **5ae** as a yellow solid; Yield: 0.106 g, 90%; M.P.: 156 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.39 (dd, J = 8.0 & 1.6 Hz, 1H), 8.10 (d, J = 7.2 Hz, 1H), 7.71-7.67 (m, 1H), 7.64 (d, J = 9.2 Hz, 1H), 7.57 (d, J = 8.8 Hz, 1H), 7.42 (t, J = 8.0 Hz, 1H), 7.23 (br, 4H), 6.88-6.84 (m, 1H), 6.74-6.71 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 174.4, 153.7, 141.8, 133.2, 133.1, 131.9, 131.4, 127.0, 124.7, 123.7, 121.3, 120.7, 120.1, 119.7, 117.4, 112.8, 109.6, 86.8; HRMS (ESI) exact mass calcd for C₂₁H₁₂BrNO₂Se + H (M + H), 469.9290; Found: 469.9291.

11-(Butylselanyl)-12*H*-chromeno[3,2-*b*]indolizin-12-one (5*af*):

The title compound was prepared following the general procedure for Table 2, using 12*H*-chromeno[3,2-*b*]indolizin-12-one **1a** (0.25 mmol, 0.059 g) and bis(butyl) diselenide **4f** (0.2 mmol, 0.055 g), after trituration process in 10-15% EtOAc/Hexanes obtained **5af** as a yellow

solid; Yield: 0.078 g, 84%; M.P.: 80 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.44 (d, J = 8.0 Hz, 1H), 8.03 (dd, J = 7.2 & 1.2 Hz, 1H), 7.71-7.65 (m, 2H), 7.57 (d, J = 8.0 Hz, 1H), 7.43 (t, J = 8.0 Hz, 1H), 6.80-6.77 (m, 1H), 6.67-6.64 (m, 1H), 2.98 (t, J = 6.8 Hz, 2H), 1.57 (quint, J = 7.2 Hz, 2H), 1.39 (sext, J = 7.6 Hz, 2H), 0.83 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.7, 153.7, 141.7, 133.0, 131.0, 127.0, 124.5, 123.8, 120.3, 119.8, 117.3, 112.4, 110.0, 88.4, 32.2, 29.7, 22.8, 13.7; HRMS (ESI) exact mass calcd for C₁₉H₁₇NO₂Se + H (M + H), 372.0498; Found: 372.0043.

2-Methoxy-11-(phenylselanyl)-12H-chromeno[3,2-b]indolizin-12-one (5ba):

The title compound was prepared following the general procedure for Table 2, using 2-methoxy-12*H*-chromeno[3,2-*b*]indolizin-12-one **1b** (0.25 mmol, 0.067 g) and diphenyl

diselenide **4a** (0.2 mmol, 0.062 g), after trituration process in 10-15% EtOAc/Hexanes obtained **5ba** as a yellow solid; Yield: 0.099 g, 94%; M.P.: 202 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, *J* = 7.2 Hz, 1H), 7.80 (d, *J* = 3.2 Hz, 1H), 7.70 (d, *J* = 9.2 Hz, 1H), 7.52 (d, *J* = 9.2 Hz, 1H), 7.40-7.37 (m, 2H), 7.29-7.28 (m, 1H), 7.16-7.08 (m, 3H), 6.87-6.83 (m, 1H), 6.73-6.69 (m, 1H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.4, 156.5, 148.4, 142.2, 134.1, 132.0, 129.9, 129.0, 126.1, 124.3, 122.6, 121.0, 120.7, 120.1, 118.6, 112.6, 109.3, 106.8, 87.3, 55.9; HRMS (ESI) exact mass calcd for C₂₂H₁₅NO₃Se + H (M + H), 422.0290 Found: 422.0290.

2-Methoxy-11-((4-methoxyphenyl)selanyl)-12H-chromeno[3,2-b]indolizin-12-one (5bd):

The title compound was prepared following the general procedure for Table 2, using 2-methoxy-12*H*-chromeno[3,2-*b*]indolizin-12-one **1b** (0.25 mmol, 0.067

g) and bis(4-methoxyphenyl) diselenide **4d** (0.2 mmol, 0.074 g), after trituration process in 10-15% EtOAc/Hexanes obtained **5bd** as a yellow solid; Yield: 0.099 g, 88%; M.P.: 180 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, J = 7.2 Hz, 1H), 7.81 (d, J = 3.2 Hz, 1H), 7.73 (d, J = 9.6Hz, 1H), 7.52-7.47 (m, 3H), 7.26 (dd, J = 8.8 & 3.2 Hz, 1H), 6.83 (dd, J = 10.4 & 6.4 Hz, 1H), 6.72 (d, J = 9.2 Hz, 2H), 6.67 (t, J = 6.8 Hz, 1H), 3.91 (s, 3H), 3.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.4, 158.8, 156.4, 148.3, 141.9, 133.3, 131.5, 124.3, 123.8, 122.6, 120.7, 120.6, 120.1, 118.6, 114.7, 112.4, 109.2, 106.7, 89.0, 55.9, 55.2; HRMS (ESI) exact mass calcd for C₂₃H₁₇NO₄Se + H (M + H), 452.0396; Found: 452.0389.

3-Methoxy-11-(phenylselanyl)-12*H*-chromeno[3,2-*b*]indolizin-12-one (5*ca*):

The title compound was prepared following the general procedure for Table 2, using 3-methoxy-12*H*-chromeno[3,2-b]indolizin-12-one **1c** (0.25 mmol, 0.067 g) and diphenyl

diselenide **4a** (0.2 mmol, 0.062 g), after trituration process in 10-15% EtOAc/Hexanes obtained **5ca** as a yellow solid; Yield: 0.097 g, 92%; M.P.: 178 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.27 (d, *J* = 9.2 Hz, 1H), 8.00 (d, *J* = 6.8 Hz, 1H), 7.64 (d, *J* = 9.6 Hz, 1H), 7.38 (d, *J* = 6.4 Hz, 2H), 7.15-7.07 (m, 3H), 6.94-6.92 (m, 2H), 6.82-6.78 (m, 1H), 6.67 (d, *J* = 7.2 Hz, 1H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.1, 163.6, 155.3, 141.6, 134.1, 131.5, 129.9, 128.9, 128.3, 126.1, 120.6, 120.4, 119.9, 117.5, 113.0, 112.6, 109.5, 100.4, 87.4, 55.9; HRMS (ESI) exact mass calcd for C₂₂H₁₅NO₃Se + H (M + H), 422.0290; Found: 422.0298.

3-Methoxy-11-(*o*-tolylselanyl)-12*H*-chromeno[3,2-*b*]indolizin-12-one (5*cc*):

The title compound was prepared following the general procedure for Table 2, using 3-methoxy-12*H*-chromeno[3,2-b]indolizin-12-one **1c** (0.25 mmol, 0.067 g) and bis(*o*-tolyl) diselenide **4c** (0.2 mmol, 0.068 g), after column chromatography

(20-25% EtOAc/Hexanes) obtained **5cc** as a yellow solid; Yield: 0.092 g, 85%; M.P.: 168 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.30 (d, J = 8.8 Hz, 1H), 8.09 (dt, J = 7.2 & 1.2 Hz, 1H), 7.61 (dt, J = 9.6 & 1.2 Hz, 1H), 7.11 (d, J = 6.0 Hz, 1H), 7.01-6.97 (m, 3H), 6.89 (dd, J = 8.0 & 1.6 Hz, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.83-6.80 (m, 1H), 6.72 (td, J = 8.0 & 1.2 Hz, 1H), 3.94 (s, 3H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.1, 163.7, 155.4, 141.8, 136.6, 134.9, 131.8, 129.9, 128.6, 128.4, 126.4, 125.6, 120.6, 120.5, 120.1, 117.7, 112.9, 112.7, 109.8, 100.5, 86.2, 55.5, 21.5; HRMS (ESI) exact mass calcd for C₂₃H₁₇NO₃Se + H (M + H), 436.0447; Found: 436.0455.

2-Bromo-11-(phenylselanyl)-12H-chromeno[3,2-b]indolizin-12-one (5ea):

The title compound was prepared following the general procedure for Table 2, using 2-bromo-12*H*-chromeno[3,2-*b*]indolizin-12-one **1e** (0.25 mmol, 0.079 g) and diphenyl diselenide **4a** (0.2 mmol,

0.062 g), after trituration process in 10-15% EtOAc/Hexanes obtained **5ea** as a yellow solid; Yield: 0.101 g, 86%; M.P.: 186 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.50-8.49 (m, 1H), 8.08 (d, J = 6.8 Hz, 1H), 7.77-7.74 (m, 1H), 7.69 (d, J = 9.2 Hz, 1H), 7.47 (dd, J = 9.2 & 3.2 Hz, 1H), 7.39-7.36 (m, 2H), 7.16-7.08 (m, 3H), 6.89-6.85 (m, 1H), 6.76-6.71 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 173.0, 152.5, 141.6, 135.9, 133.7, 132.1, 130.2, 129.7, 129.0, 126.3, 125.2, 121.3, 120.6, 120.1, 119.2, 117.9, 113.0, 109.6, 87.8; HRMS (ESI) exact mass calcd for C₂₁H₁₂BrNO₂Se + H (M + H), 469.9290; Found: 469.9284.

2-Bromo-11-(o-tolylselanyl)-12H-chromeno[3,2-b]indolizin-12-one (5ec):

The title compound was prepared following the general procedure for Table 2, using 2-bromo-12*H*-chromeno[3,2-*b*]indolizin-12-one **1e** (0.25 mmol, 0.079 g) and bis(*o*-tolyl) diselenide **4c** (0.2 mmol, 0.068 g), after column chromatography (20-25% EtOAc/Hexanes)

obtained **5ec** as a yellow solid; Yield: 0.099 g, 82%; M.P.: 174 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.43 (d, J = 2.4 Hz, 1H), 8.06 (d, J = 7.2 Hz, 1H), 7.72 (dd, J = 8.8 & 2.8 Hz, 1H), 7.58 (d, J =9.2 Hz, 1H), 7.44 (d, J = 8.8 Hz, 1H), 7.11 (d, J = 7.6 Hz, 1H), 7.02-6.98 (m, 1H), 6.89 (d, J =6.4 Hz, 1H), 6.86-6.82 (m, 2H), 6.73(t, J = 6.8 Hz, 1H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.8, 152.4, 141.6, 136.8, 135.9, 134.5, 132.2, 129.9, 129.6, 128.9, 126.4, 125.9, 125.0, 121.3, 120.6, 120.0, 119.2, 117.9, 113.0, 109.8, 86.5, 21.6; HRMS (ESI) exact mass calcd for C₂₂H₁₄BrNO₂Se + H (M + H), 483.9446; Found: 483.9448.

2-Bromo-11-((4-methoxyphenyl)selanyl)-12H-chromeno[3,2-b]indolizin-12-one (5ed):

The title compound was prepared following the general procedure for Table 2, using 2-bromo-12*H*-chromeno[3,2-*b*]indolizin-12-one **1e** (0.25 mmol, 0.079 g) and bis(4-

methoxyphenyl) diselenide **4d** (0.2 mmol, 0.074 g), after trituration process in 10-15% EtOAc/Hexanes obtained **5ed** as a yellow solid; Yield: 0.112 g, 90%; M.P.: 136 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.52 (d, J = 2.4 Hz, 1H), 8.03 (dt, J = 7.2 & 1.2 Hz, 1H), 7.76-7.73 (m, 2H), 7.53-7.49 (m, 2H), 7.45 (d, J = 8.8 Hz, 1H), 6.86 (ddd, J = 9.2, 6.4 & 1.2 Hz, 1H), 6.74-6.69 (m, 3H), 3.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.1, 158.9, 152.4, 141.5, 135.9, 133.6, 131.6, 129.7, 125.2, 123.5, 121.0, 120.5, 120.1, 119.2, 117.9, 114.7, 112.9, 109.5, 89.6, 55.2; HRMS (ESI) exact mass calcd for C₂₂H₁₄BrNO₃Se + H (M + H), 499.9395; Found: 499.9393.

3-Fluoro-11-((4-methoxyphenyl)selanyl)-12H-chromeno[3,2-b]indolizin-12-one (5fd):

The title compound was prepared following the general procedure for Table 2, using 3-fluoro-12*H*-chromeno[3,2-b]indolizin-12-one **1f** (0.25 mmol, 0.064 g) and bis(4-

methoxyphenyl) diselenide **4d** (0.2 mmol, 0.074 g), after trituration process in 10-15% EtOAc/Hexanes obtained **5fd** as a yellow solid; Yield: 0.090 g, 82%; M.P.: 162 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.44 (dd, J = 8.8 & 6.4, Hz, 1H), 8.03 (d, J = 7.2 Hz, 1H), 7.73 (d, J = 9.2 Hz, 1H), 7.50 (d, J = 8.8 Hz, 2H), 7.26 (d, J = 8.8, 2.4 Hz, 1H), 7.18-7.14 (m, 1H), 6.85 (ddd, J = 9.2, 6.4 & 1.2, Hz, 1H), 6.74-6.69 (m, 3H), 3.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.6, 165.2 (J_{C-F} = 252.0 Hz), 158.9, 154.5 (J_{C-F} = 13.0 Hz), 141.6, 133.4, 131.4, 129.4 (J_{C-F} = 11.0 Hz), 123.6, 120.8, 120.7, 120.4, 120.1, 114.7, 113.1 (J_{C-F} = 22.0 Hz), 112.8, 109.5, 104.3 (J_{C-F} = 26.0 Hz), 89.5, 55.2; ¹⁹F NMR (376 MHz, CDCl₃): -103.8; HRMS (ESI) exact mass calcd for

 $C_{22}H_{14}FNO_{3}Se + H (M + H), 440.0196;$ Found: 440.0192.

2,8-Dibromo-11-(phenylselanyl)-12H-chromeno[3,2-b]indolizin-12-ones (5ga):

The title compound was prepared following the general procedure for Table 3, using 2,8-dibromo-12*H*-chromeno[3,2-*b*]indolizin-12one **1g** (0.25 mmol, 0.098 g) and diphenyl diselenide **4a** (0.2 mmol, 0.062 g), after column chromatography process in 20-25%

EtOAc/Hexanes) obtained **5ga** as a yellow solid; Yield: 0.084 g, 61%; M.P.: 190 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.48 (d, J = 2.8 Hz, 1H), 8.25 (s, 1H), 7.78 (dd, J = 8.8 & 2.4 Hz, 1H), 7.60 (dd, J = 9.6 & 1.2 Hz, 1H), 7.47 (d, J = 9.2 Hz, 1H), 7.39-7.36 (m, 2H), 7.17-7.12 (m, 3H), 6.90 (dd, J = 9.6 & 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 172.8, 152.5, 141.2, 136.3, 133.2, 130.5, 130.0, 129.8, 129.1, 126.6, 125.1, 124.8, 120.9, 120.3, 119.2, 118.2, 109.8, 108.5, 90.1; HRMS (ESI) exact mass calcd for C₂₁H₁₁Br₂NO₂Se + H (M + H), 547.8395; Found: 547.8396.

References:

1. D. Basavaiah and A. J. Rao, *Tetrahedron Lett.* 2003. 44, 4365.

¹H NMR spectrum of 3aa (400 MHz, CDCl₃)

¹³C NMR spectrum of 3aa (100 MHz, CDCl₃)

RU-SF-06 single pulse decoupled gated NOE	- 153.78 141.57 133.17 133.17 128.76 128.76 128.76 128.76 128.75 128.76 128.76 128.76 128.76 128.76 128.76 128.77 128.76 128.77 129.77 107 10000000000000000000000000000000	-92.62	77.42 77.10 76.78	
		1		

Mass spectrum of 3aa

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

----End Of Report----

¹H NMR spectrum of 3ab (400 MHz, CDCl₃)

Mass spectrum of 3ab

¹H NMR spectrum of 3ad (400 MHz, CDCl₃)

RU-SF-09 single_pulse

Mass spectrum of 3ad

¹H NMR spectrum of 3ae (400 MHz, CDCl₃)

Mass spectrum of 3ae

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

----End Of Report----

¹H NMR spectrum of 3af (400 MHz, CDCl₃)

RU-SF-29 single_pulse

¹³C NMR spectrum of 3af (100 MHz, CDCl₃)

Mass spectrum of 3af

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

----End Of Report----

¹H NMR spectrum of 3ag (400 MHz, CDCl₃)

Mass spectrum of 3ag

¹H NMR spectrum of 3ah (400 MHz, CDCl₃)

RU-SF-42 single_pulse

¹³C NMR spectrum of 3ah (100 MHz, CDCl₃)

single pulse decoupled gated NOE 2011 11 2012 2012 2012 2012 2012 2012	RU-SF-42 ୁ	5	02800000000000000000000000000000000000	100
	single pulse decoupled gated NOE	3.0		4154
		5	44000000000000000000000000000000000000	222
	í	1	Y SULLAND	Y/

Mass spectrum of 3ah

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

---End Of Report---

¹H NMR spectrum of 3ai (400 MHz, CDCl₃)

50

Mass spectrum of 3ai

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

----End Of Report----

¹H NMR spectrum of 3aj (400 MHz, CDCl₃)

single_bnise
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
9
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10</t

Mass spectrum of 3aj

Mass spectrum of 3ak

¹H NMR spectrum of 3al (400 MHz, CDCl₃)

RU-LY-05-009 single_pulse

f1 (ppm)

Mass spectrum of 3al

¹H NMR spectrum of 3am (400 MHz, CDCl₃)

¹³C NMR spectrum of 3am (100 MHz, CDCl₃)

Mass spectrum of 3am

¹H NMR spectrum of 3ba (400 MHz, CDCl₃)

Mass spectrum of 3ba

Chemical Formula (M): C₂₂H₁₅NO₃S Exact Mass: 373.0773

Found (M+H): 374.0847

Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff (ppm)
Cpd 1: C22 H15 N O3 5	0.183	373.0773	13356	C22 H15 N O3 S	373.0773	0.07

MS Zoomed Spectrum

MS Spectrum Peak List

m/z	Calc m/z	Diff(ppm)	z	Abund	Formula	Ion
374.0847	374.0845	-0.34	1	300414.03	C22H15NO35	(M+H)+
375.0874	375.0877	0.82	1	69123.15	C22H15NO35	(M+H)+
376.0851	376.0849	-0.4	1	15488.28	C22H15NO35	(M+H)+
396.0659	396.0665	1.43	1	13356.28	C22H15NO35	(M+Na)+
397.0691	397.0696	1.49	1	3126.78	C22H15NO35	(M+Na)+
398.067	398.0669	-0.23	1	849.97	C22H15NO35	(M+Na)+

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

---End Of Report---

Mass spectrum of 3bd

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

----End Of Report----

Mass spectrum of 3bg

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

----End Of Report----

¹H NMR spectrum of 3cb (400 MHz, CDCl₃)

Mass spectrum of 3cb

m/z	Calc m/z	Diff(ppm)	z	Abund	Formula	Ion
388.1005	388.1002	-0.86	1	961103.83	C23H17NO3S	(M+H)+
389.1037	389.1034	-0.84	1	254119.72	C23H17NO35	(M+H)+
390.1018	390.1008	-2.72	1	55208.8	C23H17NO35	(M+H)+

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

----End Of Report----

¹H NMR spectrum of 3dc (400 MHz, CDCl₃)

Mass spectrum of 3dc

MS Spectrum Peak List

m/z	Calc m/z	Diff(ppm)	z	Abund	Formula	Ion
424.1007	424.1002	-1.12	1	688150.81	C26H17NO35	(M+H)+
425.1036	425.1034	-0.4	1	205450.68	C26H17NO35	(M+H)+
426.1023	426.1013	-2.16	1	44329.55	C26H17NO35	(M+H)+
446.0818	446.0821	0.69	1	29070.21	C26H17NO35	(M+Na)+
447.0851	447.0853	0.52	1	7703	C26H17NO35	(M+Na)+
448.0837	448.0833	-0.97	1	2080.67	C26H17NO35	(M+Na)+

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

----End Of Report----

¹H NMR spectrum of 3ea (400 MHz, CDCl₃)

RU-SF-28-00 single_pulse

Mass spectrum of 3ea

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

1.23 1

0.89 1

426.9838

427.9853

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

2677.73 C21H12BrNO25

353.11 C21H12BrNO25

----End Of Report----

426.9832

427.985

(M+H)+

(M+H)+

¹H NMR spectrum of 3ec (400 MHz, CDCl₃)

¹H NMR spectrum of 3ed (400 MHz, CDCl₃)

Br.

ru-st-22-1 single_pulse	8.451 8.451 8.451 8.1445 8.1445 8.1692 8.1692 8.169100 8.169100000000000000000000000000000000000

B

0

3ed

000'0----

Mass spectrum of 3ed

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

---End Of Report---

¹H NMR spectrum of 3fc (400 MHz, CDCl₃)

¹⁹F NMR spectrum of 3fc (376 MHz, CDCl₃) RU-SF-19 single_pulse

120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

Mass spectrum of 3fc

Data File		53-5F-19.d		Sample Name	5J-SF-19	
Sample Type		Sample		Position	P1-B4	
Instrument Name		Instrument 1		User Name		
Acq Method		A_ACN_ C_H2O _60 -40 ESI+VE.3MIN160	022022_REF.m	Acquired Time	1/31/2023 7:21:49 PM	_
IRM Calibration S	tatus	Success		DA Method	BTP.m	/ >- OMe
Comment						S S
Sample Group	IC1	Info. Acquisition SW	6200 series TOF/6500 series			
		Version	Q-TOF B.06.01 (B6172 SP1)			F 3fc

Chemical Formula (M): C₂₂H₁₄FNO₃S Exact Mass: 391.0678 Found (M+H): 392.0752

Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff (ppm)
Cpd 1: C22 H14 F N O3 5	0.19	391.0679	21933	C22 H14 F N O3 S	391.0678	0.03

Compound Label	m/z	RT	Algorithm	Mass
Cpd 1: C22 H14 F N O3 S	414.0566	0.19	Find By Formula	391.0679

MS Zoomed Spectrum

MS Spectrum Peak List

m/z	Calc m/z	Diff(ppm)	z	Abund	Formula	Ion
392.0752	392.0751	-0.27	1	308105.53	C22H14FNO35	(M+H)+
393.0779	393.0783	1	1	63755.23	C22H14FNO35	(M+H)+
394.0761	394.0755	-1.63	1	14919.7	C22H14FNO35	(M+H)+
414.0566	414.0571	1.04	1	21932.94	C22H14FNO35	(M+Na)+
415.0598	415.0602	1.12	1	5331.72	C22H14FNO35	(M+Na)+
416.0575	416.0574	-0.13	1	1232.31	C22H14FNO35	(M+Na)+

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

----End Of Report----

¹H NMR spectrum of 3gb (400 MHz, CDCl₃)

Mass spectrum of 3gb

¹H NMR spectrum of 3hb (400 MHz, CDCl₃)

Mass spectrum of 3hb

¹H NMR spectrum of 5aa (400 MHz, CDCl₃)

RU-SF-14 single_pulse

¹³C NMR spectrum of 5aa (100 MHz, CDCl₃)

RD-2E-14 single pulse decoupled gated MOE

Mass spectrum of 5aa

¹H NMR spectrum of 5ab (400 MHz, CDCl₃)

¹H NMR spectrum of 5ac (400 MHz, CDCl₃)

¹³C NMR spectrum of 5ac (100 MHz, CDCl₃)

Mass spectrum of 5ac

Mass spectrum of 5ad

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

3.68 1

445.0143

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

153.74 C22H15NO3Se

---- End Of Report----

445.0126

(M+Na)+
¹H NMR spectrum of 5ae (400 MHz, CDCl₃)

Mass spectrum of 5ae

Mass spectrum of 5af

Mass spectrum of 5ba

MS Spectrum Peak List

m/z	Calc m/z	Diff(ppm)	z	Abund	Formula	Ion
422.029	422.0291	0.21	1	99826.07	C22H15NO3Se	(M+H)+
423.0319	423.0323	1.05	1	21671.24	C22H15NO3Se	(M+H)+

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

¹H NMR spectrum of 5bd (400 MHz, CDCl₃)

Mass spectrum of 5bd

OMe

5bd

MS Zoomed Spectrum

MS Spectrum Peak List

Calc m/z	Diff(ppm)	z	Abund	Formula	Ion
452.0397	1.69	1	18257.4	C23H17NO45e	(M+H)+
453.0429	1.49	1	4823.93	C23H17NO4Se	(M+H)+
474.0216	1.57	1	1328.15	C23H17NO4Se	(M+Na)+
475.0248	1.47	1	341.7	C23H17NO4Se	(M+Na)+
	452.0397 453.0429 474.0216 475.0248	452.0397 1.69 453.0429 1.49 474.0216 1.57 475.0248 1.47	Carciny 2 Oni(ppin) 2 452.0397 1.69 1 453.0429 1.49 1 474.0216 1.57 1 475.0248 1.47 1	Carc (m/2 Dimopril 2 Polini 452.0397 1.69 1 18257.4 453.0429 1.49 1 4823.93 474.0216 1.57 1 1328.15 475.0248 1.47 1 341.7	Carc m/2 Dimpini 2 Pointia 452.0397 1.69 1 18257.4 C23H17NO4Se 453.0429 1.49 1 4823.93 C23H17NO4Se 474.0216 1.57 1 1328.15 C23H17NO4Se 475.0248 1.47 1 341.7 C23H17NO4Se

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

¹H NMR spectrum of 5ca (400 MHz, CDCl₃)

Mass spectrum of 5ca

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

¹H NMR spectrum of 5cc (400 MHz, CDCl₃)

Mass spectrum of 5cc

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

¹H NMR spectrum of 5ea (400 MHz, CDCl₃)

RU-SF-41 single_pulse

Mass spectrum of 5ea

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

¹H NMR spectrum of 5ec (400 MHz, CDCl₃)

¹³C NMR spectrum of 5ec (100 MHz, CDCl₃)

Mass spectrum of 5ec

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

Mass spectrum of 5ed

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

¹H NMR spectrum of 5fd (400 MHz, CDCl₃)

¹⁹F NMR spectrum of 5fd (376 MHz, CDCl₃) RU-SF-38 single_pulse

Mass spectrum of 5fd

Instrument Info : Agilent Technologies 6545 Q-TOF LC/MS

Note: Please acknowledge the work done by HRMS Facility at BITS Pilani, Pilani Campus funded by DST-FIST in your publication.

¹H NMR spectrum of 5ga (400 MHz, CDCl₃)

Br

0

5ga

Se

Br

RU-LY-05-26 single_pulse

Mass spectrum of 5ga

Mass spectrum of TEMPO-adduct (6)

