Supporting information

Palladium-catalyzed indium-mediated reductive aromatic $\mathbf{C}-\mathbf{H}$ allylation of N benzylsulfonimides with allyl esters

Xue-Ting Zhang and Shi-Kai Tian*

Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China

Table of contents
General information S-2
Preparation of N -benzylsulfonimides S-2
Preparation of benzyl electrophiles S-4
Preparation of allyl electrophiles S-5
General procedure for the reaction of N-benzylsulfonimides with allyl esters S-6
Analytical data for the products (Schemes 3-4) S-6
References S-12
Copies of NMR spectra S-13

General information

The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker AC-400 FT spectrometer ($400 \mathrm{MHz}, 100 \mathrm{MHz}$, and 376 MHz , respectively) and a Bruker AC-500 FT spectrometer (500 MHz , and 125 MHz , respectively). The chemical shifts of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were referenced internally with tetramethylsilane ($\delta \mathrm{H} 0.00, \delta \mathrm{C} 0.0$), or residual protio solvent signals CDCl_{3} ($\delta \mathrm{C} 77.2$). The chemical shifts of ${ }^{19} \mathrm{~F}$ NMR spectra were referenced to external trifluoroacetic acid. Chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz , respectively. The following abbreviations are used in reporting NMR data: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. High resolution mass spectra (HRMS) were recorded on a LC-TOF spectrometer (Micromass). EI-mass or ESI-mass data were acquired using a Thermo LTQ Orbitrap XL instrument equipped with an EI or an ESI source and controlled by Xcalibur software. Melting points are uncorrected.

Chemicals were purchased from the Adamas, Energy Chemical, Acros, Accela, Alfa Aesar, and TCI, and used as received.

Abbreviations: $\mathrm{Ac}=$ acetyl, $\mathrm{BINAP}=2,2^{\prime}$-bis(diphenylphosphanyl)-1, 1^{\prime}-binaphthalene, $\mathrm{Bn}=$ benzyl, dba $=$ dibenzylideneacetone, $\mathrm{DBU}=1,8$-diazabicyclo[5,4,0]undec-7-ene, $\mathrm{DCM}=$ dichloromethane, $\mathrm{DMA}=N, N$-dimethylacetamide, $\mathrm{DMAP}=4$-dimethylaminopyridine, $\mathrm{DME}=1,2-$ dimethoxyethane, $\mathrm{DMF}=N, N$-dimethylformamide, $\mathrm{dppb}=1,4$-bis(diphenylphosphino)buthane, dppf = 1,1'-bis(diphenylphosphino)ferrocene, $\mathrm{Ms}=$ methanesulfonyl, $\mathrm{Tf}=$ trifluoromethanesulfonyl, THF $=$ tetrahydrofuran, TMEDA $=N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine, $\mathrm{Ts}=p$-methylbenzenesulfonyl.

Preparation of N -benzylsulfonimides

N-Benzylsulfonimides $\mathbf{1 a}, \mathbf{1 c - f}, \mathbf{1 h}$, and $\mathbf{1 1}-\mathbf{r}$ were prepared according to a literature procedure. ${ }^{1-2}$ (1) Preparation of N -benzylsulfonimides $\mathbf{1 b}, \mathbf{1 g}, \mathbf{1 i}$, and $\mathbf{1 k}$

A mixture of aldehyde S1 (5.0 mmol), methanesulfonamide ($571 \mathrm{mg}, 6.0 \mathrm{mmol}$), and tetraethoxysilane (1.0 mL) was heated at $120-150{ }^{\circ} \mathrm{C}$ (oil bath) for 24 h , and cooled to room temperature. The mixture was crystallized with petroleum ether, and filtered. The resulting solid was dried in vacuum to give imine $\mathbf{S 2}$.

To a solution of imine $\mathbf{S} \mathbf{2}$ in methanol $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added sodium borohydride (378 mg , 10.0 mmol). The mixture was stirred at room temperature for 2 h , and extracted with dichloromethane (10 mL) three times. The combined organic extracts were dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to give crude sulfonamide $\mathbf{S 3}$, which was used without further purification.

To a solution of sulfonamide $\mathbf{S 3}$ in tetrahydrofuran $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added sodium hydride ($144 \mathrm{mg}, 6.0 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min , and added methanesulfonyl chloride $(687 \mathrm{mg}, 0.46 \mathrm{~mL}, 6.0 \mathrm{mmol})$. The mixture was stirred at room temperature for 2 h , quenched with ice water, and extracted with dichloromethane $(10 \mathrm{~mL})$ three times. The combined organic extracts were dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (eluent: petroleum ether/ethyl acetate $=4 / 1$) to give N -
benzylsulfonimide $\mathbf{1 b}, \mathbf{1 g}, \mathbf{1}$, or $\mathbf{1 k}$.

1b
N-(Methylsulfonyl)- N-((4-methylthiophen-2-yl)methyl)methanesulfonamide (1b), yellow solid ($382 \mathrm{mg}, 27 \%$ yield for three steps). m.p. $78-82^{\circ}{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.90$ ($\mathrm{s}, 1 \mathrm{H}$), $5.03(\mathrm{~s}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 6 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.6,136.8,131.6$, 122.7, 46.8, 44.1, 15.6. HRMS (ESI) $m / z:[M+H]^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{4} \mathrm{~S}_{3}$ 284.0079; Found 284.0070.

N-((4-(3-Bromobenzyl)thiophen-2-yl)methyl)- N-(methylsulfonyl)methanesulfonamide (1g), yellow solid ($1.27 \mathrm{~g}, 58 \%$ yield for three steps). m.p. $94-98^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H})$, $3.11(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.5,140.6,137.8,131.6,130.7,130.2,129.5,127.3$, 123.9, 122.6, 46.8, 44.1, 36.2. HRMS (EI) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}_{4} \mathrm{~S}_{3} 436.9425$; Found 436.9418.

N-(Methylsulfonyl)- N-((3-methylthiophen-2-yl)methyl)methanesulfonamide (1i), yellow solid ($495 \mathrm{mg}, 35 \%$ yield for three steps). m.p. $73-77{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.80(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 6 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 137.8, 131.2, 130.1, 126.3, 45.5, 44.1, 13.8. HRMS (EI) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{4} \mathrm{~S}_{3}$ 283.0007; Found 282.9997.

1k
N-(Methylsulfonyl)- N-((4-phenylfuran-2-yl)methyl)methanesulfonamide (1k), yellow solid (345 $\mathrm{mg}, 21 \%$ yield for three steps). m.p. $129-133^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.7$, 139.0, 131.6, 129.0, 127.7, 127.5, 125.9, 110.1, 44.8, 43.8. HRMS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}_{2} \mathrm{Na} 352.0824$; Found 352.0819.
(2) Preparation of N -benzylsulfonimide $\mathbf{1} \mathbf{j}$

To a solution of furan-2-ylmethanamine ($291 \mathrm{mg}, 0.26 \mathrm{~mL}, 3.0 \mathrm{mmol}$) in dichloromethane (20 mL) at $0^{\circ} \mathrm{C}$ was added triethylamine ($455 \mathrm{mg}, 0.63 \mathrm{~mL}, 4.5 \mathrm{mmol}$). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min , and added methanesulfonyl chloride ($481 \mathrm{mg}, 0.33 \mathrm{~mL}, 4.2 \mathrm{mmol}$). The mixture was stirred at room temperature for 30 min , quenched with ice water, and extracted with dichloromethane $(20 \mathrm{~mL})$ three times. The combined organic extracts were dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give crude N-(furan-2-ylmethyl)methanesulfonamide, which was used without further purification.

To a solution of N -(furan-2-ylmethyl)methanesulfonamide in tetrahydrofuran (20 mL) under nitrogen atmosphere at $0^{\circ} \mathrm{C}$ was added sodium hydride ($108 \mathrm{mg}, 4.5 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min , and added methanesulfonyl chloride ($481 \mathrm{mg}, 0.33 \mathrm{~mL}, 4.2 \mathrm{mmol}$). The mixture was stirred at room temperature for 2 h , quenched with ice water, and extracted with dichloromethane $(20 \mathrm{~mL})$ three times. The combined organic extracts were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (eluent: petroleum ether/ethyl acetate $=4 / 1$) to give N-(furan-2-ylmethyl)- N (methylsulfonyl)methanesulfonamide ($\mathbf{1} \mathbf{j}$) as a yellow solid ($660 \mathrm{mg}, 87 \%$ yield for two steps). m.p. $115-119{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.45(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J$ $=3.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.6,143.5,111.1$, 111.0, 44.7, 43.8. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}_{5} \mathrm{~S}_{2}$ 254.0151; Found 254.0139.

Preparation of benzyl electrophiles

Benzyl electrophiles 1ab, ${ }^{3} \mathbf{1 a d},{ }^{4} \mathbf{1 a e},{ }^{5}$ and $\mathbf{1 a g}{ }^{6}$ were prepared according to literature procedures.
(1) Preparation of sulfonimide $\mathbf{1 a c}$

To a solution of 2-thiophenemethylamine ($565 \mathrm{mg}, 0.51 \mathrm{~mL}, 5.0 \mathrm{mmol}$) and triethylamine (758 $\mathrm{mg}, 1.04 \mathrm{~mL}, 7.5 \mathrm{mmol})$ in dichloromethane $(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added methanesulfonyl chloride ($801 \mathrm{mg}, 0.54 \mathrm{~mL}, 7.0 \mathrm{mmol}$). The mixture was stirred at room temperature for 30 min , quenched with ice water, and extracted with dichloromethane $(20 \mathrm{~mL})$ three times. The combined organic extracts were dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give crude N-(thiophen-2-ylmethyl)methanesulfonamide as a yellow oil, which was used without further purification.

To a solution of N -(thiophen-2-ylmethyl)methanesulfonamide in tetrahydrofuran (30 mL) under nitrogen atmosphere at $0^{\circ} \mathrm{C}$ was added sodium hydride ($180 \mathrm{mg}, 7.5 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min , and added methyl iodide ($801 \mathrm{mg}, 0.54 \mathrm{~mL}, 7.0 \mathrm{mmol}$). The mixture was stirred at room temperature for 2 h , and extracted with dichloromethane (30 mL) three times. The combined organic extracts were dried over anhydrous sodium sulfate, and concentrated under reduced pressure.

The residue was purified by silica gel chromatography (eluent: petroleum ether/ethyl acetate $=4 / 1$), to give N-methyl- N-(thiophen-2-ylmethyl)methanesulfonamide (1ac) as a yellow solid ($595 \mathrm{mg}, 58 \%$ yield for two steps). m.p. $50-54^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30$ (dd, $J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.04 $(\mathrm{d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.9,127.7,127.0,126.2,48.5,36.9,34.3$. HRMS (EI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}_{2}$ 205.0231; Found 205.0225.
(2) Preparation of carbonate 1af

Methyl chloroformate ($945 \mathrm{mg}, 0.77 \mathrm{~mL}, 10 \mathrm{mmol}$) was added dropwise to a solution of 2thienylmethanol ($570 \mathrm{mg}, 0.47 \mathrm{~mL}, 5.0 \mathrm{mmol}$) and pyridine ($1.18 \mathrm{~g}, 1.21 \mathrm{~mL}, 15 \mathrm{mmol}$) in dichloromethane $(30 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 4 h , and quenched by the dropwise addition of aqueous hydrochloric acid. The organic layer was separated, and the aqueous layer was extracted with dichloromethane $(30 \mathrm{~mL})$ three times. The combined organic extracts were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (eluent: petroleum ether/ethyl acetate $=9: 1$) to give methyl (thiophen-2-ylmethyl) carbonate (1af) as a yellow oil ($722 \mathrm{mg}, 84 \%$ yield). ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 7.32(\mathrm{dd}, J=5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=5.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H})$, 3.77 (s, 3H). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.5,136.9,128.7,127.2,126.8,63.6,54.8$. HRMS (EI) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{~S}$ 172.0194; Found 172.0188.

Preparation of allyl electrophiles

Allyl electrophiles 2ac, ${ }^{7} \mathbf{2 a d},{ }^{8}$ and $\mathbf{2 a e}{ }^{9}$ were prepared according to literature procedures. Preparation of N -allylsulfonamide 2af

To a solution of allylamine ($285 \mathrm{mg}, 0.37 \mathrm{~mL}, 5.0 \mathrm{mmol}$) and triethylamine ($758 \mathrm{mg}, 1.04 \mathrm{~mL}$, $7.5 \mathrm{mmol})$ in dichloromethane $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added methanesulfonyl chloride ($801 \mathrm{mg}, 0.54$ $\mathrm{mL}, 7.0 \mathrm{mmol}$). The mixture was stirred at room temperature for 30 min , and quenched with ice water. The organic layer was separated, and the aqueous layer was extracted with dichloromethane $(20 \mathrm{~mL})$ three times. The combined organic extracts were dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give crude N-allylmethanesulfonamide, which was used without further purification.

To a solution of N-allylmethanesulfonamide in tetrahydrofuran (20 mL) under nitrogen atmosphere at $0^{\circ} \mathrm{C}$ was added sodium hydride ($180 \mathrm{mg}, 7.5 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min , and added methanesulfonyl chloride ($801 \mathrm{mg}, 0.54 \mathrm{~mL}, 7.0 \mathrm{mmol}$). The mixture was stirred at room temperature for 2 h , and quenched with ice water. The organic layer was separated,
and the aqueous layer was extracted with dichloromethane (20 mL) three times. The combined organic extracts were dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (eluent: petroleum ether/ethyl acetate $=4 / 1$) to give N-allyl- N-(methylsulfonyl)methanesulfonamide (2af) as a yellow oil ($447 \mathrm{mg}, 42 \%$ yield for two steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.12-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.59-5.19(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.29(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.4,120.8,51.0,44.0$. HRMS (EI) $m / z:[\mathrm{M}]^{+}$ Calcd for $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{~S}_{2}$ 213.0129; Found 213.0124.

General procedure for the reaction of N-benzylsulfonimides with allyl esters

To a suspension of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(20.7 \mathrm{mg}, 0.020 \mathrm{mmol}),\left(4-\mathrm{FC}_{6} \mathrm{H}_{4}\right){ }_{3} \mathrm{P}(25.0 \mathrm{mg}, 0.080$ mmol), In ($67.5 \mathrm{mg}, 0.60 \mathrm{mmol}$), $\mathrm{LiCl}(17.0 \mathrm{mg}, 0.40 \mathrm{mmol})$, and N-benzylsulfonimide $\mathbf{1}$ (0.20 $\mathrm{mmol})$ in N, N-dimethylformamide $(1.0 \mathrm{~mL})$ under nitrogen atmosphere at room temperature was added DBU ($30.4 \mathrm{mg}, 29.8 \mathrm{uL}, 0.20 \mathrm{mmol}$) and allyl ester $2(0.40 \mathrm{mmol})$. The mixture was heated at 80 or $100{ }^{\circ} \mathrm{C}$ (as specified in Schemes 3 and 4, oil bath) for 12 h , and cooled to room temperature. The mixture was directly purified by silica gel chromatography (eluent: petroleum ether) to give allyl(hetero)arene 3.

Analytical data for the products (Schemes 3 and 4)

2-Allyl-5-methylthiophene (3a), ${ }^{1}$ colorless oil ($21.5 \mathrm{mg}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.59-6.56(\mathrm{~m}, 2 \mathrm{H}), 6.02-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.05(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.7,138.1,136.8,124.9,124.4,116.0,34.5,15.4$. HRMS (EI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$ Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~S}$ 138.0503; Found 138.0498.

3b
2-Allyl-3,5-dimethylthiophene (3b), colorless oil ($27.3 \mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.45(\mathrm{~s}, 1 \mathrm{H}), 5.96-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.05(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$, $2.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.6,135.9,133.0,132.9,128.4,115.6,32.2,15.2,13.6$. HRMS (EI) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~S}$ 152.0660; Found 152.0652.

2-Allyl-5-methyl-3-phenylthiophene (3c) ${ }^{1}$, colorless oil ($30.8 \mathrm{mg}, 72 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.02-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.06(\mathrm{~m}$, $2 \mathrm{H}), 3.53(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.7,137.3,136.9,136.9$, 135.0, 128.7, 128.4, 127.4, 126.8, 116.1, 32.8, 15.3. HRMS (EI) $m / z:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~S} 214.0816$, Found 214.0811.

3d
2-Allyl-3-(4-fluorophenyl)-5-methylthiophene (3d) ${ }^{1}$, colorless oil ($36.2 \mathrm{mg}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.00-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.07$ $(\mathrm{m}, 2 \mathrm{H}), 3.48(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.8(\mathrm{~d}, J=244.3 \mathrm{~Hz})$, $137.7,137.1,137.0,134.9,132.9(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 130.2(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 127.3,116.2,115.3(\mathrm{~d}, J=21.1$ Hz), 32.7, 15.3. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-115.7. HRMS (EI) $m / z:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{FS}$ 232.0722; Found 232.0718.

2-Allyl-3-(4-methoxyphenyl)-5-methylthiophene (3e) ${ }^{1}$, colorless oil ($26.3 \mathrm{mg}, 54 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.03-5.93(\mathrm{~m}, 1 \mathrm{H})$, 5.13-5.04 (m, 2H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $158.5,138.3,137.4,136.7,134.2,129.7,129.4,127.5,116.1,113.8,55.3,32.8,15.3$. HRMS (EI) $m / z:$ $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~S}$ 244.0922; Found 244.0918.

3f

2-Allyl-5-methyl-3-(phenylethynyl)thiophene (3f) ${ }^{1}$, colorless oil ($23.3 \mathrm{mg}, 49 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.04-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.01$ $(\mathrm{m}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.4,136.8,136.0$, 131.5, 128.4, 128.1, 127.4, 123.6, 119.0, 116.5, 91.4, 84.4, 33.6, 15.3. HRMS (EI) $m / z:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~S}$ 238.0816; Found 238.0816.

$3 g$
2-Allyl-3-(3-bromobenzyl)-5-methylthiophene (3g), colorless oil ($31.2 \mathrm{mg}, 51 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 5.94-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.03$ $(\mathrm{m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.2$, 136.8, 136.5, 135.1, 134.4, 131.6, 130.0, 129.2, 127.5, 127.2, 122.6, 116.0, 33.8, 32.2, 15.3. HRMS (EI) $m / z:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrS} 306.0078$; Found 306.0071.

3h
2-Allyl-3-bromo-5-methylthiophene ($\mathbf{3 h})^{1}$, colorless oil ($13.8 \mathrm{mg}, 32 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.95-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.06(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.0$, 135.2, 134.6, 127.8, 116.7, 107.7, 33.5, 15.5. HRMS (EI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrS}$ 215.9608; Found 215.9604.

A 94:6 mixture of 5-allyl-2,3-dimethylthiophene ($\mathbf{3 i}$) and 2-(but-3-en-1-yl)-3-methylthiophene (4i) was obtained as a colorless oil ($6.69 \mathrm{mg}, 22 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for compound 3 i : $\delta 6.48(\mathrm{~s}, 1 \mathrm{H}), 6.10-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.21-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for compound $4 \mathrm{i}: \delta 7.02(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H})$, 6.10-5.79 (m, 1H), 5.21-4.98 (m, 2H), 2.82 (dd, $J=8.0,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.44-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.0,136.9,136.6,135.9,132.8,130.9,130.0,128.5,127.7$, 121.2, 116.0, 115.6, 34.4, 32.2, 27.6, 15.3, 13.7, 13.1. HRMS (EI) m/z: [M] Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~S}$ 152.0660; Found 152.0651.

3j
2-Allyl-5-methylfuran (3j), colorless oil ($14.9 \mathrm{mg}, 61 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.00-5.85(\mathrm{~m}, 3 \mathrm{H}), 5.17-5.07(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.1,150.8,134.5,116.7,106.2,106.1,32.8,13.6$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{ONa}$ 145.0624; Found 145.0626.

2-Allyl-5-methyl-3-phenylfuran ($\mathbf{3 k}$), colorless oil ($31.7 \mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.37-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 6.06-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.07(\mathrm{~m}, 2 \mathrm{H})$, $3.48(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.6,147.0,134.8,134.3,128.6$, 127.6, 126.4, 122.5, 116.4, 107.2, 31.5, 13.6. HRMS (EI) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O} 198.1045$; Found 198.1039.

31
2-Allyl-5-methyl-3-(phenylethynyl)furan (31) ${ }^{1}$, colorless oil ($17.8 \mathrm{mg}, 40 \%$ yield). ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.01-5.91(\mathrm{~m}, 2 \mathrm{H}), 5.21-5.10(\mathrm{~m}$, $2 \mathrm{H}), 3.51(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.6,150.7,133.6,131.3$, 128.4, 127.9, 123.7, 116.9, 108.4, 104.0, 91.8, 81.9, 31.9, 13.5. HRMS (EI) $m / z:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}$ 222.1045; Found 222.1041.

$3 m$
1-Allyl-4-methylbenzene ($\mathbf{3 m}$) ${ }^{10}$, colorless oil ($2.64 \mathrm{mg}, 10 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.01-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.03(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.9,137.1,135.7,129.2,128.6,115.7,40.0,21.1 . \mathrm{HRMS}$ (EI) $m / z:[\mathrm{M}]^{+}$ Calcd for $\mathrm{C}_{10} \mathrm{H}_{12}$ 132.0939; Found 132.0934.

3n
1-Allyl-4-methylnaphthalene ($\mathbf{3 n})^{1}$, colorless oil ($34.6 \mathrm{mg}, 95 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 8.05-7.99 (m, 2H), 7.53-7.48 (m, 2H), 7.25-7.21 (m, 2H), 6.15-6.05 (m, 1H), 5.10-5.05 (m, $2 \mathrm{H}), 3.80(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.3,134.3,133.0,133.0$, 132.1, 126.4, 126.1, 125.5, 125.4, 124.9, 124.7, 116.1, 37.4, 19.6. HRMS (EI) $m / z:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{14}$ 182.1096; Found 182.1090.

$30: 40=85: 15$
A 85:15 mixture of 4-allyl-1,2-dimethylnaphthalene (30) ${ }^{1}$ and 1-(but-3-en-1-yl)naphthalene (40) ${ }^{1}$ was obtained as a colorless oil ($13.7 \mathrm{mg}, 35 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for compound $\mathbf{3 0}$: $\delta 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.15-6.08(\mathrm{~m}, 1 \mathrm{H})$, 5.11-5.06 (m, 2H), $3.78(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for compound 4o: $8.00(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-$ $7.38(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.04-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.06(\mathrm{~m}, 2 \mathrm{H}), 3.18-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.50$ ($\mathrm{s}, 3 \mathrm{H}$), 2.40-2.34 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.5,137.5,135.1,133.5,133.4,133.1$, $132.9,132.7,132.2,130.8,129.9,129.8,129.3,128.7,126.3,126.0,125.5,124.6,124.6,124.5,124.5$, 123.7, 116.0, 114.9, 37.3, 34.1, 28.2, 20.9, 20.3, 14.6. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{17}$ 197.1325; Found 197.1324.

A 86:14 mixture of 4-allyl-1-methyl-5-phenylnaphthalene ($\mathbf{3 p})^{1}$ and 1-(but-3-en-1-yl)-5phenylnaphthalene ($\mathbf{4 p}$) was obtained as a colorless oil ($43.9 \mathrm{mg}, 85 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) for compound 3p: $\delta 8.04$ (dd, $J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48-7.44 (m, 1H), 7.39-7.26 (m, 7H), 7.23$7.19(\mathrm{~m}, 1 \mathrm{H}), 5.65-5.56(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{dd}, J=10.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.62(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=6.4$
$\mathrm{Hz}, 2 \mathrm{H}$), $2.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for compound $\mathbf{4 p}$: 8.08-8.05 (m, 1H), 7.78-7.74 $(\mathrm{m}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=8.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 5 \mathrm{H}), 6.01-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.12$ (dd, $J=16.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=10.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.51(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.3,141.3,141.2,140.5,138.6,138.4,138.2,135.5,134.3,133.2,132.2$, $132.2,130.8,130.3,130.0,129.4,128.8,128.3,127.9,127.3,126.9,126.7,126.1,125.7,125.3,124.9$, 124.7, 124.3, 123.4, 115.3, 115.1, 40.1, 35.0, 33.0, 20.4. HRMS (EI) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{18}$ 258.1409; Found 258.1406.

$\mathbf{3 q : 4 q}=90: 10$
A 90:10 mixture of 4-allyl-1-methyl-5-(phenylethynyl)naphthalene ($\mathbf{3 q})^{1}$ and 1-(but-3-en-1-yl)-5-(phenylethynyl)naphthalene (4q) was obtained as a colorless oil ($50.8 \mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for compound $\mathbf{3 q}: \delta 8.01(\mathrm{dd}, J=8.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-$ $7.54(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.36-6.27(\mathrm{~m}, 1 \mathrm{H}), 5.07-$ $4.97(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for compound $\mathbf{4 q}$: $8.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.38-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 3 \mathrm{H}), 5.98-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.52-$ 2.47 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.2,138.2,135.8,135.7,135.6,135.5,135.4,134.6$, $134.0,133.7,131.8,131.5,131.2,130.2,129.3,128.6,128.3,127.2,126.7,126.5,126.2,125.2,125.0$, 124.6, 124.0, 119.9, 116.2, 116.1, 116.0, 115.9, 115.2, 115.1, 94.4, 93.8, 92.7, 88.0, 39.9, 35.0, 32.7, 20.3. HRMS (EI) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{18}$ 282.1409; Found 282.1405.

$5: 4 \mathrm{r}=77: 23$
A 77:23 mixture of 1-allyl-1-methyl-4-methylene-1,4-dihydronaphthalene (5) and 1-(but-3-en-1-yl)-4-methylnaphthalene (4r) was obtained as a colorless oil ($21.2 \mathrm{mg}, 54 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) for compound 5: $\delta 7.75(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{td}, J=$ $8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H})$, $5.52-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.92-4.84(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for compound 4r: 8.07-7.96 (m, 2H), 7.53-7.49 (m, 2H), 7.21-7.18 (m, $2 \mathrm{H}), ~ 6.01-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=16.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-5.02(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~s}$,
$3 \mathrm{H}), 2.61-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.45(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.0,138.5,137.9,136.4$, $136.2,134.9,133.1,132.7,132.0,131.5,128.2,127.4,126.7,126.4,126.2,125.8,125.5,125.4,125.0$, 124.4, 123.3, 117.2, 115.0, 109.0, 48.8, 40.8, 38.7, 35.1, 32.6, 30.4. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Na} 219.1144$; Found 219.1153.

A 75:25 mixture of (E)-2-(hex-2-en-1-yl)-5-methylthiophene (3s) and 2-(hex-1-en-3-yl)-5methylthiophene ($3 s^{\prime}$) was obtained as a colorless oil ($16.6 \mathrm{mg}, 46 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for compound 3s: $\delta 6.57-6.53(\mathrm{~m}, 2 \mathrm{H}), 5.61-5.47(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.10$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for compound 3s': δ 6.57-6.53 (m, 2H), 5.90-5.82 (m, 1H), 5.07-5.01 (m, 2H), 3.47-3.41 (m, 1H), $2.42(\mathrm{~s}$, $3 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $146.4,142.0,137.8,137.6,132.2,131.2,128.4,127.7,124.8,124.7,123.8,123.1,114.4,45.2,38.5$, 29.3, 28.0, 22.9, 20.6, 15.4, 14.0, 14.0. HRMS (ESI) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{16}$ SNa 203.0865; Found 203.0884.

$3 t$
2-Methyl-5-(2-methylallyl)thiophene (3t), colorless oil ($14.9 \mathrm{mg}, 49 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.75-6.40(\mathrm{~m}, 2 \mathrm{H}), 4.82-4.80(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.8,140.5,138.2,125.2,124.8,112.0,38.9,21.9,15.5$. HRMS (EI) $m / z:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~S}$ 152.0660; Found 152.0653.

References

1. M.-Z. Zhu, D. Xie and S.-K. Tian, Org. Lett., 2021, 23, 6877-6881.
2. J. Dalluhm, H. Prohl and D. Henschel, Phosphorus Sulfur, Silicon 1996, 114, 149-160.
3. M.-B. Li, X.-L. Tang and S.-K. Tian, Adv. Synth. Catal., 2011, 353, 1980-1984.
4. W.-J. Pan and Z.-X. Wang, Asian J. Org. Chem., 2018, 7, 1626-1634.
5. K. Zhang, O. Provot, M. Alami and C. Tran, J. Org. Chem., 2022, 87, 1249-1261.
6. F. Bavo, H. de-Jong and J. Petersen, J. Med. Chem., 2021, 64, 17795-17812.
7. J. D. V. David and J. K. Michael, J. Am. Chem. Soc., 2013, 135, 10986-10989.
8. A. F. Rodney, S. Y. Sandhya and K. Praveen, Org. Biomol. Chem., 2022, 20, 427-443.
9. B. Yang and Z.-X. Wang, J. Org. Chem., 2019, 84, 1500-1509.
10. B. M. Nestl, S. M. Glueck and M. Hall. Eur. J. Org. Chem. 2006, 20, 4573-4577.

$$	$\stackrel{N}{N}$	$\stackrel{10}{\sim}$	N \sim	O
N ${ }^{\circ}$	${ }^{\circ}$	लं	-	0
1/	\|	\|	\|	

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

のгの	\pm			
¢ 4	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{1} \mathrm{O}$	「	\bigcirc
$\stackrel{1}{\sim}{ }^{-1}$	N	\downarrow ¢	∞ ¢	\bigcirc
$\cdots \cdots$	$\stackrel{\sim}{\sim}$	へNペ	$\stackrel{\circ}{+}$	$\stackrel{1}{5}$
－	।		1	

1b
${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{llll}0 & \pm & \pm & N \\ 0 & 0 & \sigma \\ N & \infty & N \\ N & 0 & 0 \\ & & \end{array}$
∞
0
0
1
1
n
\cdots
\cdots
1
0
0
$\underset{\sim}{n}$
\cdots
\cdots
1
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

0
N
N
0
1

∞
∞
∞

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1j
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1k
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1k
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1 ac
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Me

1ac
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2af
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3a
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\bigcirc 0_{0}^{\circ} \stackrel{0}{\circ}$	ㅇN№m	$\infty \bigcirc$	\square
\bigcirc			5
$\stackrel{+}{\sim} \stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim} \underset{\sim}{\sim}$	へぺ	¢
1	1	－	｜

3a
${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

3b
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	$\stackrel{\infty}{\sim}$	NON	\cdots	$\infty \times$
\cdots ¢ の の	\bigcirc	へ	「	$\stackrel{0}{1}$
¢ ¢ ¢ N N N N	$\stackrel{1}{5}$	$\stackrel{\text { N }}{\sim}$	N	\cdots
$\leftarrow \leftarrow \leftarrow \leftarrow$	F	人Nヘ	m	
\rightarrow	｜			，

3b
${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

3 c
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3c
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3d
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

000 0^{-}

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3f
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^1]
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

M

$3 g$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^2]
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	$\begin{aligned} & \text { N } \\ & \underset{\sim}{\circ} \\ & \stackrel{+}{\tau} \end{aligned}$	$\stackrel{\text { N}}{\stackrel{\text { N}}{\sim}}$		-
〈1	,	\|	N	

3h
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^3]
$3 i: 4 i=94: 6$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$3 i: 4 i=94: 6$
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N

3j
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

G8て'Z-
$000^{\circ} 0^{-}$

3k
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3n
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3n
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

30:40 $=85: 15$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

30:40 $=85: 15$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$3 p: 4 p=86: 14$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{lll}0 & M & \Gamma \\ 0 & N & 0 \\ \Gamma & 0 & 0 \\ 0 & 10 & m \\ \forall & M & M\end{array}$
$1>1$
10
$\stackrel{N}{+}$
0
$\stackrel{N}{N}$
1

3p:4p = 86:14
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$3 q: 4 q=90: 10$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$5: 4 \mathrm{r}=77: 23$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N M M
 じゃ

$5: 4 \mathrm{r}=77: 23$
${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\mathbf{3 s}: \mathbf{3 s}=75: 25$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\circ
0
$\dot{\circ}$
$\dot{1}$

N
N
$\underset{\sim}{*}$
\cdots N
$\underset{\sim}{N}$
$\stackrel{y}{*}$ $\stackrel{m}{\stackrel{m}{N}} \stackrel{+}{+}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^4]
[^0]: $\begin{array}{lllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)

[^1]: $\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
 f1 (ppm)

[^2]: $\begin{array}{llllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)

[^3]: $\begin{array}{lllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)

[^4]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \text { f1 } & (\mathrm{ppm})\end{array}$

