Electronic Supplementary Information

for

Reduction of 2-H-substituted pyrrolinium cations: the carbon-carbon single bond in

air stable 2,2'-bipyrrolidines as a two-electron-source

Mithilesh Kumar Nayak,^a Benedict J. Elvers,^b Debdeep Mandal,^a Ayan Das,^a Raghunathan Ramakrishnan,^{*a} Kaustubh R. Mote,^{*a} Carola Schulzke,^{*b} Cem Burak Yildiz^{*c} and Anukul Jana^{*a}

1.	Content	S1
2.	General Considerations	S2
3.	Experimental Details and Analytical Data	S3
4.	Crystallographic Details	S56
5.	Cyclic Voltammetry	S59
6.	HRMS Spectra of 3^{iPr-Me_2} , 3^{Dip-Et_2} , and $3^{Dip-(CH_2)_5}$	S75
7.	Quantum Chemical Calculations	S77
8.	References	S121

^{a.} Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India. E-mail: ramakrishnan@tifrh.res.in, krmote@tifrh.res.in and ajana@tifrh.res.in

^{b.} Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17489 Greifswald, Germany. E-mail: carola.schulzke@uni-greifswald.de ^{c.} Department of Aromatic and Medicinal Plants, Aksaray University, Aksaray-68100, Turkey. E-mail: cemburakyildiz@aksaray.edu.tr

General Considerations

All experiments (unless otherwise stated) were carried out under an N₂ atmosphere using standard Schlenk techniques or in a PL-HE-2GB Innovative Technology GloveBox. Hexane, pentane, diethyl ether, THF, and toluene were dried with a PS-MD-5 Innovative Technology solvent purification system or common drying solvent technique. Compounds $1^{iPr-Me_2,S1}$ $1^{tBu-Me_2,S2}$ KC₈,^{S3} 16,^{S4} 5,^{S5} 6,^{S6} 7,^{S7} $1^{Dip-Me_2,S8}$ and $1^{Dip-(CH_2)5}$,^{S8} were prepared according to the literature procedures. Compound 1^{Dip-Et_2} was prepared based on similar procedure as 1^{Dip-Me_2} and $1^{Dip-(CH_2)5}$.^{S8} Benzene-d₆ was dried and distilled over potassium under argon. Chloroform-d₁ and acetonitrile-d₃ were dried and distilled over CaH₂ under argon. NMR spectra were recorded on a BrukerNanoBay 300 MHz NMR spectrometer. ¹H and ¹³C{¹H} NMR spectra were referenced to the peaks of residual protons of the deuterated solvent (¹H) or the deuterated solvent itself (¹³C). ¹⁹F{¹H} NMR spectra were referenced to external tol-CF₃.

Elemental analyses were performed on a Perkin Elmer Analyser 240. HRMS of **3**^{*i*Pr-Me₂}, **3**^{*t*Bu-Me₂}, **3**^{*D*ip-Me₂}, **3**^{*D*ip-Et₂}, and **3**^{*D*ip-(CH₂)₅ were performed on a Waters Xevo G2-XS QTOF (Waters Corporation) using electrospray ionisation (ESI). Melting points were determined in closed NMR tubes under nitrogen atmosphere and are uncorrected. Cyclic voltammograms were recorded in 0.1 M NBu₄PF₆/CH₃CN solutions using a three-electrode configuration (glassy carbon working, Pt wire counter electrodes, and Ag reference) with a Metrohm Autolab potentiostat. The ferrocene/ferrocenium (Fc/Fc⁺) couple served as internal reference.}

Experimental Details and Analytical Data

Synthesis of 3^{*i*Pr-Me₂}

About 60 mL of toluene was added to the mixture of 1^{iPr-Me_2} (2.00 g, 6.30 mmol) and KC₈ (1.28 g, 9.45 mmol) at room temperature and stirred for 12 hours. After that, the reaction mixture was filtered and all volatiles including solvent were removed under vacuum resulting in pure 3^{iPr-Me_2} . Yield: 965 mg (91 %). Subsequently, the two diastereomers (*meso-* and *d/l-*) were separated with silica gel column chromatography. First *meso-3^{iPr-Me_2}* (370 mg) was moved through the column with pure pentane as eluent. Then, using pure diethyl ether as an eluent two rotational isomers of *d/l-3^{iPr-Me_2}* (140 mg) were obtained in an approximate ratio of 1:0.17. 3^{iPr-Me_2} is a colourless amorphous solid. **M. P.:** 67 °C.

¹**H NMR** of *meso*-**3**^{*i***Pr**-**Me**₂} (C₆D₆, 25 °C, 300 MHz): δ = 4.09 (br, 1H, *H*C(CH₃)₂), 3.37 (br, 1H, *CH*), 3.18 (br, 1H, *H*C(CH₃)₂), 3.09 (br, 1H, *CH*), 2.00 (br, 1H, *CH*₂), 1.60 (br, 3H, *CH*₃), 1.33 (br, 3H, *CH*₂), 1.31 (br, 3H, *CH*₃), 1.20 (d, 12H, ³*J*_{H-H} = 6.4 Hz, HC(CH₃)₂), 1.06–1.27 (br, 18H, *CH*₃) ppm. ¹³C{¹H} **NMR** of *meso*-**3**^{*i***Pr**-**Me**₂} (C₆D₆, 25 °C, 75.4 MHz): δ = 74.9 (CH), 69.1 (CH), 60.2 (C(CH₃)₂), 59.2 (CH₂), 58.9 (CH₂), 48.2 (HC(CH₃)₂), 46.7 (HC(CH₃)₂), 39.3 (C(CH₃)₂), 38.6 (C(CH₃)₂), 34.1 (CH₃), 33.2 (CH₃), 32.5 (CH₃), 30.6 (CH₃), 28.4 (CH₃), 27.5 (CH₃), 24.5 (CH₃), 23.3 (CH₃), 21.8 (CH₃), 19.1 (CH₃) ppm.

¹**H NMR** of major rotational-isomers of d/l-**3**^{*i***Pr**-**Me**₂} (C₆D₆, 25 °C, 300 MHz): δ = 4.18 (sept, 2H, ³J_{H-H} = 7.0 Hz, $HC(CH_3)_2$), 3.01 (s, 2H, CH), 1.43–1.60 (m, 4H, CH₂), 1.38 (d, 6H, ³J_{H-H} = 7.2 Hz, $HC(CH_3)_2$), 1.31 (s, 6H, CH₃), 1.26 (s, 6H, CH₃), 1.17 (d, 6H, ³J_{H-H} = 7.0 Hz, $HC(CH_3)_2$), 1.07 (s, 6H, CH₃), 1.04 (s, 6H, CH₃) ppm. ¹³C{¹H} **NMR** of major rotational-isomers of d/l-**3**^{*i***Pr**-**Me**₂} (C₆D₆, 25 °C, 75.4 MHz): δ = 69.4 (CH), 60.2 (C(CH₃)₂), 59.6 (CH₂), 48.8 (HC(CH₃)₂), 39.3 (C(CH₃)₂), 34.4 (C(CH₃)₂), 31.2 (C(CH₃)₂), 30.8 (C(CH₃)₂), 27.0 (C(CH₃)₂), 24.3 (HC(CH₃)₂), 19.7 (HC(CH₃)₂) ppm.

¹**H NMR** of minor rotational-isomers of d/l-**3**^{*i***Pr**-**Me**₂} (C₆D₆, 25 °C, 300 MHz): (Some peaks overlapped with the major isomers indicated by integrations of peaks): δ = 3.36 (s, 2H, *CH*), 3.17 (sept, 2H, ³*J*_{H-H} = 7.0 Hz, *H*C(CH₃)₂), 2.02 (d, 2H, ²*J*_{H-H} = 12.7 Hz, *CH*₂), 1.38 (d, ³*J*_{H-H} = 6H, 7.2 Hz, HC(*CH*₃)₂), 1.31 (s, 6H, *CH*₃), 1.24 (s, 2H, *CH*₂), 1.21 (s, 6H, *CH*₃), 1.20 (d, 6H, ³*J*_{H-H} = 7.0 Hz, HC(*CH*₃)₂), 1.18 (s, 6H, *CH*₃), 1.15 (s, 6H, *CH*₃) ppm. ^{**13**}**C**{^{**1**}**H**} **NMR** of minor rotational-isomers of d/l-**3**^{*i***Pr**-**Me**₂ (C₆D₆, 25 °C, 75.4 MHz): δ = 70.5 (*C*H), 60.7 (*C*(CH₃)₂), 57.3 (*C*H₂), 46.3 (H*C*(CH₃)₂), 38.5 (*C*(CH₃)₂), 36.5 (C(*C*H₃)₂), 31.3 (C(*C*H₃)₂), 28.2 (C(*C*H₃)₂), 28.1 (C(*C*H₃)₂), 25.7 (HC(*C*H₃)₂), 21.0 (HC(*C*H₃)₂) ppm.}

Elemental analysis: calcd. (%) for C₂₂H₄₄N₂: C, 78.50; H, 13.18; N, 8.32; found: C, 78.45; H, 13.43; N, 8.16. **HRMS-ESI (m/z):** Calculated for C₂₂H₄₅N₂ [M+H]⁺: 337.3578, Found: 337.3587.

Fig. S1 ¹H NMR spectrum of meso- $\mathbf{3}^{i\mathbf{Pr}-\mathbf{Me_2}}$ in C_6D_6 at room temperature.

Fig. S2 ¹³C{¹H} NMR spectrum of *meso*- 3^{iPr-Me_2} in C₆D₆ at room temperature.

Fig. S3 ¹H-¹H 2D (COSY) NMR spectrum of *meso*- 3^{iPr-Me_2} in C₆D₆ at room temperature.

Fig. S4 ¹H NMR spectrum of d/l-**3**^{*i*Pr-Me₂} (containing both rotational isomers) in C₆D₆ at room temperature.

Fig. S5 ¹³C{¹H} NMR spectrum of d/l-**3**^{*i*Pr-Me₂} (containing both rotational isomers) in C₆D₆ at room temperature.

Fig. S6 Overlay of ¹H NMR spectra of *meso*- $\mathbf{3}^{i\mathbf{Pr}-\mathbf{Me}_2}$ (green), $\mathbf{3}^{i\mathbf{Pr}-\mathbf{Me}_2}$ (blue), and $d/l-\mathbf{3}^{i\mathbf{Pr}-\mathbf{Me}_2}$ (red, containing two rotational isomers) in C₆D₆ at room temperature.

Fig. S7 Overlay of ¹³C{¹H}-DEPT-135 (green), ¹³C{¹H} (blue), ¹³C{¹H}-DEPT-90 (red) NMR spectra of *meso*- $\mathbf{3}^{i\mathbf{Pr}-Me_2}$ in C₆D₆ at room temperature.

Fig. S8 ¹³C-¹H{¹³C}-2D (HMQC) NMR spectrum of *meso*-**3**^{*i*Pr-Me₂} in C₆D₆ at room temperature.

Fig. S9 Overlay of ¹³C{¹H}-DEPT-135 (green), ¹³C{¹H} (blue), ¹³C{¹H}-DEPT-90 (red) NMR spectra of d/l-**3**^{*i*Pr-Me₂} (containing two rotational isomers) in C₆D₆ at room temperature.

Fig. S10 Overlay of VT-¹H NMR spectra of *meso*-3^{*i*Pr-Me₂} (selected range: 2.6-5.0 ppm) in toluene-d₈.

Fig. S11 Overlay of VT-¹H NMR spectra of *meso*-3^{*i*Pr-Me2} (selected range: 0.0-5.0 ppm) in toluene-d₈.

Fig. S12 Overlay of VT-¹H NMR spectra of *meso*-3^{*i*Pr-Me₂} in toluene-d₈.

Fig. S13 ¹H NMR spectra of meso-3^{iPr-Me2} at 90 °C in toluene-d₈.

Fig. S14 Overlay of VT-¹H NMR spectra of *meso*-3^{*i*Pr-Me₂} (selected range) in toluene-d₈.

Fig. S15 Overlay of VT-¹H NMR spectra of *meso*-3^{*i*Pr-Me₂} (selected range) in toluene-d₈.

Fig. S16 Overlay of VT⁻¹H NMR spectra of d/l-**3**^{*i*Pr-Me₂} (selected range: 2.6-5.0 ppm) in toluene-d₈.

Fig. S17 Overlay of VT-¹H NMR spectra of *d*/*l*-3^{*i*Pr-Me₂} (selected range: 2.0-5.0 ppm) in toluene-d₈.

Table S1. Summary of C-*H* exchange rate of *meso*- $\mathbf{3}^{i\mathbf{P} \cdot \mathbf{Me_2}}$ at different temperatures (the fitted exchange rates reported here have an error of ±10 Hz; the reported rates (above 10 Hz) are, hence, rounded to the nearest decade).

Entry No.	Temperature	Exchange Rate	Entry No.	Temperature	Exchange Rate
	(°C)	(Hz)		(°C)	(Hz)
1.	-10	2	12.	45	510
2.	-5	4	13.	50	700
3.	0	9	14.	55	980
4.	5	20	15.	60	1490
5.	10	40	16.	65	2080
6.	15	60	17.	70	2810
7.	20	90	18.	75	3740
8.	25	120	19.	80	4980
9.	30	190	20.	85	5500
10.	35	280	21.	90	8470
11.	40	380			

Fig. S18 VT-¹H NMR spectra (selected range) of *meso*-**3**^{*i*Pr-Me₂} showing coalescence at 60-65 °C for *i*Pr-CH at 45-50 °C for NC-H protons. Inset: Left: Eyring plot to determine the enthalpic and entropic contribution to the activation energy. Right: Arrhenius plot for determining the rotational barrier between the two gauche-conformers.

Alternative Route for the Synthesis of 3^{*i*Pr-Me₂}

THF (10 mL) was added to the mixture of **16** (230 mg, 0.474 mmol) and LiAlH₄ (25 mg, 0.66 mmol) at room temperature and stirred for 1 minute. After that, the solvent was evaporated and 3 mL water was added to the residue followed by 1 mL of 2 M NaOH and then 7 mL more water added. The resulting mixture was extracted with Et₂O (2 × 10 mL). The combined collected Et₂O phases were dried first over MgSO₄ and secondly under vacuum resulting in colourless sticky solid compound **3**^{*i*Pr-Me₂}. **Yield:** 120 mg (75 %).

Fig. S19 ¹H NMR spectrum of 3^{*i*Pr-Me₂} (synthesised from 16 using LiAlH₄) in C₆D₆ at room temperature.

Synthesis of 3tBu-Me2

About 60 mL of toluene was added to the mixture of 1^{tBu-Me_2} (2.00 g, 6.03 mmol) and KC₈ (1.224 g, 9.055 mmol) at room temperature and stirred for 12 hours. After that the reaction mixture was filtered and all volatiles were evaporated under vacuum resulting in pure 3^{tBu-Me_2} . Yield: 1.004 g (91 %). Single crystals of $d/l-3^{tBu-Me_2}$ were obtained from saturated pentane solution at -30 °C after 7 days. It was possible to separate the minor rotational isomer of $d/l-3^{tBu-Me_2}$ using silica gel column chromatography. First, *meso-* 3^{tBu-Me_2} was moved through the column using pentane as an eluent, followed by a mixture of the major rotational isomer of $d/l-3^{tBu-Me_2}$ along with the minor rotational isomer of $d/l-3^{tBu-Me_2}$ (still in pentane). Secondly, using diethyl ether as an eluent, the minor rotational isomer of $d/l-3^{tBu-Me_2}$ (50 mg) was obtained. 3^{tBu-Me_2} is a colourless crystalline solid. **M. P.** 79 °C.

¹H NMR of 3^{*t*Bu-Me₂} (C₆D₆, 25 °C, 300 MHz, Selected Resonances): δ = 3.71 (s, 2H, CH of major rotational isomer of *d*/*l*-3^{*t*Bu-Me₂}), 3.59 (s, 1H, CH of *meso*), 3.40 (s, 1H, CH of *meso*-3^{*t*Bu-Me₂}), 3.21 (s, 2H, CH minor rotational isomer of *d*/*l*-3^{*t*Bu-Me₂}), 2.28 (d, 1H, ²J_{H-H} = 12.8 Hz, CH₂ of *meso*-3^{*t*Bu-Me₂}), 2.21 (d, 2H, ²J_{H-H} = 13.0 Hz, CH₂ of major rotational isomer of *d*/*l*-3^{*t*Bu-Me₂}), 2.08 (d, 1H, ²J_{H-H} = 12.8 Hz, CH₂ of *meso*-3^{*t*Bu-Me₂}), 1.96 (d, 2H, ²J_{H-H} = 12.8 Hz, CH₂ of minor rotational isomer of *d*/*l*-3^{*t*Bu-Me₂}) ppm. ¹³C{¹H} NMR of 3^{*t*Bu-Me₂} (C₆D₆, 25 °C, 75.4 MHz, Selected Resonances): δ = 78.4 (CH of *meso*-3^{*t*Bu-Me₂}), 74.2 (CH of major rotational isomer of *d*/*l*-3^{*t*Bu-Me₂}), 73.6 (CH of *meso*-3^{*t*Bu-Me₂}), 61 (CH₂ of major rotational isomer of *d*/*l*-3^{*t*Bu-Me₂}), 60.6 (CH₂ of *meso*-3^{*t*Bu-Me₂}), 60.2 (CH₂ of *meso*-3^{*t*Bu-Me₂}) ppm.

¹**H NMR** of minor rotational-isomer of *d*/*l*-**3**^{tBu-Me₂} (C₆D₆, 25 °C, 300 MHz): δ = 3.21 (s, 2H, C*H*), 1.96 (d, 2H, ²*J*_{H-H} = 12.9 Hz, C*H*₂), 1.43 (s, 6H, C*H*₃), 1.39 (s, 18H, C(C*H*₃)₃), 1.32 (s, 6H, C*H*₃), 1.23 (s, 2H, C*H*₂), 1.21 (s, 6H, C*H*₃), 1.03 (s, 6H, C*H*₃) ppm. ¹³C{¹H} **NMR** of minor rotational-isomer of *d*/*l*-**3**^{tBu-Me₂} (C₆D₆, 25 °C, 75.4 MHz): δ = 72.2 (CH), 62.0 (*C*(CH₃)₂), 61.1 (CH₂), 54.8 (*C*(CH₃)₃), 41 (*C*(CH₃)₂), 33.3 (C(CH₃)₃), 32.4 (C(CH₃)₂), 31.8 (C(CH₃)₂), 31.2 (C(CH₃)₂), 28.1 (C(CH₃)₂) ppm.

Elemental analysis: calcd. (%) for C₂₄H₄₈N₂: C, 79.05; H, 13.27; N, 7.68; found: C, 79.11; H, 13.68; N, 7.42. **HRMS-ESI (m/z):** Calculated for C₂₄H₄₉N₂ [M+H]⁺: 365.3891, Found: 365.3898.

Fig. S20 ¹H NMR spectrum of 3^{tBu-Me2} in C₆D₆ at room temperature.

Fig. S21 $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of 3^{tBu-Me_2} in C_6D_6 at room temperature.

Fig. S22 ¹H-¹H 2D (COSY) NMR spectrum of 3^{tBu-Me_2} in C₆D₆ at room temperature.

Fig. S23 ¹H NMR spectrum of minor rotational isomer of d/l-**3**^{tBu-Me₂ in C₆D₆ at room temperature.}

Fig. S24 ¹³C{¹H} NMR spectrum of minor rotational isomer of d/l-**3**^{tBu-Me₂ in C₆D₆ at room temperature.}

Fig. S25 Overlay of ¹H NMR spectra of minor rotational isomer of d/l-**3**^{tBu-Me₂} (blue) and **3**^{tBu-Me₂} (red) in C₆D₆ at room temperature.

Fig. S26 Overlay of ¹³C{¹H}-DEPT-135 (green), ¹³C{¹H} (blue), ¹³C{¹H}-DEPT-90 (red) NMR spectra of $\mathbf{3}^{tBu-Me_2}$ in C₆D₆ at room temperature.

Fig. S27 ¹³C-¹H{¹³C} 2D (HMQC) NMR spectrum of *meso*-**3**^{*t*Bu-Me₂} (showing correlation between C-*H* and *C*) in C₆D₆ at room temperature (projections on the X- and Y-axis are from the independently obtained 1-D experiments).

Fig. S28 ¹³C-¹H{¹³C} 2D (HMQC) NMR spectrum of *meso*-**3**^{tBu-Me2} (showing correlation between C- H_2 and C) in C₆D₆ at room temperature (projections on the X- and Y-axis are from the independently obtained 1-D experiments).

1:2 Reaction of 3^{*i*Pr-Me2} and AgOTf

About 20 mL DCM was added to the mixture of **3**^{*i*Pr-Me₂} (100 mg, 0.297 mmol) and AgOTf (153 mg, 0.595 mmol) at room temperature and stirred for 6 hours. Following this, the ¹H NMR spectrum of the reaction mixture showed the formation of **1**^{*i*Pr-Me₂}. Subsequently, the reaction mixture was filtered and after evaporation of the filtrate **1**^{*i*Pr-Me₂} was obtained. ⁵¹ **Yield:** 179 mg (95 %).

Fig. S29 ¹H NMR spectrum of 1^{iPr-Me_2} in CD₃CN at room temperature.

1:2 Reaction of 3^{tBu-Me2} and AgOTf

About 10 mL of THF was added to the mixture of **3**^{tBu-Me₂} (50 mg, 0.14 mmol) and AgOTf (72 mg, 0.28 mmol) at room temperature and stirred for 6 hours. Following this, the ¹H NMR spectrum of the reaction mixture showed the formation of **1**^{tBu-Me₂}. Subsequently, the reaction mixture was filtered and the resulting residue was extracted with DCM (10 mL). Evaporation of the filtrate leads to isolated **1**^{tBu-Me₂.⁵² **Yield:** 81 mg (89 %).}

Fig. S30 ¹H NMR spectrum of 1^{tBu-Me2} in CDCl₃ at room temperature.

Compound **3**^{*i*Pr-Me₂} (4 mg, 0.01 mmol) was added to a vial containing a colourless solution of **5** (20 mg, 0.026 mmol) in about 4 mL of CH₃CN at room temperature. Immediately, an intense deep green colour appeared and the UV/Vis spectrum of the reaction solution confirms the formation of **10**.^{SS}

Fig. S31 UV/Vis spectrum of 10, obtained from the reaction between 5 and 3^{iPr-Me_2} in acetonitrile at room temperature.

Reaction of 5 and 3^{tBu-Me2}

Compound **3**^{tBu-Me2} (5 mg, 0.01 mmol) was added to a vial containing a colourless solution of **5** (20 mg, 0.026 mmol) in about 4 mL of CH₃CN at room temperature. Immediately, an intense deep green colour appeared and the UV/Vis spectrum of the reaction solution confirms the formation of **10**.⁵⁵

Fig. S32 UV/Vis spectrum of **10**, obtained from the reaction between **5** and **3**^{tBu-Me2} in acetonitrile at room temperature.

Reaction of 6 and 3^{iPr-Me2}

About 1 mL of CH₃CN was added to a vial containing a mixture of **6** (27 mg, 0.032 mmol) and **3**^{*i*Pr-Me₂} (12 mg, 0.036 mmol) at room temperature. The colour of the solution initially became intense deep green and changed to yellow after 15 minutes of sonication. The ¹H NMR spectrum of the crude reaction mixture indicates the formation of **11**.⁵⁶

Fig. S33 ¹H NMR spectrum of **11** obtained from the crude reaction mixture between **6** and 3^{iPr-Me_2} in C₆D₆ at room temperature.

Reaction of 6 and 3^{tBu-Me2}

About 1 mL of CH₃CN was added to a vial containing a mixture of **6** (27 mg, 0.032 mmol) and **3**^{tBu-Me₂} (13 mg, 0.036 mmol) at room temperature. The colour of the solution initially became intense deep green and changed to yellow after 15 minutes of sonication. The ¹H NMR spectrum of the crude reaction mixture indicates the formation of **11**.⁵⁶

Fig. S34 ¹H NMR spectrum of **11** obtained from the crude reaction mixture between **6** and 3^{tBu-Me_2} in C₆D₆ at room temperature.

Reaction of 7 and 3^{iPr-Me2}

About 1 mL CH₃CN was added into the NMR tube containing radical cation **7** (24 mg, 0.030 mmol) and **3**^{*i*Pr-Me₂} (5 mg, 0.02 mmol) at room temperature. The solution became intense deep blue coloured and then the reaction mixture was shaken for 5 minutes. The colour of solution changed from intense deep blue to yellow coloured. The solvent was evaporated and a ¹H NMR spectrum of the reaction mixture was measured which showed the formation of **12**.⁵⁷

Fig. S35 ¹H NMR spectrum of the crude reaction mixture of **7** and $\mathbf{3}^{i\mathbf{Pr}-\mathbf{Me_2}}$ in C₆D₆ at room temperature showing the formation of **12**.

Reaction of 7 and 3^{tBu-Me2}

About 1 mL CH₃CN was added to the NMR tube containing radical cation **7** (24 mg, 0.030 mmol) and **3^{tBu-Me2}** (6 mg, 0.02 mmol) at room temperature. The solution became intense deep blue coloured and then the reaction mixture was shaken for 5 minutes. The colour of solution changed from intense deep blue to yellow coloured. The solvent was evaporated and a ¹H NMR spectrum of the reaction mixture was measured which showed the formation of **12**.⁵⁷

Fig. S36 ¹H NMR spectrum of the crude reaction mixture of **7** and 3^{tBu-Me_2} in C₆D₆ at room temperature showing the formation of **12**.

Reduction of 8 using 3^{tBu-Me2} under Inert Atmosphere

About 2 mL of dry CH₃CN was added to the mixture of **8** (50 mg, 0.15 mmol) and **3**^{tBu-Me₂} (27 mg, 0.074 mmol) at room temperature. After stirring the reaction mixture at room temperature for 24 hours all volatiles were removed under vacuum and the ¹H NMR of the residue was measured using C₆D₆, indicating the formation of **13**.⁵⁹ Compound **13** was isolated from the residue by crystallisation using CH₃CN at –30 °C (colourless crystals of **13** were obtained after 24 hrs. Due to the high solubility of **1**^{tBu-Me₂ (BF₄)} it remains in the mother liquor). **Yield of crystals:** 25 mg (69 %).

Fig. S37 ¹H NMR spectrum from crystalline sample of 13 in C_6D_6 at room temperature.

Fig. S38 ¹H NMR spectrum of 13 from the crude reaction mixture of 8 and 3^{tBu-Me_2} in C₆D₆ at room temperature.

Reduction of 8 using 3^{tBu-Me2} under open atmosphere(!)

About 2 mL of dry CH₃CN was added to the mixture of **8** (60 mg, 0.18 mmol) and **3**^{tBu-Me₂} (31 mg, 0.085 mmol) at room temperature. After 5 minutes, using a glass pipette, air was bubbled into the reaction solution; immediately colourless crystals of **14** started to appear. After 6 hours colourless crystals of **14** were collected. Single crystal X-ray diffraction data indicate the formation of **14**. Unit Cell Parameters: a = 8.8490(18), b = 9.0684(18), c = 10.784(2), α = 112.95(3), β = 91.52(3), Υ = 115.49(3), and V = 699.4(4); this matched the previously reported crystal data^{S10} and therefore we are not reporting the structure here. **Yield:** 30 mg (68 %). ¹H NMR (**C**₆**D**₆, **25** °**C**, **300** MHz): δ = 7.36-7.38 (m, 12H), 7.02-7.03 (m, 18H) ppm.

Fig. S39 ¹H NMR spectrum of 14 in C₆D₆ at room temperature.

Fig. S40 1 H NMR spectrum of 14 in CD₂Cl₂ at room temperature.

Reduction of 9^{NO2} using 3^{*i*Pr-Me2}

About 2 mL of dry CH₃CN was added to the mixture of 9^{NO_2} (25 mg, 0.11 mmol) and 3^{IPr-Me_2} (20 mg, 0.059 mmol) at room temperature. The colour of the reaction mixture became red. The reaction mixture was sonicated for 5 minutes and subsequently stirred for 6 hrs. After that, all the volatiles were removed under vacuum and the ¹H NMR spectrum of the crude reaction mixture indicates the formation of 15^{NO_2} .⁵¹¹ ¹H NMR of reaction mixture (C₆D₆, 25 °C, 300 MHz): δ = 7.80 (d, 2H, ³J_{H-H} = 7.6 Hz, Ar-*H*), 6.90 (t, 1H, ³J_{H-H} = 7.2 Hz, Ar-*H*), 6.73 (t, 2H, ³J_{H-H} = 7.6 Hz, Ar-*H*) ppm.

Fig. S41 ¹H NMR spectrum from the crude reaction mixture of **9** and 3^{iPr-Me_2} in C₆D₆ at room temperature, indicating the formation **15**^{NO₂}.

Reduction of 9^{OMe} using 3^{iPr-Me2}

About 2 mL of dry CH₃CN was added to the mixture of 9^{OMe} (15 mg, 0.067 mmol) and 3^{iPr-Me_2} (10 mg, 0.030 mmol) at room temperature. The colour of the reaction mixture became red from colourless. The reaction mixture was sonicated for 2 minutes and subsequently stirred for 24 hrs at room temperature. After that all the volatiles were removed under vacuum and the ¹H NMR spectrum of the crude reaction mixture indicates the formation of **15**^{OM}.⁵¹² ¹H NMR of reaction mixture (C₆D₆, 25 °C, 300 MHz): δ = 7.10-7.12 (m, 2H, Ar-H), 6.79-6.90 (m, 3H, Ar-H), 3.30 (s, 3H, OCH₃) ppm.

Fig. S42 ¹H NMR spectrum from the crude reaction mixture of 9^{OMe} and 3^{iPr-Me_2} in C₆D₆ at room temperature, indicating the formation 15^{OMe} .

Reduction of 1^{Dip-Me2}

Toluene (40 mL) was added to a mixture of 1^{Dip-Me_2} (1.000 g, 2.296 mmol) and KC₈ (466 mg, 3.45 mmol) at -78 °C (or at room temperature) and stirred for 12 hours at room temperature. The mixture was filtered and the volatiles were evaporated under reduced pressure to obtain the product as colourless solid compound. The ¹H NMR spectrum of the crude residue in C₆D₆ shows the presence of two isomers of **3**^{Dip-Me₂} along with **4**^{Dip-Me₂} and some unidentified compounds. The compound was purified by fractional crystallisation. The solid compound was dissolved in hexane (4 mL) and then concentrated by evaporation and kept for crystallisation at room temperature for 2 days. Colourless crystals were obtained that were suitable for a single-crystal X-ray diffraction study. Then the obtained crystals were washed with a small amount (0.5 mL) of pentane. The ¹H NMR spectrum of the resulting crystalline compounds in C_6D_6 show the presence of mainly two isomers of 3^{Dip} . Me2 and some other unidentified compound in traces (< 5%). The ratios of isomers were different in different fractions of crystals. In the mother liquor there was 4^{Dip-Me_2} present (subsequently we prepared 4^{Dip-Me_2} as a pure compound in a different route from 1^{Dip-Me2} using LiAlH₄, please see below) and unidentified products as in the crude reaction mixture. Yield (Purity > 95%): 210 mg (32%). The pure compound 3^{Dip-Me_2} was also crystallised by evaporating its pentane-methanol solution. The compound was dissolved in pentane and then methanol was added to it. This solution was exposed to air for slow evaporation. After 1 hour, colourless crystals of **3**^{Dip-Me2} were obtained. ¹H NMR signals of the isomers were assigned by considering 2-D and other NMR measurements along with peak integrations of crystals obtained in different fractions of crystallisation.

¹**H NMR** of major isomer (C₆D₆, 25 °C, 300 MHz): δ = 7.04–7.11 (m, 4H, Ar-*H*), 6.96–6.98 (m, 2H, Ar-*H*), 4.06 (s, 2H, *CH*), 3.82 (sep, 2H, ³*J*_{H+H} = 6.5 Hz, *CH*(CH₃)₂), 3.40 (sep, 2H, ³*J*_{H+H} = 6.3 Hz, *CH*(CH₃)₂), 2.47 (d, 2H, ²*J*_{H+H} = 12.9 Hz, *CH*₂), 1.79 (s, 6H, *CH*₃), 1.75 (s, 6H, *CH*₃), 1.59 (d, 2H, ²*J*_{H+H} = 12.9 Hz, *CH*₂), 1.42 (d, 6H, ³*J*_{H+H} = 6.5 Hz, HC(*CH*₃)₂), 1.25 (s, 6H, *CH*₃), 1.13 (d, 6H, ³*J*_{H+H} = 6.7 Hz, HC(*CH*₃)₂), 0.98 (s, 6H, *CH*₃), 0.28 (d, 6H, ³*J*_{H+H} = 6.7 Hz, HC(*CH*₃)₂) ppm. ¹**H NMR** of minor isomer (C₆D₆, 25 °C, 300 MHz): δ = 7.60 (t, 2H, ³*J*_{H+H} = 4.7 Hz, Ar-*H*), 7.09–7.11 (m, 4H, Ar-*H*), 4.38 (s, 2H, *CH*), 4.37 (sep, 2H, ³*J*_{H+H} = 6.8 Hz, *CH*(CH₃)₂), 3.60 (sep, 2H, ³*J*_{H+H} = 6.7 Hz, *CH*(CH₃)₂), 2.14 (d, 2H, ²*J*_{H+H} = 13.0 Hz, *CH*₂), 1.66 (d, 6H, ³*J*_{H+H} = 6.9 Hz, HC(*CH*₃)₂), 1.60 (d, 2H, ²*J*_{H+H} = 13.0 Hz, *CH*₂), 1.45 (d, 6H, ³*J*_{H+H} = 6.7 Hz, *CH*(CH₃)₂), 1.33 (d, 6H, ³*J*_{H+H} = 6.8 Hz, HC(*CH*₃)₂), 1.16 (d, 6H, ³*J*_{H+H} = 8.2 Hz, HC(*CH*₃)₂), 1.102 (s, 6H, *CH*₃), 0.98 (s, 6H, *CH*₃), 0.92 (s, 6H, *CH*₃), 0.72 (s, 6H, *CH*₃) ppm. ¹³**C**{¹**H**} **NMR** of the major and the minor isomers (C₆D₆, 25 °C, 75.4 MHz): δ = 154.2 (Ar-*C*), 151.5 (Ar-*C*), 151.1 (Ar-*C*), 150.6 (Ar-*C*), 150.2 (Ar-*C*), 147.8 (Ar-*C*), 147.2 (Ar-*C*), 140.8 (Ar-*C*), 140.4 (Ar-*C*), 129.6 (Ar-*C*), 126.4 (Ar-*C*), 126.2 (Ar-*C*), 126.1 (Ar-*C*), 125.9 (Ar-*C*), 125.3 (Ar-*C*), 125.0 (Ar-*C*), 87.1 (*CH*), 80.4 (*CH*), 65.6 (*C*(*C*H₃)₂), 63.0 (*C*(*C*H₃)₂), 61.7 (*C*H₂), 56.0 (*C*H₂), 55.9 (*C*H₂), 47.2, 42.2, 39.6, 37.3, 37.0, 35.2, 34.9, 33.4, 32.0, 31.8, 31.4, 30.9, 30.6, 29.6, 29.5, 29.4, 29.0, 28.8, 28.1, 28.0, 27.8, 27.62, 27.56, 26.6, 26.4, 25.6, 25.3, 25.2, 24.9, 24.8, 22.7, 21.5 ppm.

Elemental analysis (samples prepared using the crystals of **3**^{Dip-Me₂}): calcd. (%) for C₄₀H₆₄N₂: C, 83.85; H, 11.26; N, 4.89; found: C, 83.59; H, 11.51; N, 4.64.

HRMS-ESI (m/z) (sample prepared using the crude reaction mixture): Calculated for $C_{40}H_{65}N_2 [M+H]^+$: 573.5143, Found: 573.5152 (indicate the formation of **3**^{Dip-Me}₂).

Fig. S43 ¹H NMR spectrum of 3^{Dip-Me_2} containing both isomers in significant amounts in C₆D₆ at room temperature.

Fig. S44 ¹H NMR spectrum of $\mathbf{3}^{\text{Dip-Me}_2}$ containing significant amount of the major isomer in C₆D₆ at room temperature.

Fig. S45 ¹H NMR spectrum of 3^{Dip-Me_2} containing significant amount of the minor isomer in C₆D₆ at room temperature.

Fig. S46 ${}^{13}C{}^{1}H$ NMR spectrum of 3^{Dip-Me_2} containing both major and minor isomers in C₆D₆ at room temperature.

Fig. S47 Overlap of the ¹³C{¹H} NMR spectrum of 3^{Dip-Me_2} containing both major and minor isomers (blue) along with its corresponding Dept-90 (red) and Dept-135 (green) in C₆D₆ at room temperature.

Fig. S48 VT-¹H NMR spectra of 3^{Dip-Me2} containing both major and minor isomers in toluene-D₈.

Fig. S49 Overlap of ¹H NMR spectra of 4^{Dip-Me_2} of the mother liquor (blue) with hydrogenated product from 1^{Dip-Me_2} (red) in C₆D₆ at room temperature.

Fig. S50 Overlap of ¹H NMR spectra of 4^{Dip-Me_2} of the mother liquor (blue) with hydrogenated product from 1^{Dip-Me_2} (red) in C₆D₆ at room temperature.

Fig. S51 Overlap of the ¹³C{¹H} NMR spectrum of 4^{Dip-Me_2} of the mother liquor (blue) along with its corresponding Dept-90 (red) and Dept-135 (green) in C₆D₆ at room temperature.

Fig. S52 HMQC 2D-NMR spectrum of 4^{Dip-Me_2} of the mother liquor showing CH₂ correlation in C₆D₆ at room temperature.

Direct Synthesis of 4^{Dip-Me2}

THF (10 mL) was added to a mixture of $1^{\text{Dip-Me}_2}$ (500 mg, 1.15 mmol) and powdered LiAlH₄ (65 mg, 1.7 mmol) at -78 °C and stirred for 10 minutes at room temperature. Then the volatiles were removed and 10 mL water was added to the residue at 0 °C followed by 5 mL of 2 M NaOH and then 20 mL more water. The resulting mixture was extracted with 40 mL of Et₂O (2 × 20 mL). The combined Et₂O phase was collected, pre-dried over MgSO₄ and dried under vacuum resulting in colourless solid compound $4^{\text{Dip-Me}_2}$ as indicated by the ¹H NMR spectrum.^{S13} **Yield:** 300 mg (91%). **Elemental analysis:** calcd. (%) for C₂₀H₃₃N: C, 83.56; H, 11.57; N, 4.87; found: C, 83.73; H, 11.90; N, 4.79. ¹H NMR (C₆D₆, 25 °C, 300 MHz): δ = 7.12-7.23 (m, 3H, Ar-*H*), 3.76 (sep, 2H, ³J_{H-H} = 6.8 Hz, C*H*(CH₃)₂), 3.32 (s, 2H, NCH₂), 1.76 (s, 2H, CH₂), 1.30 (d, 6H, ³J_{H-H} = 6.9 Hz, CH(CH₃)₂), 1.21 (s, 6H, C(CH₃)₂), 1.17 (d, 6H, ³J_{H-H} = 6.9 Hz, CH(CH₃)₂), 1.16 (s, 6H, C(CH₃)₂) ppm.

Fig. S53 ¹H NMR spectrum of 4^{Dip-Me2} synthesised by using LiAlH₄ in C₆D₆ at room temperature.

1:2 Reaction of 3^{Dip-Me2} with AgOTf

THF (10 mL) was added to a mixture of **3^{Dip-Me₂** (50 mg, 0.087 mmol) and AgOTf (45 mg, 0.18 mmol) at room temperature and stirred for 12 hours. ¹H NMR spectrum of the reaction mixture in CD₃CN showed the formation of **1^{Dip-Me₂}**. After that the reaction mixture was filtered and DCM (10 mL) was added to the residue and filtered again. The combined filtrates were evaporated. **Yield:** 64 mg (84%).}

Fig. S54 ¹H NMR spectrum from the crude reaction mixture of 3^{Dip-Me_2} and AgOTf in CD₃CN at room temperature.

Reduction of 1^{Dip-Et}2

Toluene (60 mL) was added to a mixture of $\mathbf{1}^{\mathsf{Dip-Et}_2}$ (2.000 g, 4.314 mmol) and KC₈ (900 mg, 6.66 mmol) at room temperature and stirred for 12 hours. It was filtered and volatiles were evaporated under reduced pressure to obtain the product as colourless liquid compound. The ¹H NMR spectrum of the crude residue in C₆D₆ showed the presence of $\mathbf{4}^{\mathsf{Dip-Et}_2}$ (subsequently we prepared $\mathbf{4}^{\mathsf{Dip-Et}_2}$ as a pure compound in a different route from $\mathbf{1}^{\mathsf{Dip-Et}_2}$ using LiAlH₄, please see below) along with some unidentified compounds. The HRMS spectrum also indicates the formation of $\mathbf{3}^{\mathsf{Dip-Et}_2}$. **HRMS-ESI (m/z):** Calculated for C₄₄H₇₃N₂ [M+H]⁺: 629.5769, Found: 629.5775 (this supports the formation of $\mathbf{3}^{\mathsf{Dip-Et}_2}$).

Fig. S55 Overlay of ¹H NMR spectra of the crude reaction mixture from the KC₈ reduction of $\mathbf{1}^{\text{Dip-Et}_2}$ (red) along with pure $\mathbf{4}^{\text{Dip-Et}_2}$ (green) in C₆D₆ at room temperature.

Direct Synthesis of 4^{Dip-Et2}

THF (10 mL) was added to a mixture of 1^{Dip-Et_2} (523 mg, 1.13 mmol) and powdered LiAlH₄ (65 mg, 1.7 mmol) at -78 °C and stirred for 10 minutes at room temperature. Then the volatiles were removed and 6 mL water was added to the residue followed by 4 mL of 2 M NaOH and then 30 mL more water. The resulting mixture was extracted with 40 mL of Et₂O (2 × 20 mL). The combined Et₂O phase was collected, pre-dried over MgSO₄ and dried under vacuum resulting in a colourless liquid 4^{Dip-Et_2} . Yield: 299 mg (84%). ¹H NMR (C₆D₆, 25 °C, 300 MHz): δ = 7.11-7.24 (m, 3H, Ar-*H*), 3.75 (sep, 2H, ³J_{H-H} = 6.8 Hz, C*H*(CH₃)₂), 3.34 (s, 2H, NC*H*₂), 1.73 (s, 2H, C*H*₂), 1.48-1.68 (m, 4H, C*H*₂CH₃), 1.30 (d, 6H, ³J_{H-H} = 6.8 Hz, CH(CH₃)₂), 1.17 (d, 6H, ³J_{H-H} = 7.0 Hz, CH(CH₃)₂), 1.15 (s, 6H, C(CH₃)₂), 0.83 (s, 6H, CH₂CH₃) ppm. ¹³C{¹H} NMR (C₆D₆, 25 °C, 75.4 MHz): δ = 152.4 (Ar-*C*), 139.1 (Ar-*C*), 127.2 (Ar-*C*H), 124.4 (Ar-*C*H), 64.9 (NCH₂), 62.6 (C(CH₃)₂), 53.5 (CH₂), 44.3 C(CH₃)₂, 30.8 (CH₂CH₃), 29.2 (C(CH₃)₂), 28.7 (CH(CH₃)₂), 26.8 (CH(CH₃)₂), 23.3 (CH(CH₃)₂), 9.4 (CH₂CH₃) ppm.

Fig. S56 ¹H NMR spectra of 4^{Dip-Et_2} synthesised by using LiAlH₄ in C₆D₆ at room temperature.

Fig. S57 ¹³C{¹H} NMR spectrum of 4^{Dip-Et_2} synthesised by using LiAlH₄ in C₆D₆ at room temperature.

Reduction of 1^{Dip-(CH₂)₅}

Toluene (40 mL) was added to a mixture of $1^{\text{Dip-(CH}_2)_5}$ (780 mg, 1.64 mmol) and KC₈ (530 mg, 3.92 mmol) at room temperature and stirred for 12 hours. The mixture was filtered and the volatiles were evaporated from the filtrate under reduced pressure to obtain the product as colourless liquid compound. The ¹H NMR spectrum of the crude residue in C₆D₆ shows the presence of $4^{\text{Dip-(CH}_2)_5}$ (subsequently we prepared $4^{\text{Dip-(CH}_2)_5}$ as a pure compound in a different route from $1^{\text{Dip-(CH}_2)_5}$ using LiAlH₄, please see below) along with some unidentified compounds. The HRMS spectrum indicates the formation of $3^{\text{Dip-(CH}_2)_5}$. HRMS-ESI (m/z): Calculated for C₄₆H₇₃N₂ [M+H]⁺: 653.5769, Found: 653.5779 (indicates the formation of $3^{\text{Dip-(CH}_2)_5}$).

Fig. S58 Overlay of ¹H NMR spectra of $4^{Dip-(CH_2)_5}$ in crude reaction mixture (red) with hydrogenated product from $1^{Dip-(CH_2)_5}$ (green) in C₆D₆ at room temperature.

Direct Synthesis of 4^{Dip-(CH₂)5}

THF (10 mL) was added to a mixture of $1^{\text{Dip-(CH_2)_5}}$ (654 mg, 1.38 mmol) and powdered LiAlH₄ (75 mg, 2.0 mmol) at -78 °C and stirred for 10 minutes at room temperature. Then the volatiles were removed and 6 mL water was added to the residue followed by 4 mL of 2 M NaOH and then 30 mL more water. The resulting mixture was extracted with 40 mL of Et₂O (2 × 20 mL). The combined Et₂O phase was collected, pre-dried over MgSO₄ and dried under vacuum resulting in colourless solid compound $4^{\text{Dip-(CH_2)_5}}$ as indicated by the ¹H NMR spectrum.^{S14} Yield: 396 mg (88%). Elemental analysis: calcd. (%) for C₂₃H₃₇N₁: C, 84.34; H, 11.39; N, 4.28; found: C, 85.28; H, 11.24; N, 4.37. ¹H NMR (C₆D₆, 25 °C, 300 MHz): δ = 7.12-7.24 (m, 3H, Ar-H), 3.74 (sep, 2H, ³*J*_{H-H} = 6.9 Hz, *CH*(CH₃)₂), 3.37 (s, 2H, NCH₂), 1.76 (s, 2H, *CH*₂), 1.36-1.62 (m, 10H, ^{Cy-B}CH₂), 1.29 (d, 6H, ³*J*_{H-H} = 6.8 Hz, CH(CH₃)₂), 1.18 (d, 6H, ³*J*_{H-H} = 7.0 Hz, CH(CH₃)₂), 1.15 (s, 6H, C(*CH*₃)₂) ppm. ¹³C{¹H} NMR (C₆D₆, 25 °C, 75.4 MHz): δ = 152.4 (Ar-*C*), 139.2 (Ar-*C*), 127.2 (Ar-*C*H), 124.3 (Ar-*C*H), 65.4 (NCH₂), 62.4 (*C*(CH₃)₂), 55.2 (*C*H₂), 41.6 (*C*(CH₃)₂), 39.6 (^{Cy-B}CH₂), 28.9 (C(CH₃)₂), 28.7 (CH(CH₃)₂), 26.8 (CH(*C*H₃)₂), 26.4 (^{Cy-B}CH₂), 24.4 (^{Cy-B}CH₂), 23.4 (CH(CH₃)₂) ppm.

Fig. S59 ¹H NMR spectra of $4^{Dip-(CH_2)_5}$ synthesised by using LiAlH₄ in C₆D₆ at room temperature.

Fig. S60 ¹³C{¹H} NMR spectra of $4^{Dip-(CH_2)_5}$ synthesised by using LiAlH₄ in C₆D₆ at room temperature.

Oxidation of 4^{Dip-Me2}

About 5 mL of acetonitrile was added to a mixture of 4^{Dip-Me_2} (100 mg, 0.348 mmol) and NOSbF₆ (102 mg, 0.384 mmol) at room temperature and stirred for 6 hours. The ¹H NMR spectrum of the reaction mixture in CD₃CN showed the formation of 1^{Dip-Me_2} (SbF₆).⁵⁸ The product was crystallised by diffusing its saturated solution in acetonitrile with Et₂O at room temperature. Yield: 148 mg (81%). ¹H NMR of reaction mixture (CD₃CN, 25 °C, 300 MHz): δ = 8.70 (s, 1H, NCH), 7.61 (t, 1H, ³*J*_{H-H} = 7.8 Hz, Ar-H), 7.47 (d, 2H, ³*J*_{H-H} = 7.6 Hz, Ar-H), 2.72 (sep, 2H, ³*J*_{H-H} = 6.6 Hz, CH(CH₃)₂), 2.46 (s, 2H, CH₂), 1.59 (s, 6H, C(CH₃)₂), 1.53 (s, 6H, C(CH₃)₂), 1.35 (d, 6H, ³*J*_{H-H} = 6.4 Hz, CH(CH₃)₂), 1.10 (d, 6H, ³*J*_{H-H} = 6.7 Hz, CH(CH₃)₂) ppm. ¹⁹F{¹H} NMR (CD₃CN, 25 °C, 282.4 MHz,): δ = -123.7 (sextet, ¹*J*(1²¹Sb, ¹⁹F) = 1945.8 Hz), -123.8 (octet, ¹*J*(1²²Sb, ¹⁹F) = 1055.4 Hz) ppm.

Fig. S61 ¹H NMR spectrum from the crude reaction mixture of 4^{Dip-Me_2} and NOSbF₆ in CD₃CN at room temperature.

Fig. S62 ¹⁹F{¹H} NMR spectrum from the crude reaction mixture of 4^{Dip-Me_2} and NOSbF₆ in CD₃CN at room temperature.

Oxidation of 4^{Dip-Et}2

About 5 mL of acetonitrile was added to a mixture of $4^{\text{Dip-Et}_2}$ (100 mg, 0.317 mmol) and NOSbF₆ (92 mg, 0.35 mmol) at room temperature and stirred for 6 hours. Gas evolution was observed during the reaction. The ¹H NMR spectrum of the reaction mixture in CD₃CN showed the formation of $1^{\text{Dip-Et}_2}$ (SbF₆).^{S8} The product was crystallised by diffusing its saturated solution in acetonitrile with Et₂O at room temperature. Yield: 140 mg (80%). ¹H NMR of reaction mixture (CD₃CN, 25 °C, 300 MHz): δ = 8.82 (s, 1H, NCH), 7.62 (t, 1H, ³J_{H-H} = 7.7 Hz, Ar-*H*), 7.48 (d, 2H, ³J_{H-H} = 7.7 Hz, Ar-*H*), 2.71 (sep, 2H, ³J_{H-H} = 6.6 Hz, CH(CH₃)₂), 2.40 (s, 2H, CH₂), 1.96-2.01 (m, 4H, CH₂CH₃), 1.54 (s, 6H, C(CH₃)₂), 1.36 (d, 6H, ³J_{H-H} = 6.6 Hz, CH(CH₃)₂), 1.05-1.11 (m, CH(CH₃)₂, CH₂CH₃) ppm. ¹⁹F{¹H} NMR (CD₃CN, 25 °C, 282.4 MHz,): δ = -123.8 (sextet, ¹J_(121Sb, 19F) = 1935.6 Hz), -123.8 (octet, ¹J_(123Sb, 19F) = 1049.7 Hz) ppm.

Fig. S63 ¹H NMR spectrum from the crude reaction mixture of 4^{Dip-Et_2} and NOSbF₆ in CD₃CN at room temperature.

Fig. S64 ¹⁹F{¹H} NMR spectrum from the crude reaction mixture of 4^{Dip-Et_2} and NOSbF₆ in CD₃CN at room temperature.

Oxidation of 4^{Dip-(CH₂)₅}

About 5 mL of acetonitrile was added to a mixture of $4^{\text{Dip-(CH_2)_5}}$ (76 mg, 0.23 mmol) and NOSbF₆ (70 mg, 0.26 mmol) at room temperature and stirred for 6 hours. The ¹H NMR spectrum of the reaction mixture in CD₃CN showed the formation of $1^{\text{Dip-(CH_2)_5}}$ (SbF₆).^{S8} The product was crystallised by diffusing its saturated solution in acetonitrile with Et₂O at room temperature. Yield: 100 mg (77%). ¹H NMR of reaction mixture (CD₃CN, 25 °C, 300 MHz): δ = 8.78 (s, 1H, NC*H*), 7.61 (t, 1H, ³*J*_{H-H} = 7.9 Hz, Ar-*H*), 7.47 (d, 2H, ³*J*_{H-H} = 7.6 Hz, Ar-*H*), 2.72 (sep, 2H, ³*J*_{H-H} = 6.7 Hz, CH(CH₃)₂), 2.47 (s, 2H, CH₂), 1.24-1.82 (m, 10H, ^{Cy-B}CH₂), 1.53 (s, 6H, C(CH₃)₂), 1.34 (d, 6H, ³*J*_{H-H} = 6.6 Hz, CH(CH₃)₂), 1.09 (d, 6H, ³*J*_{H-H} = 6.7 Hz, CH(CH₃)₂) ppm. ¹⁹F{¹H} NMR (CD₃CN, 25 °C, 282.4 MHz,): δ = -123.9 (sextet, ¹*J*(121_{5b}, 19_F) = 1929.4 Hz), -123.9 (octet, ¹*J*(121_{5b}, 19_F) = 1079.1 Hz) ppm.

Fig. S65 ¹H NMR spectrum from the crude reaction mixture of $4^{Dip-{CH_2}_5}$ and NOSbF₆ in CD₃CN at room temperature.

Fig. S66 ¹⁹F{¹H} NMR spectrum from the crude reaction mixture of $4^{Dip-(CH_2)_5}$ and NOSbF₆ in CD₃CN at room temperature.

Crystallographic Details

Single-crystal X-ray diffraction data of **3**^{IBU-Me2} and **3**^{DIp-Me2} were collected at 298 K using a Rigaku diffractometer with graphite-monochromated molybdenum $K\alpha$ radiation, $\lambda = 0.71073$ Å. Data integration and reduction were processed with CrysAlisPro software.^{S15} An empirical absorption correction was applied to the collected reflections with SCALE3 ABSPACK integrated with CrysAlisPro. The structure was solved by direct methods using the SHELXT^{S16} programme and refined by full matrix least-squares method based on *F*2 using the SHELXL^{S17} programme through the Olex2^{S18} interface. All non-hydrogen-atoms were refined with anisotropic displacement parameters. The hydrogen atoms were refined isotropically on calculated positions using a riding model with their *U*iso values constrained to 1.5 *U*eq of their pivot atoms for *sp*³ carbon atoms and 1.2 times for aromatic and methylene and methine carbon atoms. In the case of **3**^{IBU-Me2}, the structure was refined as a non-merohedral twin with a hklf5 file and a BASF factor of 0.33947. The molecule is refined in S for the asymmetric unit. The symmetrygenerated molecule (2-fold rotation axis) is the SS diastereomer and the unit cell is filled with a mix of two RR and two SS isomers. In the case of **3**^{Dip-Me2}, the molecule is refined in R for the asymmetric unit. The symmetrygenerated molecule (2-fold rotation axis) is in RR diastereomer and the unit cell is filled with a mix of two RR and two SS isomers. Crystal data and structure refinement of all these compounds are summarised in Tables S2-S3.

Identification code	aj1609_tw
Empirical formula	C ₂₄ H ₄₈ N ₂
Formula weight	364.64
Temperature/K	298(2)
Crystal system	monoclinic
Space group	C2/c
a/Å	18.4911(16)
b/Å	8.0630(7)
c/Å	15.8001(11)
α/°	90
β/°	96.727(7)
γ/°	90
Volume/Å ³	2339.5(3)
Z	4
ρ _{calc} g/cm ³	1.035
µ/mm ⁻¹	0.059
F(000)	824.0
Crystal size/mm ³	0.240 × 0.220 × 0.190
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.986 to 52.742
Index ranges	$-22 \le h \le 22$, $-10 \le k \le 10$, $-19 \le l \le 19$
Reflections collected	2376
Independent reflections	2376 [R _{int} = undetermined/hklf5, R _{sigma} = 0.0571]
Data/restraints/parameters	2376/0/126
Data/restraints/parameters Goodness-of-fit on F ²	2376/0/126 1.079
Data/restraints/parameters Goodness-of-fit on F ² Final R indexes [I>=2σ (I)]	2376/0/126 1.079 R ₁ = 0.0755, wR ₂ = 0.1825
Data/restraints/parameters Goodness-of-fit on F ² Final R indexes [I>=2σ (I)] Final R indexes [all data]	2376/0/126 1.079 R ₁ = 0.0755, wR ₂ = 0.1825 R ₁ = 0.1189, wR ₂ = 0.1996

Table S2. Crystal data and structure refinement for $\mathbf{3}^{tBu-Me_2}$ (CCDC 2056322)

Identification code	aj1598-1
Empirical formula	C ₄₀ H ₆₄ N ₂
Formula weight	572.93
Temperature/K	298(2)
Crystal system	monoclinic
Space group	C2/c
a/Å	19.980(2)
b/Å	9.5392(8)
c/Å	20.618(3)
α/°	90
β/°	115.474(15)
γ/°	90
Volume/ų	3547.5(8)
Z	4
$ ho_{calc}g/cm^3$	1.073
µ/mm⁻¹	0.061
F(000)	1272.0
Crystal size/mm ³	$0.210 \times 0.190 \times 0.150$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.83 to 50.054
Index ranges	-23 ≤ h ≤ 23, -11 ≤ k ≤ 11, -22 ≤ l ≤ 24
Reflections collected	25298
Independent reflections	$3124 [R_{int} = 0.1445, R_{sigma} = 0.0736]$
Data/restraints/parameters	3124/0/199
Goodness-of-fit on F ²	1.036
Final R indexes [I>= 2σ (I)]	R ₁ = 0.0598, wR ₂ = 0.1539
Final R indexes [all data]	R ₁ = 0.0855, wR ₂ = 0.1703
Largest diff. peak/hole / e Å ⁻³	0.23/-0.21

Table S3. Crystal data and structure refinement for 3^{Dip-Me_2} (CCDC 2056323).

Cyclic Voltammetry

All electrochemical measurements were carried out using an AUTOLAB PGSTA12 potentiostat/galvanostat controlled by the software NOVA. A glassy carbon electrode with a surface of around 1.6 mm² was used as working electrode. A platinum wire reference electrode and a platinum wire auxiliary electrode were used. All measurements were undertaken inside a glove box (argon atmosphere). For the measurements approximately $10^{-3} - 10^{-5}$ mol of the investigated compound was dissolved in 10 mL of electrolyte solution (0.1 mol l⁻¹ Bu₄NPF₆ in acetonitrile) in a double walled electrochemical cell. Cyclic voltammetry was performed using -0.00244 V/step up to 1000 mV/s, adjusted at faster scan rates. Differential pulse voltammetry was performed using modulation steps of +/- 0.005 V, modulation amplitude of 0.01 V, and a modulation time of 1 s as well as an interval time of 2 s. External referencing was performed by adding either ferrocene or decamethylferrocene while the potentials were in all cases calculated for the Fc/Fc⁺ pair.

Table S4. Summary of the electrochemical data of 1^{iPr-Me2}, 3^{iPr-Me2}, 1^{tBu-Me2}, 3^{tBu-Me2}, 1^{Dip-Me2}, 1^{Dip-Et2}, 1^{Dip-(CH2)5},3^{Dip-Me2}, 4^{Dip-Me2}, 4^{Dip-Me2}, 4^{Dip-Et2}, and 4^{Dip-(CH2)5}, relative to the potential of Fc/Fc⁺.

	Epk / Epa	Epk / Epa	Epk / Epa	Epk / Epa	Epk / Epa	Epk / Epa	Epk / Epa	Epk / Epa
Compounds	(100 mV/s)	(200 mV/s)	(300 mV/s)	(500 mV/s)	(1000 mV/s)	(2000 mV/s)	(3000 mV/s)	(5000 mV/s)
	[V]	[V]	[V]	[V]	[V]	[V]	[V]	[V]
1 ^{iPr-Me} 2	-1.96 /	-1.97	-1.98	-1.99	-2.00	-2.03	-2.05	-2.06
	-0.25	-0.22	-0.20	-0.19	-0.17	-0.14	-0.12	-0.10
3 ^{iPr-Me} 2	-1.95 /	-1.97	-1.97	-1.96	-1.96	-1.96	-1.97	-1.96
	-0.25	-0.24	-0.22	-0.19	-0.16	-0.13	-0.11	-0.08
1 ^{tBu-Me} 2	-1.97 /	-1.99	-2.00	-2.02	-2.04	-2.06	-2.08	-2.11
	-0.27	-0.25	-0.23	-0.22	-0.19	-0.17	-0.15	-0.13
⊃tBu-Mes	-1.91 /	-2.00	-2.00	-2.01	-2.02	-2.03	-2.03	-2.04
5 2	-0.19	-0.24	-0.23	-0.21	-0.19	-0.17	-0.16	-0.14
1 ^{Dip-Me} 2	-1.79 /	-1.84 /	-1.86 /	-1.86 /	-1.87 /	-1.87 /	-1.88 /	-1.89 /
	0.03	0.00	0.00	-1.77, 0.03	-1.79, 0.10	-1.79, 0.10	-1.78, 0.14	-1.79, 0.15
1 ^{Dip-Et} 2	-1.93 /	-1.95 /		-1.96 /	-1.98 /	-2.00 /		-2.03 /
	0.44	-	-	-1.88	-1.87	-1.87	-	1.84
1 ^{Dip-(CH} 2)5	-1.92 /	-1.92 /		-1.92 /	-1.92 /	-1.93 /		-1.93 /
	-	-		-1.84	-1.84	-1.83	_	-1.83
3 ^{Dip-Me} 2	-1.74 /	-1.82 /	-1.82 /	-1.83 /	-1.84 /	-1.86 /	-1.87 /	-1.87 /
	0.03	-0.00	-0.00	0.00	0.01	0.01	0.04	0.05
4 ^{Dip-Me} 2	- /							
	0.80							
4 ^{Dip-Et} 2	- /							
	0.74							
4Dip-(CH ₂)5	- /							
	0.76							

Fig. S67 Cyclic voltammograms of 1^{iPr-Me2} in CH₃CN/0.1 M Bu₄NPF₆ at different scan rates.

Fig. S68 Differential pulse voltammogram (DPV) of 1^{iPr-Me2} in CH₃CN/0.1 M Bu₄NPF₆ at room temperature.

Fig. S69 Cyclic voltammograms of 1^{tBu-Me2} in CH₃CN/0.1 M Bu₄NPF₆ at different scan rates.

Fig. S70 Differential pulse voltammogram (DPV) of 1^{tBu-Me2} in CH₃CN/0.1 M Bu₄NPF₆ at room temperature.

Fig. S71 Cyclic voltammograms of **3**^{*i*Pr-Me₂} in CH₃CN/0.1 M Bu₄NPF₆ at different scan rates. NB: the second scans are shown since the reduction signal only appears after the first full cycle (see below).

Fig. S72 Differential pulse voltammogram (DPV) of 3^{iPr-Me2} in CH₃CN/0.1 M Bu₄NPF₆ at room temperature.

Fig. S73 Cyclic voltammograms of 3^{iPr-Me_2} in CH₃CN/0.1 M Bu₄NPF₆ showing first three scans at 100 mVs⁻¹ scan rate.

Fig. S74 Cyclic voltammograms of **3**^{tBu-Me2} in CH₃CN/0.1 M Bu₄NPF₆ at different scan rates. NB: the second scans are shown since the reduction signal only appears after the first full cycle (see below).

Fig. S75 Differential pulse voltammogram (DPV) of 3^{tBu-Me2} in CH₃CN/0.1 M Bu₄NPF₆ at room temperature.

Fig. S76 Cyclic voltammograms of **3**^{tBu-Me2} in CH₃CN/0.1 M Bu₄NPF₆ showing the first three cycles at 100 mVs⁻¹ scan rate.

Fig. S77 Cyclic voltammograms of 1^{Dip-Me2} in CH₃CN (0.1 M [ⁿBu₄N][PF₆]) at different scan rates.

Fig. S78 Differential pulse voltammogram (DPV) of 1^{Dip-Me2} in CH₃CN (0.1 M [ⁿBu₄N][PF₆] at 10 mVs⁻¹.

Fig. S79 Cyclic voltammograms of 3^{Dip-Me2} in CH₃CN (0.1 M [ⁿBu₄N][PF₆]) at different scan rates.

Fig. S80 Differential pulse voltammogram (DPV) of 3^{Dip-Me2} in CH₃CN (0.1 M [ⁿBu₄N][PF₆]) at 10 mVs⁻¹.

Fig. S81 Cyclic voltammogram of 4^{Dip-Me2} in THF (0.1 M [ⁿBu₄N][PF₆]) at 100 mVs⁻¹.

Fig. S82 Differential pulse voltammogram (DPV) of 4^{Dip-Me2} in THF (0.1 M [ⁿBu₄N][PF₆]) at 10 mVs⁻¹.

Fig. S83 Cyclic voltammogram of $\mathbf{1}^{Dip-Et_2}$ in CH₃CN (0.1 M [^{*n*}Bu₄N][PF₆]) at 100 mVs⁻¹.

Fig. S84 Cyclic voltammograms of 1^{Dip-Et}₂ in CH₃CN (0.1 M [^{*n*}Bu₄N][PF₆]) at different scan rates.

Fig. S85 Differential pulse voltammogram (DPV) of 1^{Dip-Et2} in CH₃CN (0.1 M [ⁿBu₄N][PF₆]) at 10 mVs⁻¹.

Fig. S86 Cyclic voltammogram of 4^{Dip-Et2} in THF (0.1 M [ⁿBu₄N][PF₆]) at 100 mVs⁻¹.

Fig. S87 Differential pulse voltammogram (DPV) of 4^{Dip-Et}₂ in THF (0.1 M [ⁿBu₄N][PF₆]) at 10 mVs⁻¹.

Fig. S88 Cyclic voltammogram of $1^{Dip-(CH_2)_5}$ in CH₃CN (0.1 M [^{*n*}Bu₄N][PF₆]) at 100 mVs⁻¹.

Fig. S89 Cyclic voltammograms of **1**^{Dip-(CH₂)₅ in CH₃CN (0.1 M [^{*n*}Bu₄N][PF₆]) at different scan rates.}

Fig. S90 Differential pulse voltammogram (DPV) of 1^{Dip-(CH₂)s} in CH₃CN (0.1 M [ⁿBu₄N][PF₆]) at 10 mVs⁻¹.

Fig. S91 Cyclic voltammogram of $4^{\text{Dip-(CH}_2)_5}$ in THF (0.1 M ["Bu₄N][PF₆]) at 100 mVs⁻¹.

Fig. S92 Differential pulse voltammogram (DPV) of $4^{\text{Dip-(CH}_2)_5}$ in THF (0.1 M [ⁿBu₄N][PF₆]) at 10 mVs⁻¹.

Fig. S93 Cyclic voltammograms of 4^{Dip-Me_2} (black), 4^{Dip-Et_2} (red), and $4^{Dip-(CH_2)_5}$ (blue) in THF (0.1 M ["Bu₄N][PF₆]) at 100 mVs⁻¹.

HRMS Spectra of 3^{*i*Pr-Me₂}, 3^{*Dip-Et*₂}, and 3^{*Dip-(CH*₂)₅}

Fig. S94 HRMS spectrum of 3^{iPr-Me2}.

Fig. S95 HRMS spectrum of the crude reaction mixture of 1^{Dip-Et_2} and KC₈ showing the formation of 3^{Dip-Et_2} .

Fig. S96 HRMS spectrum of the crude reaction mixture of $\mathbf{1}^{Dip-Cy}$ and KC₈ showing the formation of $\mathbf{3}^{Dip-(CH_2)_5}$.

Quantum Chemical Calculations

The quantum chemical calculations in this paper were performed with the Gaussian 16 (RevB.01) programme.^{S19} Initially, possible geometries of anti- and gauche-rotamers of (S/S), (R/R), (S/R), and (R/S) isomers of **3**^{iPr-Me2} and 3^{tBu-Me2} were suggested from modification of the X-ray results of 3^{tBu-Me2} (anti-rotamer of (R/R) isomer). The scanning of H-C-C-H dihedral angles by semi-empirical methods (AM1 and PM3) was applied to define geometries. Eventually, the possible initial geometries from semi-empirical methods were re-optimised at the Becke-3-Lee-Yang-Parr (B3LYP) functional with 6-311G(d,p) basis set.⁵²⁰ For all the calculations, Grimme's empirical dispersion correction with BJ damping was applied.^{521,522} Starting from possible initial geometries, the scanning of the H-C-C-H dihedral angles of anti- and gauche-rotamers of (S/S), (R/R), (S/R), and (R/S) isomers of 3^{iPr-Me2} and 3^{tBu-Me2} was investigated by the modredundant method (10 degree; 36 step) at the B3LYP-(D3)BJ/6-311G(d,p) level of theory. For instance, for 3^{iPr-Me_2} the scanning of the H-C-C-H dihedral angle of the (R/R) isomer was started from its anti-rotamer, whereas the gauche-rotamer was considered as initial geometry for the (S/S) configuration. The relative energies in kcal mol⁻¹ were determined from the optimised geometries of the corresponding points in scanning diagrams of **3**^{*i*Pr-Me₂} and **3**^{*t*Bu-Me₂}. The GIAO approach was used to calculate the NMR chemical shifts at the B3LYP-(D3)BJ/6-311G(d,p)/CPCM=Benzene level of theory.^{523,524} The chemical shifts were referenced to the values calculated for TMS (tetramethylsilane) at the same level of theory. The GaussView 5.0 programme was applied for all visualisations.^{S25}

Diastereomers	R/	R	<i>S</i> /2	S
Conformations	А	G	G	А
Optimised Geometry				
$\Delta G_{\rm rel} ({\rm kcal}{ m mol}^{-1})$	+3.0	0	0	+3.0
∠N–C–C–N	-178.6	-24.6	24.6	178.6
∠Н–С–С–Н	53.3	-145.7	145.7	-53.3
δ_{cal} (ppm) of NC- <i>H</i>	3.76	3.08	3.08	3.76
$\delta_{ m obs}$ (ppm) of NC-H	3.36	3.01	3.01	3.36
Diastereomers	R/	S	S/I	R
Conformations	G1	G2	G1	G2
Optimised Geometry				
$\Delta G_{\rm rel} ({ m kcal}{ m mol}^{-1})$	+0.2	+0.2	+0.2	+0.2
∠N–C–C–N	-82.1	82.1	-82.1	82.1
∠Н–С–С–Н	-79.0	79.0	-79.0	79.0
$\delta_{\rm cal}$ (ppm) of NC- <i>H</i>	3.42/2.91	2.91/3.42	2.91/3.42	3.42/2.91
$\delta_{ m obs}$ (ppm) of NC-H	3.37/3.09	3.09/3.37	3.09/3.37	3.37/3.09

Table S5. Calculated relative energies, \angle H–C–C–H, and δ of NC-*H* of the optimised isomers of **3**^{*i*Pr-Me₂}

Fig. S97 Spin density plots of the 2^{iPr-Me_2} and 2^{tBu-Me_2} . Pyramidalisation angles (PA) of radical carbon centre for 2^{iPr-Me_2} and 2^{tBu-Me_2} . Hydrogen atoms except for C-*H* omitted for clarity. Isovalue = 0.05.

R = iPr -35.2 (RR Lowest Energy)R = tBu -15.8 (RR Crystal Structure)

Scheme S1. The calculated ΔG relative energies of 2^{iPr-Me_2} and 2^{tBu-Me_2} (left side) vs corresponding dimers 3^{iPr-Me_2} and 3^{tBu-Me_2} (right side) at the B3LYP-D3(BJ)/6-311G(d,p) level of theory.

Table S6. Relative energies, dihedral angles, and ¹H-NMR data (*H*-C) of the optimised (*S*,*S*)/(*R*,*R*) and (*S*,*R*)/(*R*,*S*) isomers of $\mathbf{3}^{i\mathbf{P}\mathbf{r}-\mathbf{Me}_2}$ from computations at the B3LYP-D3(BJ)/6-311G(d,p) level of theory. (For NMR CPCM=benzene). All obtained data are from optimised geometries of the corresponding points (A = Anti; G = Gauche).

	(R,	(R)	()	5/S)	(R,	/s)	(S,	/R)
	Α	G	G	Α	G1	G2	G1	G2
ΔG _{rel}	+3.0	0	0	+3.0	+0.2	+0.2	+0.2	+0.2
Dihedral	-178 6	-24 6	24.6	178 6	-82 1	82 1	-82 1	82.1
(NCCN)	170.0	24.0	24.0	170.0	02.1	02.1	02.1	02.1
Dihedral	533	-145 7	145 7	-53 3	-79.0	79.0	-79.0	79.0
(HCCH)	55.5	143.7	145.7	55.5	75.0	, 5.0	75.0	, 5.0
NMR	3.76	3.08	3.08	3.76	 3.42/2.91	2.91/3.42	2.91/3.42	3.42/2.91

Table S7. Relative energies, dihedral angles, and ¹H-NMRs (*H*-C) of the optimised (*S/S*), (*R/R*), and (*S/R*)/(*R/S*) isomers of **3**^{tBu-Me₂} from computations at the B3LYP-D3(BJ)/6-311G(d,p) level of theory. (For NMR CPCM=benzene). All the obtained data are from optimised geometries of the corresponding points (A = Anti; G = Gauche).

	(R	/R)	(5	5/S)	(R,	/S)	(S,	/R)
	Α	G	Α	G	G1	G2	G1	G2
∆G _{rel}	+1.0	+2.2	+1.0	+2.2	0	+0.4	0	+0.4
Dihedral	175 9	-26.3	175 9	26.3	-96.9	96.8	-97 0	96.8
(NCCN)	175.5	20.5	175.5	20.5	50.5	50.0	57.0	50.0
Dihedral	53.9	-148.8	-53.9	+148.8	-90.6	91.0	-91 0	90.6
(HCCH)	55.5	140.0	55.5	140.0	50.0	51.0	51.0	50.0
NMR	3.71	3.29	3.71	3.29	3.56/3.39	3.56/3.39	3.56/3.39	3.56/3.39

 Table S8. Calculated C-C single bond lengths and HCCH dihedral angles (in parentheses) for neutral and radical cation states of 3^{iPr-Me2}.

	(R/R)	(R/R)	(S/S)	(S/S)	(R/S)/(S/R)	(R/S)/(S/R)
	anti	gauche	anti	gauche	gauche1	gauche2
3 ^{iPr-Me} 2	1.561	1.570	1.561	1.570	1.563	1.563
(Neutral)	(53.3)	(-145.7)	(-53.3)	(145.7)	(-79.0)	(79.1)
3 ^{iPr-Me} 2	1.699	1.670	1.702	1.670	1.669	1.669
(Radical-Cation)	(51.8)	(-149.2)	(-51.8)	(149.2)	(-78.4)	(78.4)

3 ^{/Pr-Me} 2	НОМО	3 ^{iPr-Me} 2	НОМО
	(IsoValue=0.05)		(IsoValue=0.05)
<i>S,S</i> (Anti)		S,S (Gauche)	•
<i>R,R</i> (Anti)		<i>R,R</i> (Gauche)	•
<i>R,S/S,R</i> (Gauche1)		<i>R,S/S,R</i> (Gauche2)	

Fig. S98 Highest occupied molecular orbital (HOMO) plots of the **3**^{*i*Pr-Me₂}. All hydrogen atoms omitted for clarity. Isovalue = 0.05.

3 ^{iPr-Me2} (Radical- Cation)	SOMO-α (IsoValue=0.05)	SOMO-β (IsoValue=0.05)	Spin Density Plot (IsoValue=0.002)
S,S (anti)			
S,S (gauche)			•
R,R (anti)			
R,R (gauche)	-		•
R,S/S,R (gauche-1)			
R,S/S,R (gauche-2)			

Fig. S99 Highest occupied molecular orbital (HOMO) and spin density plots of the radical-cation of **3**^{*i*Pr-Me₂}. All hydrogen atoms omitted for clarity. Isovalue = 0.05.

Table S9. Hybridisation of the Central C-C bond of 3^{*i*Pr-Me₂}

Diastereomers	R/	R	S/.	S
Conformations	А	G	G	А
	C(<i>sp</i> ^{2.52})-C(<i>sp</i> ^{2.52})	C(<i>sp</i> ^{2.59})-C(<i>sp</i> ^{2.59})	C(<i>sp</i> ^{2.59})-C(<i>sp</i> ^{2.59})	C(<i>sp</i> ^{2.52})-C(<i>sp</i> ^{2.52})
Diastereomers	R/	'S	S//	R
Conformations	G1	G2	G1	G2
	C(<i>sp</i> ^{2.51})-C(<i>sp</i> ^{2.53})			

Table S10. Hybridisation of the Central C-C bond of $\mathbf{3^{tBu-Me_2}}$

Diastereomers	R/	R	S/	S
Conformations	Α	G	G	А
	C(<i>sp</i> ^{2.59})-C(<i>sp</i> ^{2.59})	C(<i>sp</i> ^{2.65})-C(<i>sp</i> ^{2.65})	C(<i>sp</i> ^{2.65})-C(<i>sp</i> ^{2.65})	C(<i>sp</i> ^{2.59})-C(<i>sp</i> ^{2.59})
Diastereomers	R/	'S	S/	R
Diastereomers Conformations	R/ G1	G2	s/ G1	R G2

Table S11. Cartesian coordinates and energy values of $2^{\textit{iPr-Me}_2}$.

N	0.49462200	-0.25731400	-0.46305900
С	-0.63590200	-1.07201100	-0.42311200
С	-1.88782000	-0.29200300	-0.13927900
С	0.20622500	1.03728000	0.21158200
С	-1.32684600	1.14579400	0.00165800
Н	-1.79747900	1.70518800	0.81316400
Н	-1.51223000	1.69485200	-0.92473100
С	0.88633300	2.23184500	-0.47175100
Н	0.74891700	2.17695600	-1.55331700
Н	1.95256900	2.29159500	-0.25703400
Н	0.42697500	3.15751600	-0.11326400
С	-2.89900500	-0.38148000	-1.29793100
Н	-3.77404900	0.24956300	-1.10816300
Н	-3.25099300	-1.40959500	-1.42535600
Н	-2.43988200	-0.06119000	-2.23647700
С	0.56708600	1.02606500	1.70809800
Н	0.12982000	0.16413800	2.21301900
Н	0.19386300	1.93450400	2.18900600
Н	1.64871300	0.99604200	1.85423000
С	-2.57886900	-0.77066000	1.15586300
Н	-2.87843200	-1.81825800	1.06353100
Н	-3.47661900	-0.17689800	1.36206400
Н	-1.91040100	-0.69159600	2.01484700
С	1.78670700	-0.96314600	-0.47683400
С	2.09062400	-1.74216200	0.81606500
С	2.97201300	-0.09129300	-0.88690400
Н	1.65762300	-1.71026900	-1.26931100
Н	1.20569700	-2.29572300	1.13589900
Н	2.90228000	-2.45436300	0.64173500
Н	2.39660800	-1.07948900	1.62748300
Н	2.75761800	0.47131900	-1.79664000
н	3.25488900	0.61037700	-0.09966400
н	3.83679700	-0.73214400	-1.07557800
Н	-0.61792300	-1.99069900	-0.99875200

Zero-point correction=	0.310861 (Hartree/Particle)
Thermal correction to Energy=	0.325256
Thermal correction to Enthalpy=	0.326200
Thermal correction to Gibbs Free En	ergy= 0.271084
Sum of electronic and zero-point Ene	ergies= -487.005624
Sum of electronic and thermal Energy	gies= -486.991228
Sum of electronic and thermal Entha	alpies= -486.990284
Sum of electronic and thermal Free I	Energies= -487.045400

Table S12. Cartesian coordinates and energy values of $2^{\scriptscriptstyle tBu-Me_2}\!.$

N	0.40278600	-0.16548500	-0.26350700
С	-0.61763100	-1.07053400	0.04380600
С	-1.98118000	-0.44873100	-0.04298900
С	1.79894600	-0.61019400	0.00715200
С	-0.12212200	1.22390000	-0.08852000
С	-1.62654300	1.01317400	-0.39967900
Н	-2.24268600	1.74209800	0.13141800
Н	-1.78334600	1.16959500	-1.46966600
С	1.99702700	-0.99301600	1.48953000
Н	1.93332300	-0.11894300	2.13879200
Н	2.97927400	-1.45108700	1.63426800
Н	1.22975700	-1.70345100	1.80154500
С	0.43719300	2.22910400	-1.10646800
Н	1.43427200	2.58738700	-0.85792300
Н	-0.22341500	3.10022200	-1.13938600
Н	0.46169900	1.78172300	-2.10205300
С	-2.83649100	-1.09656700	-1.14953700
Н	-2.31764400	-1.05635200	-2.11050100
Н	-3.79963100	-0.58529600	-1.25515300
Н	-3.03997000	-2.14615500	-0.91676700
С	2.07190200	-1.84732500	-0.87322800
Н	1.46965500	-2.70604300	-0.57545200

н	3.12198900	-2.13708000	-0.78878700
Н	1.85350800	-1.61890800	-1.91845800
С	2.83460700	0.45258200	-0.37759200
Н	2.74403200	0.73804400	-1.42644600
Н	3.83207300	0.03437700	-0.22614700
Н	2.76165600	1.34751700	0.23965800
С	0.07210000	1.76058100	1.34125700
Н	-0.31194900	1.05563400	2.07917900
Н	-0.46048800	2.70834000	1.45944300
Н	1.12493500	1.94504600	1.56238500
С	-2.74631100	-0.55404400	1.29357400
Н	-2.89222700	-1.60261000	1.56768400
Н	-3.73266600	-0.08274500	1.21683500
Н	-2.19829400	-0.07261200	2.10507400
Н	-0.45234200	-2.12388900	-0.12882500

0.338695 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.354340 Thermal correction to Enthalpy= 0.355284 Thermal correction to Gibbs Free Energy= 0.298004 Sum of electronic and zero-point Energies= -526.306266 Sum of electronic and thermal Energies= -526.290621 Sum of electronic and thermal Enthalpies= -526.289677 Sum of electronic and thermal Free Energies= -526.346957

 Table S13. Cartesian coordinates and energy values of 3^{iPr-Me_2} for anti-(R/R).

N	-1.88809000	0.29937600	-0.18956300
С	-0.62369300	-0.46988600	-0.17299200
н	-0.52420700	-0.99668800	-1.12977200
С	-0.80862500	-1.60884700	0.88927700
С	-2.96291200	-0.39569800	0.56046700
С	-2.15155000	-1.25317900	1.54979500
н	-1.96626400	-0.66604600	2.45166300
н	-2.70608200	-2.14340900	1.85670400
С	-3.90603600	-1.27232300	-0.29446300
н	-4.54837600	-0.65841600	-0.92832600
н	-4.55794800	-1.85712000	0.36060800
н	-3.36404300	-1.96525400	-0.93613700
С	-0.89431800	-2.95908400	0.14771900
н	-1.64058300	-2.95003300	-0.64749800
н	-1.15235900	-3.76364200	0.84268300
н	0.07105000	-3.20455100	-0.30364600
С	-3.84004000	0.57691800	1.37381100
н	-3.21838900	1.27498900	1.93479800
н	-4.44389100	0.00775900	2.08717300
н	-4.52652100	1.14761200	0.75016000
С	0.27810900	-1.77359800	1.95818700
н	1.22573600	-2.06153000	1.50999400
н	-0.03254200	-2.55439000	2.66045700
н	0.44379400	-0.86455200	2.53205300
Ν	1.88808300	-0.29931500	-0.18973000
С	0.62371800	0.46999600	-0.17303200
н	0.52416400	0.99682100	-1.12979400
С	0.80875400	1.60892300	0.88925100
С	2.96297000	0.39549300	0.56047300
С	2.15171400	1.25322000	1.54968400
н	1.96642500	0.66622600	2.45164000
н	2.70634800	2.14343400	1.85645600
С	3.90655400	1.27180300	-0.29427400
н	4.54906300	0.65766300	-0.92773700
н	4.55829000	1.85664400	0.36093300
н	3.36493000	1.96467200	-0.93632000
С	0.89436400	2.95919500	0.14774100
н	1.64047200	2.95016600	-0.64761800
н	1.15256000	3.76370900	0.84269800
н	-0.07108100	3.20471800	-0.30342800
С	3.83965500	-0.57735400	1.37401400
н	3.21768700	-1.27529600	1.93481400
н	4.44344700	-0.00835800	2.08755600
н	4.52616800	-1.14819000	0.75053300

С	-0.27789400	1.77365300	1.95824800
Н	-1.22554100	2.06164000	1.51013600
н	0.03283300	2.55440000	2.66053400
Н	-0.44356700	0.86458300	2.53208000
С	2.14018600	-1.01055100	-1.45270400
С	3.22963400	-2.07989500	-1.34564600
С	2.37157000	-0.13866700	-2.70823000
н	1.21589600	-1.56117100	-1.64284900
н	3.07318500	-2.71360000	-0.47127700
н	3.20374500	-2.71132500	-2.23764800
н	4.22975700	-1.64684300	-1.28564900
н	1.64886300	0.67721600	-2.77547300
н	3.37236800	0.29244800	-2.73336700
н	2.25214200	-0.75361400	-3.60508500
С	-2.14031700	1.01072400	-1.45244300
С	-3.22956300	2.08024100	-1.34506400
С	-2.37220000	0.13891800	-2.70792900
н	-1.21597700	1.56119600	-1.64278500
Н	-3.07273000	2.71394700	-0.47076500
Н	-3.20386100	2.71164300	-2.23709100
Н	-4.22973500	1.64734800	-1.28472800
н	-1.64960400	-0.67704000	-2.77544600
Н	-3.37305500	-0.29209100	-2.73274500
Н	-2.25300600	0.75388800	-3.60480000

0.631630 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.659791 Thermal correction to Enthalpy= 0.660735 Thermal correction to Gibbs Free Energy= 0.578116 Sum of electronic and zero-point Energies= -974.088540 -974.060380 Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= -974.059436 -974.142054 Sum of electronic and thermal Free Energies=

Table S14. Cartesian coordinates and energy values of 3^{iPr-Me_2} for gauche-(R/R).

N	-1.40788500	-0.54107100	0.18322900
С	-0.74229000	0.77175900	0.25625100
Н	-0.71102100	1.08023500	1.30292500
С	-1.70121500	1.75718000	-0.50318800
С	-2.64978900	-0.53454100	-0.62125500
С	-2.51708300	0.79379600	-1.38212500
Н	-1.96383700	0.61447300	-2.30926300
Н	-3.48910900	1.20772400	-1.66178800
С	-3.97511200	-0.58737500	0.17341100
Н	-4.08842400	-1.53779400	0.69639800
Н	-4.81499700	-0.49742700	-0.52136900
Н	-4.05952300	0.21312500	0.90504900
С	-2.57780700	2.49480200	0.52555800
Н	-2.98274200	1.82012400	1.27899500
Н	-3.41544700	3.00077700	0.03609100
Н	-1.98952700	3.25257600	1.04991000
С	-2.68270900	-1.69389500	-1.63924200
Н	-1.75418800	-1.72702200	-2.21123100
Н	-3.51121600	-1.55119300	-2.34018100
Н	-2.82171700	-2.66108000	-1.15682300
С	-1.06922000	2.82208400	-1.41484100
Н	-1.87147600	3.40164800	-1.88193700
Н	-0.47721900	2.38616200	-2.22064000
Н	-0.43853100	3.52594800	-0.87187900
Ν	1.40789200	-0.54110000	-0.18319500
С	0.74231700	0.77174100	-0.25623700
Н	0.71104500	1.08018700	-1.30291800
С	1.70126100	1.75717000	0.50316800
С	2.64984200	-0.53455400	0.62122500
С	2.51717000	0.79379500	1.38208000
Н	1.96396400	0.61448400	2.30924400
Н	3.48920700	1.20772800	1.66169700
С	3.97513000	-0.58740100	-0.17349600
Н	4.08842300	-1.53783100	-0.69646900
Н	4.81504200	-0.49743900	0.52124900

Н	4.05951100	0.21308400	-0.90515200
С	2.57780900	2.49479600	-0.52561100
Н	2.98272100	1.82012100	-1.27906100
Н	3.41546200	3.00077800	-0.03617400
Н	1.98950300	3.25256500	-1.04994200
С	2.68281300	-1.69388900	1.63923400
Н	1.75433200	-1.72699300	2.21128700
Н	3.51137000	-1.55118600	2.34011400
Н	2.82177500	-2.66108400	1.15682200
С	1.06929000	2.82207500	1.41483900
Н	0.43857000	3.52592800	0.87189800
Н	1.87155900	3.40165100	1.88189700
Н	0.47732700	2.38615400	2.22066500
С	1.22633600	-1.36417800	-1.38405200
С	1.52283900	-2.84901400	-1.16313600
С	1.94143000	-0.86473600	-2.65935000
Н	0.15482200	-1.29624500	-1.57238200
Н	1.02387100	-3.21997800	-0.26883600
Н	1.16175300	-3.42257700	-2.02112700
Н	2.59204500	-3.04988700	-1.06788100
Н	1.78690200	0.20536500	-2.81578300
Н	3.01567300	-1.04985300	-2.63126200
Н	1.53769900	-1.38377000	-3.53416000
С	-1.22642600	-1.36409900	1.38413400
С	-1.52293300	-2.84894000	1.16326000
С	-1.94162400	-0.86459200	2.65934700
Н	-0.15492700	-1.29617100	1.57254500
Н	-1.02389400	-3.21995300	0.26901900
Н	-1.16192700	-3.42246900	2.02130700
Н	-2.59213400	-3.04980200	1.06792300
Н	-1.78708800	0.20551200	2.81575100
Н	-3.01586900	-1.04968600	2.63116700
н	-1.53798400	-1.38360000	3.53421500

Zero-point correction=	0.631256 (Hartree/Particle)
Thermal correction to Energy=	0.659370
Thermal correction to Enthalpy=	0.660314
Thermal correction to Gibbs Free Ene	rgy= 0.578554
Sum of electronic and zero-point Ener	rgies= -974.094219
Sum of electronic and thermal Energi	es= -974.066105
Sum of electronic and thermal Enthal	pies= -974.065161
Sum of electronic and thermal Free E	nergies= -974.146921

Table S15. Cartesian coordinates and energy values of 3^{iPr-Me_2} for *anti-(S/S)*.

N	-1.88812500	0.29942400	0.18968000
С	-0.62371700	-0.46997800	0.17302000
С	-0.80885000	-1.60888000	-0.88917300
С	-2.96292300	-0.39522800	-0.56073700
С	-2.15161000	-1.25294300	-1.54989200
Н	-2.70627100	-2.14307600	-1.85686000
н	-1.96604400	-0.66589800	-2.45176100
С	-3.83951200	0.57777400	-1.37420200
Н	-4.52575600	1.14878800	-0.75057800
Н	-4.44357800	0.00891500	-2.08762900
Н	-3.21748800	1.27555300	-1.93512700
С	0.27791400	-1.77389500	-1.95798800
Н	0.44381800	-0.86485200	-2.53179900
Н	-0.03288700	-2.55456600	-2.66032300
Н	1.22544400	-2.06204700	-1.50975900
С	-3.90665000	-1.27156000	0.29382500
Н	-3.36513700	-1.96482900	0.93553400
Н	-4.55867400	-1.85596000	-0.36149200
Н	-4.54886200	-0.65744800	0.92761200
С	-0.89491200	-2.95904000	-0.14754400
Н	0.07033600	-3.20461000	0.30401600
Н	-1.15296900	-3.76362300	-0.84247300
Н	-1.64130500	-2.94974800	0.64754500
Ν	1.88811800	-0.29942900	0.18966000
С	0.62372100	0.46998900	0.17307000
С	0.80887900	1.60899900	-0.88900500

C	2.96293400	0.39528200	-0.56067200
С	2.15164600	1.25312200	-1.54973900
Н	2.70632200	2.14328300	-1.85659800
Н	1.96608700	0.66618100	-2.45167700
С	3.83950700	-0.57763800	-1.37425100
Н	3.21746900	-1.27536400	-1.93522800
Н	4.52577000	-1.14871200	-0.75070200
Н	4.44355300	-0.00870800	-2.08763700
С	-0.27786300	1.77413700	-1.95782200
Н	0.03295200	2.55488600	-2.66006400
Н	-1.22539800	2.06224100	-1.50957400
Н	-0.44375800	0.86516000	-2.53174000
С	3.90666900	1.27150200	0.29399600
Н	3.36516100	1.96470600	0.93577900
Н	4.55871100	1.85596700	-0.36124500
н	4.54886300	0.65730600	0.92772100
С	0.89493900	2.95908400	-0.14723500
н	-0.07031300	3.20460900	0.30434000
н	1.15300800	3.76373700	-0.84207800
н	1.64132300	2.94970400	0.64786100
Н	0.52406200	0.99664400	1.12990300
н	-0.52406200	-0.99672900	1.12980000
С	2.14034800	-1.01039100	1.45271900
С	2.37265100	-0.13815400	2.70783700
С	3.22939900	-2.08013300	1.34550500
н	1.21589200	-1.56055500	1.64337200
н	1.65060300	0.67833600	2.77489700
н	2.25295600	-0.75260500	3.60500000
н	3.37379100	0.29220100	2.73255600
н	3.07234800	-2.71406100	0.47140700
н	4.22962800	-1.64740200	1.28488800
н	3.20375600	-2.71127000	2.23772600
С	-2.14039000	1.01022700	1.45282000
С	-2.37268900	0.13783700	2.70783200
С	-3.22947500	2.07994500	1.34570300
н	-1.21595100	1.56039200	1.64355200
н	-1.65062900	-0.67865100	2.77480000
Н	-2.25300600	0.75218600	3.60506700
Н	-3.37382300	-0.29253400	2.73249700
Н	-3.07242900	2.71397000	0.47167300
Н	-4.22968800	1.64718700	1.28501900
н	-3.20387200	2.71098800	2.23799100

Zero-point correction=	0.631633 (Hartree/Particle)
Thermal correction to Energy=	0.659792
Thermal correction to Enthalpy=	0.660736
Thermal correction to Gibbs Free Ene	rgy= 0.578119
Sum of electronic and zero-point Ener	rgies= -974.088537
Sum of electronic and thermal Energi	es= -974.060378
Sum of electronic and thermal Enthal	pies= -974.059434
Sum of electronic and thermal Free E	nergies= -974.142051

 Table S16. Cartesian coordinates and energy values of 3^{iPr-Me2} for gauche-(S/S).

N	1.40791500	-0.54108000	0.18321900
С	0.74234300	0.77175900	0.25620500
С	1.70123400	1.75714800	-0.50331700
С	2.64993100	-0.53453900	-0.62109700
С	2.51729200	0.79376100	-1.38205600
Н	3.48934900	1.20769500	-1.66161100
Н	1.96419300	0.61434700	-2.30927000
С	2.68308700	-1.69392000	-1.63903100
Н	2.82188900	-2.66110300	-1.15654000
Н	3.51182500	-1.55128700	-2.33970900
Н	1.75474900	-1.72701900	-2.21131900
С	1.06916800	2.82188900	-1.41510600
Н	0.47745200	2.38580800	-2.22103300
Н	1.87135500	3.40167900	-1.88203900
н	0.43815300	3.52557200	-0.87228400
С	3.97513300	-0.58731700	0.17377700
н	4.05944200	0.21325800	0.90534200

н	4.81514100	-0.49748700	-0.52087000
Н	4.08831500	-1.53768200	0.69689300
С	2.57764500	2.49500900	0.52540800
Н	1.98926800	3.25291200	1.04946500
Н	3.41537400	3.00085800	0.03596300
н	2.98243000	1.82051500	1.27908900
Ν	-1.40791100	-0.54109600	-0.18320200
С	-0.74235200	0.77174900	-0.25619900
С	-1.70125500	1.75713700	0.50330800
C	-2.64994800	-0.53454700	0.62108200
C	-2.51731400	0.79375100	1.38204600
н	-3,48937400	1,20768300	1.66159600
н	-1.96421900	0.61433700	2.30926300
C	-2 68314300	-1 69393100	1 63901200
н	-1 75482600	-1 72703600	2 21133100
н	-2 82193200	-2 66111200	1 15651200
н Ц	-2.02100500	-2.00111200	2 22066100
п С	1 06020600	2 92190100	2.33900100
с u	1 97140200	2.82189100	1.41509400
п u	-1.67140200	3.40107600	1.88201000
п u	-0.43619200	3.32337300	2 22102000
п С	-0.47749500	2.36362100	2.22103000
	-3.97512900	-0.58/30600	-0.1/382/00
	-4.05941300	0.21328000	-0.90538400
	-4.81515400	-0.49747900	0.52079900
H C	-4.08830400	-1.53/66400	-0.69695900
	-2.57766600	2.49498100	-0.52543000
н	-1.98928900	3.25287600	-1.04949800
н	-3.41539600	3.00083700	-0.03599300
н	-2.98244900	1.82047300	-1.27909900
н	-0.71113300	1.08033000	-1.30284100
	0.71112400	1.08035300	1.30284400
	-1.22626600	-1.36415400	-1.38404300
C C	-1.94135000	-0.864/1600	-2.65935500
C	-1.52275500	-2.84899700	-1.16314200
H	-0.15474400	-1.29618400	-1.5/233300
н	-1.78687400	0.20539600	-2.815/6100
н	-1.53/59/00	-1.383/2100	-3.5341/300
н	-3.01558500	-1.04988200	-2.63125400
н	-1.02380400	-3.21996400	-0.26882900
н	-2.59196200	-3.04988500	-1.06/90800
н	-1.16163900	-3.42255200	-2.02112500
С	1.22631000	-1.36411300	1.38408300
С	1.94141600	-0.86463400	2.65936700
С	1.52281600	-2.84895700	1.16321200
Н	0.15479100	-1.29615400	1.57239600
Н	1.78692900	0.20548000	2.81575000
Н	1.53769000	-1.38362400	3.53420600
Н	3.01565300	-1.04978600	2.63124600
Н	1.02385100	-3.21995300	0.26891800
Н	2.59202300	-3.04983200	1.06796000
Н	1.16172500	-3.42249700	2.02121600
7ero-noint	correction-	0	631258 (Hartron
		0	

Zero-point correction=	0.631258 (Hartree/Particle))
Thermal correction to Energy=	0.659370	
Thermal correction to Enthalpy=	0.660314	
Thermal correction to Gibbs Free Ene	ergy= 0.578556	
Sum of electronic and zero-point Ene	ergies= -974.094217	
Sum of electronic and thermal Energ	gies= -974.066105	
Sum of electronic and thermal Entha	alpies= -974.065160	
Sum of electronic and thermal Free E	Energies= -974.146919	

Table S17. Cartesian coordinates and energy values of 3^{iPr-Me_2} for *gauche1-(R/S)*.

N	1.49823900	0.56405800	-0.18360200
С	0.72018600	-0.45748100	0.54101400
Н	0.45934200	-0.06740700	1.53297400
С	1.70340800	-1.65071800	0.80943700
С	2.94639100	0.24618600	-0.21086800
С	2.93402700	-1.28443400	-0.03662100
Н	2.84399200	-1.74794700	-1.02153200
н	3.86400800	-1.64818700	0.40722400

С	3.80041000	0.92794200	0.88282500		
Н	3.89485100	1.99871600	0.69475100		
Н	4.80922000	0.50548000	0.87624500		
Н	3.38644400	0.79855000	1.88116700		
С	2.03937900	-1.69184800	2.31276100		
Н	2.40195400	-0.73236800	2.68150900		
Н	2.80631600	-2.44463300	2.51877000		
Н	1.14914200	-1.95361600	2.89308300		
С	3.59404100	0.58071100	-1.56932400		
Н	3.01047300	0.16468700	-2.39070600		
Н	4.59772300	0.14638500	-1.61065400		
Н	3.69609700	1.65365800	-1.72722800		
C	1.20161900	-3.05142800	0.42965000		
н	0.35684600	-3.36574900	1.04794900		
н	2.00658400	-3.77567900	0.58789000		
н	0.90031400	-3.11/36800	-0.61465800		
N	-1.69/39300	0.17407000	0.37948300		
C	-0.68013200	-0.82154700	-0.05064200		
C	-0.91074800	-1.00159000	-1.58928100		
C	-2.55182200	0.65890400	-0.72883500		
C	-1.70885600	0.26246800	-1.95358100		
н	-2.32586600	0.11943600	-2.84419500		
H	-1.002/9600	1.06768300	-2.1/283600		
C	-2.72101100	2.19383300	-0.71316400		
н	-3.36975800	2.52937900	0.09542500		
Н	-3.17298400	2.52103300	-1.65448600		
Н	-1.75826100	2.69424000	-0.60901100		
С	0.32452600	-1.08472700	-2.49292400		
Н	0.94963300	-0.20629700	-2.37055900		
Н	-0.00251600	-1.15367400	-3.53564000		
Н	0.93126100	-1.96814100	-2.28731100		
С	-3.97423100	0.05735100	-0.80254000		
Н	-3.97618700	-1.03010600	-0.80806700		
Н	-4.46304300	0.39960900	-1.71902400		
н	-4.58758400	0.39320600	0.03553700		
С	-1.73924500	-2.28178100	-1.81808900		
Н	-1.12096000	-3.16902900	-1.65839100		
Н	-2.11614600	-2.31921300	-2.8444400		
Н	-2.59067800	-2.35450300	-1.14206600		
н	-0.92173200	-1.78002800	0.42004100		
С	0.98313500	1.92733400	0.01279600		
C	1,43675400	2,91299400	-1.06433700		
C	1,15791200	2.54486900	1,41845100		
н	-0.08939100	1 80039500	-0 10536200		
н	1 31104100	2 48830700	-2 06210500		
н	0.83550800	3 82443400	-1 00047100		
н	2 48161600	3 20802800	-0 94471300		
н	0.93668900	1 82160700	2 20627900		
н	2 16167100	2 93576300	1 58631700		
н	0.45533100	3 37551600	1.53591/00		
C C	2 18504600	0.02065100	1.74616000		
c c	-2.10004000	-0.05005100	1,96599900		
C C	-3.10010000	1 22445500	2 26490900		
	-2.00400400	1.22445500	2.30480800		
	-1.28020800	-0.22877200	2.33027300		
п	-2.70729400	-2.14311200	1.46341000		
н	-3.16199100	-1.48423500	3.03433700		
н	-4.113/3600	-1.08344300	1.60480100		
н	-2.14/20900	2.08526500	2.23360100		
н	-3.77685400	1.46083800	1.92731800		
Н	-2.96096800	1.06684500	3.43531500		
Zero-point	correction=	0	.631262 (Hartree/Particle)		
Thermal c	orrection to Er	nergy=	0.659446		
Thermal c	orrection to Er	nthalpy=	0.660390		
Thermal c	orrection to Gi	bbs Free Ener	gy= 0.578040		
Sum of electronic and zero-point Energies= -974.093363					
Sum of ele	ectronic and th	ermal Energie	s= -974.065180		
Sum of ele	Sum of electronic and thermal Enthalpies= -974.064236				
Sum of electronic and thermal Free Energies= -974.146586					

 Table S18. Cartesian coordinates and energy values of 3^{iPr-Me2} for gauche2-(R/S).

N	1.69762000	0.17268400	0.38015200
С	0.68020200	-0.82062000	-0.05481400
Н	0.92192500	-1.78149700	0.41086300
С	0.91066800	-0.99305900	-1.59445300
С	2.55272400	0.66215500	-0.72554900
С	1.71022800	0.27181700	-1.95255700
н	1 00511700	1 07866100	-2 16884100
н Ц	2 22772700	0.12210400	2.10004100
	2.52772700	0.13210400	-2.84555400
C	3.97480300	0.06009200	-0.80133900
Н	4.58790900	0.39155900	0.03865100
Н	4.46434400	0.40629200	-1.71595000
Н	3.97598300	-1.02733800	-0.81193500
С	1.73772000	-2.27301400	-1.82953500
Н	2.58936300	-2.34966800	-1.15419100
н	2.11414000	-2.30608200	-2.85620800
н	1 11856400	-3 16034300	-1 67365200
C C	2 72250300	2 19689/00	-0 70269500
	1 75097000	2.10000400	0.70203300
п	1.75987000	2.09098500	-0.59594900
н	3.17435900	2.52831900	-1.64259100
Н	3.37152200	2.52847000	0.10730400
С	-0.32451200	-1.07035200	-2.49879000
Н	-0.93350700	-1.95292800	-2.29624400
н	0.00284300	-1.13677700	-3.54158900
н	-0.94769800	-0.19087900	-2.37400400
N	-1 49925500	0 56400200	-0 18147800
C	-0 71993100	-0.45926000	0.53916700
c c	1 70222200	1 65 20000	0.90472700
	-1.70252500	-1.05580800	0.80472700
C	-2.94720200	0.24560000	-0.20864000
C	-2.93395000	-1.28551700	-0.03900600
Н	-3.86331600	-1.65100500	0.40469700
Н	-2.84474900	-1.74605900	-1.02540300
С	-3.59606100	0.58391700	-1.56558800
Н	-3.69919500	1.65728300	-1.71993400
н	-4.59938400	0.14883000	-1.60762400
н	-3.01261700	0 17108100	-2 38865700
C C	1 20018200	2 05202100	0.42004200
	-1.20018200	2 11525200	0.42004300
п 	-0.89955000	-3.11525200	-0.62469200
н	-2.004/1400	-3.//816000	0.57639000
Н	-0.35484000	-3.36905000	1.03669400
С	-3.80065300	0.92368700	0.88776600
Н	-3.38595400	0.79130100	1.88541500
Н	-4.80937600	0.50102300	0.88060100
н	-3.89548800	1.99501700	0.70307500
С	-2.03680800	-1.69975800	2.30823500
н	-1 14595800	-1 96314900	2 88688000
ц	2 80228100	2 45226100	2.50000000
н Ц	2 20021700	0 74161700	2.51257000
п 	-2.39921700	-0.74151700	2.08034400
н	-0.45847700	-0.07225300	1.53215400
C	2.18486800	-0.03850500	1.74600500
С	2.80567700	1.21329500	2.37034500
С	3.09885800	-1.26585600	1.96058800
Н	1.27986800	-0.23845600	2.32913400
Н	2.14861400	2.07518200	2.24320900
Н	2.96169400	1.05059200	3.44010200
н	3.77781100	1.45096700	1.93391500
н	2 70534400	-2 15020900	1 45413900
ц	4 11268000	1 00220100	1 60022400
н Ц	2 16044000	1 40951000	2 02702000
11 C	3.10044900	-1.49051000	3.02/93900
L	-0.98434600	1.92690900	0.01/61300
С	-1.15763000	2.54093300	1.42498200
С	-1.43959900	2.91514100	-1.05649900
Н	0.08809500	1.80074200	-0.10218300
н	-0.93452500	1.81604700	2.21078400
н	-0.45570300	3.37199800	1.54337800
н	-2.16154200	2.93042100	1.59517400
н	-1.31512900	2,49297500	-2.05548600
н	-2 48435200	3 20060000	-0 93477800
н Ц	0.02040000	3.20303300	0.00115000
11	-0.03040800	3.02031200	-0.22112000

Zero-point correction=	0.631243 (Hartree/Particle)	
Thermal correction to Energy=	0.659435	
Thermal correction to Enthalpy=	0.660379	
Thermal correction to Gibbs Free En	nergy= 0.577993	
Sum of electronic and zero-point En	nergies= -974.093382	
Sum of electronic and thermal Energy	gies= -974.065191	
Sum of electronic and thermal Entha	alpies= -974.064246	
Sum of electronic and thermal Free	Energies= -974.146632	

Table S19. Cartesian coordinates and energy values of 3^{tBu-Me_2} for *anti-(R/R)*.

N	1.95312800	0.11879200	-0.27903000
C	0.64930800	0.07063600	0.46663900
н	0 54360100	1 01687900	0 98398600
C	0.94300100	-0.98409800	1 60356000
C	2.44000200	1 46700700	1.00330000
C	2.44990300	1.46700700	-0.09089300
C	2.92895800	-0.90228800	0.24627700
C	2.03080600	-1.82675800	1.08141100
н	1.64436300	-2.63340800	0.45721700
Н	2.58986800	-2.29930000	1.89249500
С	1.39303400	2.21877500	-1.52576000
н	1.02472700	1.60162000	-2.34453000
н	1 85340300	3 11242000	-1 95308800
 	0 54956400	3.11242000	0.02691600
п С	0.34830400	2.33712800	-0.92081300
C	4.07793400	-0.39667800	1.15880800
н	4.78704400	0.24273000	0.63599600
н	4.63623700	-1.26935800	1.50788400
Н	3.72312200	0.13511000	2.03741300
С	1.24381300	-0.22872600	2.89738000
н	1.95632300	0.57612800	2.72356300
н	1.67486000	-0.91356700	3.63361900
н	0 35144400	0 21721000	3 34393900
C	2 81201200	2 40222100	0.40126100
	2.81291200	2.40232100	1.20767000
н	1.99096000	2.46602700	1.20767000
Н	2.99838900	3.41427700	0.12047900
Н	3.70334500	2.07943200	1.02413900
С	3.66278900	1.33528500	-1.63103300
н	4.53964800	0.90810500	-1.15228600
н	3.94369600	2.32822000	-1.98965100
н	3,40703500	0.72018000	-2,49590100
C	3 59872900	-1 73154900	-0.87151300
с ц	2 86671000	-2 10508200	1 58100100
п 	2.80071900	-2.10596500	-1.38190100
	4.103/9800	-2.59210800	-0.42199400
н	4.35067700	-1.16664400	-1.42001100
C	-0.30279800	-1.89557800	1.96964600
н	-1.16215700	-1.31592100	2.29579200
н	0.00479700	-2.55978900	2.78447900
н	-0.60768000	-2.52267100	1.13480100
Ν	-1.95313600	0.11877000	0.27904600
C	-0.64931500	0.07066800	-0.46662400
н	-0 54361000	1 01694900	-0 98390200
C	0.94301000	-0.08207600	1 60262700
C	-0.80474100	-0.98397000	-1.00302700
C	-2.44990100	1.46696200	0.69099300
C	-2.92896700	-0.90227200	-0.24633500
С	-2.03081900	-1.82667100	-1.08155500
Н	-1.64438400	-2.63338100	-0.45743300
н	-2.58988300	-2.29913600	-1.89268200
С	-1.39301700	2.21867200	1.52589300
н	-1.02471200	1.60146700	2.34462700
н	-1 85337100	3 11229900	1 95327300
 Ц	-0.54854600	2 55704700	0.02606100
п С	4.07705600	2.33704700	1 1 5 8 1 1 0 0
C	-4.07795600	-0.39658900	-1.15881100
н	-4.78704200	0.24280100	-0.63594500
Н	-4.63628300	-1.26924000	-1.50792500
Н	-3.72315700	0.13524300	-2.03739400
С	-1.24379800	-0.22849800	-2.89739000
Н	-1.95629300	0.57635700	-2.72351400
н	-1.67485500	-0.91327500	-3.63368300
н	-0.35141900	0.21745500	-3.34391200
C	-2.81290500	2,40234600	-0.49110600
н	-1.99095800	2.46608000	-1.20751800

Н	-2.99836500	3.41428400	-0.12026700
Н	-3.70334700	2.07949900	-1.02399400
С	-3.66278300	1.33520500	1.63113200
Н	-4.53965700	0.90808200	1.15236200
Н	-3.94366100	2.32812100	1.98982200
Н	-3.40703700	0.72003200	2.49595500
С	-3.59872200	-1.73163600	0.87138700
Н	-2.86670400	-2.10611900	1.58174100
Н	-4.10378100	-2.59222400	0.42179700
Н	-4.35067800	-1.16679000	1.41993600
С	0.30279500	-1.89543000	-1.96977500
Н	1.16216200	-1.31574700	-2.29585600
Н	-0.00479000	-2.55956800	-2.78467100
Н	0.60766100	-2.52259900	-1.13498100

Zero-point correction= 0.689408 (Hartree/Particle) Thermal correction to Energy= 0.719247 Thermal correction to Enthalpy= 0.720192 0.636367 Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= -1052.666038 Sum of electronic and thermal Energies= -1052.636199 Sum of electronic and thermal Enthalpies= -1052.635255 Sum of electronic and thermal Free Energies= -1052.719079

Table S20. Cartesian coordinates and energy values of 3^{tBu-Me2} for gauche-(R/R).

N	1 62100000	0 52402600	0 12452000
	-1.02198000	-0.52403600	0.13453800
с u	-0.77981700	1 02252000	1 24472200
C C	-0.79343200	1.03353500	-0.62270100
C C	-1.36777400	1.78001500	1 40756600
C C	-1.79037300	-1.28202000	0.80450000
C C	2 20709600	-0.37178100	1 59041400
	-2.39708000	0.88764500	-1.58041400
	-1.70509800	0.61194400	-2.42935700
H C	-3.2/0/6100	1.40276300	-1.98693000
	-2.41521800	-2.663/0/00	1.14566800
н	-3.44343600	-2.61548700	0.79390300
н	-2.4192/100	-3.23309100	2.07824100
н	-1.82364600	-3.21610300	0.4131/300
С	-4.19019200	-0.16484000	-0.18001000
Н	-4.54584600	-1.04870500	0.34738800
Н	-4.89518800	0.02364200	-0.99396900
Н	-4.24264500	0.68048400	0.49926400
С	-2.49067800	2.59717100	0.31347800
Н	-2.94179100	1.98289400	1.08967300
Н	-3.29453800	3.08804100	-0.24318000
Н	-1.91375300	3.37635000	0.81538100
С	-0.40838600	-1.55936800	2.00197800
Н	0.24111600	-1.99733800	1.25096200
Н	-0.50135700	-2.23391800	2.85706300
Н	0.06644800	-0.64476000	2.35457200
С	-2.60987900	-0.54580000	2.49835000
Н	-2.22137300	0.46142000	2.66659400
н	-2.52484800	-1.08562300	3.44562700
Н	-3.66729200	-0.46887400	2.25811600
С	-2.93744600	-1.54473400	-1.79871500
н	-2.00991200	-1.75223300	-2.32323800
н	-3.69258200	-1.27868000	-2.54490600
н	-3.26976900	-2.46139800	-1.31420600
С	-0.83708500	2.79768200	-1.51269100
н	-1.58435200	3.40390800	-2.03440000
н	-0.22114900	2.32603000	-2.27924000
н	-0.21135700	3.48376000	-0.94598100
N	1.62195500	-0.52404900	-0.13453100
С	0.77980500	0.70741200	-0.20796700
Н	0.79342000	1.03355400	-1.24468200
C	1.58778300	1,78058700	0.63374600
Ċ	1.79036600	-1.28197800	-1.40759300
C	2.78446600	-0.37181900	0.80459700
č	2.39708500	0.88759300	1.58044100
H	1.76569400	0.61187900	2.42937700

Н	3.27076500	1.40269300	1.98696600
С	2.41522800	-2.66366100	-1.14575700
Н	3.44344400	-2.61544300	-0.79398300
Н	2.41929700	-3.23299900	-2.07835800
Н	1.82366000	-3.21610300	-0.41329300
С	4.19016700	-0.16487300	0.17999100
Н	4.54580200	-1.04872800	-0.34743800
Н	4.89518100	0.02358000	0.99394200
Н	4.24261700	0.68046700	-0.49926300
С	2.49069500	2.59713600	-0.31343200
Н	2.94178700	1.98285800	-1.08963900
Н	3.29457100	3.08798500	0.24322200
Н	1.91378000	3.37633300	-0.81532100
С	0.40838800	-1.55930300	-2.00203400
Н	-0.24111100	-1.99733000	-1.25104800
Н	0.50137500	-2.23379900	-2.85716000
Н	-0.06646100	-0.64468100	-2.35457300
С	2.60987800	-0.54568300	-2.49832600
Н	2.22136600	0.46154400	-2.66651400
Н	2.52486200	-1.08545100	-3.44563500
Н	3.66728800	-0.46876300	-2.25807300
С	2.93743900	-1.54479300	1.79868600
Н	2.00991200	-1.75230100	2.32321700
Н	3.69258600	-1.27875700	2.54487300
Н	3.26975400	-2.46144800	1.31415400
С	0.83712000	2.79766200	1.51275200
Н	1.58440300	3.40387400	2.03445400
Н	0.22118700	2.32601600	2.27930600
Н	0.21139400	3.48375200	0.94605400

Zero-point correction=	0.688915 (Hartree/Particle)
Thermal correction to Energy=	0.718829
Thermal correction to Enthalpy=	0.719773
Thermal correction to Gibbs Free Ene	rgy= 0.636319
Sum of electronic and zero-point Ener	rgies= -1052.664638
Sum of electronic and thermal Energi	es= -1052.634725
Sum of electronic and thermal Enthal	pies= -1052.633781
Sum of electronic and thermal Free E	nergies= -1052.717234

 Table S21. Cartesian coordinates and energy values of 3^{tBu-Me2} for anti-(S/S).

N	-1.95308000	0.11922400	-0.27878500
С	-0.64928500	0.07005600	0.46693000
С	-0.86489100	-0.98620700	1.60246400
С	-2.44976000	1.46794800	-0.68916900
С	-2.92896400	-0.90242800	0.24520700
С	-2.03088300	-1.82813200	1.07905800
Н	-2.59002000	-2.30181800	1.88942200
н	-1.64435400	-2.63386000	0.45372300
С	-2.81270300	2.40209000	0.49394200
Н	-3.70321400	2.07879100	1.02643900
Н	-2.99801800	3.41445300	0.12419200
Н	-1.99078100	2.46494800	1.21046100
С	-3.59884000	-1.73017400	-0.87365400
н	-4.35075400	-1.16451000	-1.42142200
н	-4.10395100	-2.59134500	-0.42524700
н	-2.86687500	-2.10374700	-1.58454900
С	0.30263500	-1.89808400	1.96758000
Н	0.60743300	-2.52447000	1.13215000
н	-0.00486800	-2.56302300	2.78185000
Н	1.16198200	-1.31865000	2.29415600
С	-1.39287600	2.22050900	-1.52329400
Н	-0.54829200	2.55805900	-0.92405900
Н	-1.85317400	3.11469700	-1.94955500
Н	-1.02474600	1.60424800	-2.34281800
С	-3.66266700	1.33728700	-1.62942500
Н	-3.40692200	0.72316800	-2.49499900
Н	-3.94360700	2.33061900	-1.98692300
Н	-4.53949300	0.90953600	-1.15112200
С	-4.07783800	-0.39794800	1.15851000
Н	-3.72291500	0.13264500	2.03780400

н	-4.63619000	-1.27104000	1.50646800
н	-4.78692700	0.24221700	0.63659600
C	-1.24421100	-0.23254000	2.89721200
Н	-0.35195200	0.21291300	3.34446500
Н	-1.67525700	-0.91841000	3.63249000
н	-1.95682000	0.57244400	2,72438500
N	1 95314900	0 11833900	0 27931800
C	0.64926200	0.07123100	-0.46635800
C	0.86460100	-0.98195000	-1.60476600
C	2,45013100	1.46602400	0.69267900
C	2,92885900	-0.90207600	-0.24740000
C	2.03075300	-1.82529600	-1.08398000
н	2 58984600	-2 29654100	-1 89579700
н	1 64433600	-2 63290400	-0.46101700
C	3 66284700	1 33306600	1 63286000
н	3 40685200	0 71709200	2 49704000
н	3 94391300	2 32556100	1 99257500
н	4 53967500	0.90620500	1 15376600
C	3 59846500	-1 73309900	0.86920600
н	2 86639300	-2 10841200	1 57907600
н	4 35055000	-1 16915900	1 41850400
н	4.000000	-2 59318500	0 / 18/2800
C	-0 30304200	-1 89284900	-1 97195700
ц	0.00420300	-2 55563500	-2 78807700
Ц	1 16248700	-2.33303300	-2.78807700
н	-0.60761500	-2 521/3000	-2.23071300
C C	2 81357900	2.0251100	-0.48841200
ц	3 70393300	2.40231100	-1.02159000
Ц	2 000/1000	2.07987700	-0.11648700
н	1 99170900	2 46734400	-0.11040700
C C	1 39330/00	2.40734400	1 52818500
L L	0.54802000	2.21713000	0 02050200
н	1 85376900	3 11029200	1 956/2500
Ц	1.03483400	1 50024500	2 24622200
C C	1.02483400	1.39924300	2.34032200
L L	2 72220200	0.12801000	-1.13903000
Ц	4 62621200	1 26742700	-2.03087000
Ц	4.03021300	-1.20743700	-0.62514200
C C	4.78714300	0.24324000	-0.03314300
L L	0.25006800	0.22470300	-2.89738000
н	1 67/50700	-0 90856200	-3.34344000
н Ц	1 05586000	0.50050500	-3.03478300
н	1.53360300	1 01810800	-2.72270000
н Ц	0.54500400	1.01019000	0.30241300
п	-0.54500000	1.01003400	0.90332300

Zero-point correction=	0.689409	(Hartree/Particle)
Thermal correction to Energy=	0.71	9247
Thermal correction to Enthalpy=	0.72	20191
Thermal correction to Gibbs Free E	nergy=	0.636369
Sum of electronic and zero-point E	nergies=	-1052.666037
Sum of electronic and thermal Ene	rgies=	-1052.636199
Sum of electronic and thermal Entl	nalpies=	-1052.635255
Sum of electronic and thermal Free	e Energies=	-1052.719078

Table S22. Cartesian coordinates and energy values of 3^{tBu-Me_2} for gauche-(S/S).

N	-1.62196500	-0.52402400	-0.13448700
С	-0.77983200	0.70741500	-0.20811000
С	-1.58772600	1.78075600	0.63343100
С	-1.79031800	-1.28219700	-1.40742200
С	-2.78449900	-0.37173900	0.80457700
С	-2.39718600	0.88790400	1.58012400
н	-3.27091400	1.40309500	1.98643900
н	-1.76594300	0.61236000	2.42923600
С	-2.41507100	-2.66389500	-1.14540300
н	-1.82343000	-3.21623300	-0.41292000
н	-2.41914600	-3.23332600	-2.07794800
н	-3.44327200	-2.61572200	-0.79358200
С	-2.93741700	-1.54442800	1.79898200
н	-3.26945100	-2.46130400	1.31468000
н	-3.69276800	-1.27829300	2.54492900

Н	-2.00995800	-1.75156800	2.32377300
С	-0.83718100	2.79780900	1.51255300
Н	-0.22141700	2.32613800	2.27921200
Н	-1.58455600	3.40399700	2.03416600
Н	-0.21135500	3.48396300	0.94607200
С	-2.60986400	-0.54609000	-2.49827100
Н	-3.66731500	-0.46939800	-2.25814100
н	-2.52463600	-1.08583300	-3.44557700
Н	-2.22156500	0.46122800	-2.66642500
С	-0.40831500	-1.55949900	-2.00183900
Н	0.06651000	-0.64489200	-2.35446400
Н	-0.50129500	-2.23407200	-2.85690500
Н	0.24124300	-1.99743000	-1.25084700
С	-4.19019600	-0.16509500	0.17986900
Н	-4.24267300	0.68012400	-0.49952300
н	-4.89530500	0.02341100	0.99372600
н	-4.54570500	-1.04907000	-0.34744800
С	-2.49039800	2.59732800	-0.31393100
н	-1.91335300	3.37654600	-0.81563400
н	-3.29442100	3.08813600	0.24255500
н	-2.94125800	1.98305500	-1.09027500
Ν	1.62196200	-0.52402600	0.13448300
С	0.77983700	0.70742000	0.20803700
С	1.58776300	1.78074400	-0.63349700
C	1.79028900	-1.28211500	1.40747100
C	2.78451800	-0.37180600	-0.80456400
C	2.39732000	0.88788100	-1.58010200
H	3.27110300	1.40305600	-1.98632100
н	1.76616000	0.61237200	-2.42928600
С	0.40827100	-1.55938000	2.00187200
H	-0.06657100	-0.64474900	2.35441200
н	0.50123200	-2.23388600	2.85699300
н	-0.24126500	-1.99737600	1.25089700
С	2.93735300	-1.54448000	-1.79899900
н	2.00987900	-1.75154700	-2.32379400
н	3.26933000	-2.46138900	-1.31472400
н	3.69271900	-1.27837400	-2.54494200
С	0.83726500	2.79774800	-1.51271600
Н	1.58466800	3.40394100	-2.03428300
Н	0.21137100	3.48390300	-0.94631100
Н	0.22158100	2.32603800	-2.27941500
С	2.41506200	-2.66382500	1.14556500
н	1.82345300	-3.21621500	0.41309500
н	2.41910700	-3.23319400	2.07814700
н	3.44327700	-2.61566400	0.79378100
С	2.60980400	-0.54592400	2.49828600
н	3.66725800	-0.46922800	2.25816600
н	2.52457100	-1.08560900	3.44562500
Н	2.22148400	0.46139800	2.66636800
С	4.19022800	-0.16531700	-0.17983200
н	4.24277700	0.67984500	0.49962200
н	4.89535900	0.02318600	-0.99367000
н	4.54565700	-1.04936100	0.34742300
С	2.49032100	2.59739000	0.31390600
н	1.91321500	3.37665900	0.81546100
н	3.29442200	3.08814200	-0.24251800
н	2.94106800	1.98318800	1.09036800
н	0.79324300	1.03334800	1.24482000
н	-0.79325700	1.03331400	-1.24490000
Zero-point	correction=	0	.688915 (Hartree/Particle)
Thermal c	orrection to Er	nergy=	0.718828
Thermal c	orrection to Er	nthalpy=	0.719773
Thermal correction to Gibbs Erea Energy 0 626210			

Thermal correction to Gibbs Free Energy=	0.636319
Sum of electronic and zero-point Energies=	-1052.664639
Sum of electronic and thermal Energies=	-1052.634725
Sum of electronic and thermal Enthalpies=	-1052.633781
Sum of electronic and thermal Free Energies=	-1052.717235

 Table S23. Cartesian coordinates and energy values of 3^{tBu-Me2} for gauche1-(R/S).

N	1.76519000	-0.50251700	0.00823500
С	0.70003600	0.51489100	-0.27396200
Н	0.43121300	0.41061600	-1.31867500
С	1.43926100	1.90486500	-0.12684600
С	1.80043900	-1.68305100	-0.90263800
С	3.05265900	0.13376000	0.45467800
С	2.61099400	1.56104200	0.79693500
Н	2.27286700	1.60370400	1.83384600
Н	3.43522400	2.27191300	0.70130200
С	2.77884900	-2.75684100	-0.39348700
Н	2.54812500	-3.01900300	0.64051500
Н	3.82516200	-2.46511700	-0.45112900
Н	2.66014500	-3.65529300	-1.00409000
С	4.21364900	0.21745800	-0.57257200
Н	4.60007400	-0.75990900	-0.85464100
Н	5.03745200	0.76034300	-0.10144200
Н	3.94878900	0.75301100	-1.47942900
С	1.91678100	2.37275100	-1.51910100
Н	2.30545500	1.55609600	-2.12381900
Н	2.69893300	3.13213200	-1.42674400
Н	1.08963400	2.81912500	-2.07611700
С	0.42244700	-2.34796900	-0.89418700
Н	0.20084500	-2.73099900	0.10198700
Н	0.41248500	-3.19113600	-1.59009400
Н	-0.36849600	-1.65431400	-1.17080300
С	2.13376900	-1.34297500	-2.37794500
Н	1.44565200	-0.59369700	-2.77567400
Н	2.02468000	-2.23871900	-2.99526700
Н	3.14912500	-0.97620400	-2.50651500
С	3.64746400	-0.53366000	1.71404000
Н	2.90011000	-0.65713200	2.49318100
н	4.44772600	0.09889400	2.11079400
Н	4.08218800	-1.50853500	1.49825000
C	0.66938700	3.08278100	0.49069500
н	-0.19415400	3.38546000	-0.10695000
н	1.34029500	3.94623300	0.54301200
Н	0.32947200	2.8/316000	1.50553000
N	-1.84093000	-0.15533100	-0.32566400
C C	-0.73439300	0.50416700	0.45103200
C C	-0.91372100	0.00418600	1.92401200
C C	-2.53035700	0.69205800	-1.34101400
C C	-2.64099100	-1.09523900	0.53444700
C II	-1./1451200	-1.28929200	1.74095500
н	-2.27507500	-1.55672900	2.64001600
H C	-1.01928200	-2.10557300	1.54218400
C II	-3.32344900	1.88697200	-0.74343400
н	-4.19203200	1.5/133500	-0.1/1/2400
	-3.0/50/300	2.53834200	-1.54802300
п С	-2.08808700	2.49236200	0.13692500
с ц	-2.69340300	-2.40380500	-0.13082300
н ц	-2 21286100	-2.42039300	0.62507200
н ц	-1.00/12200	-3.18007000	0.02337200
C	-1.99413800	-2.83024700	2 72028600
с ц	0.34208000	-0.31922000	2.73038000
н ц	0.94907000	-1.03839300	2.21883300
н ц	0.04407500	0.56666100	2 0001100
C C	-1 52/191200	1 29511/00	-2 33502800
ц	-0.85755100	2 01170500	-1 86283/00
н	-2.07264800	1 83011100	-3 11/23200
н ц	-0.020204800	0.51844000	-3.11423200
C	-3 78245400	-0 16075600	-2 201013900
с н	-2 92800200	-U 00300eUU	-2 65/00200
н	-3 88300200	0.25355000	-3 01020100
н	-7 330320200	-0 22882300	-1 65333500
 C	-4 02125700	-0 60841400	1 04806200
с Н	-3 96833700	0 31899700	1 61129100
н	-4 41867700	-1 37611600	1 71742400
н	-4 74836400	-0 48078900	0 24760200
C C	-1 69698000	1 06959200	2 72066400
н	-1.03735900	1.90142300	2.98303000
-			

н	-2.08277400	0.64941600	3.65419	500	
н	-2.53425600	1.48633300	2.16304	900	
н	-0.97566900	1.56192100	0.46800	500	
Zero-point correction= 0.689296 (Hartree/Particle)					
Thermal correction to Energy= 0.719063					
Thermal correction to Enthalpy= 0.720007					
Thermal correction to Gibbs Free Energy= 0.636511					
Sum of electronic and zero-point Energies= -1052.667230					
Sum of electronic and thermal Energies= -1052.637463					
Sum of	Sum of electronic and thermal Enthalpies= -1052.636519				
Sum of electronic and thermal Free Energies= -1052.720015					

 Table S24. Cartesian coordinates and energy values of 3^{tBu-Me2} for gauche2-(R/S).

N	1.84088300	-0.15497900	-0.32573600
С	0.73433000	0.50386500	0.45146300
Н	0.97561700	1.56159200	0.46930200
С	0.91352500	0.00255100	1.92403500
С	2.53625500	0.69323900	-1.34037200
С	2.64096800	-1.09557800	0.53361500
С	1.71443400	-1.29068500	1.73991800
н	1.01925400	-2.10683500	1.54044800
н	2.27497800	-1.55883600	2.63877600
С	3.48247100	-0.15884900	-2.20492500
н	2.93920600	-0.99198200	-2.65435800
н	4.33042700	-0.55707700	-1.65356500
н	3.88372100	0.46154000	-3.00981000
С	4.02122300	-0.60918000	1.04766100
н	4.74832900	-0.48081200	0.24732600
н	4.41866100	-1.37750700	1.71630100
н	3.96832800	0.31769300	1.61176800
С	1.69659000	1.06726100	2.72182500
н	2.53377700	1.48474800	2.16464100
н	2.08247200	0.64617000	3.65490600
н	1.03681400	1.89868600	2.98508000
C	1.52474300	1.29694600	-2.33393900
н	2.07243500	1.83286700	-3.11253300
н	0.85705900	2.01286600	-1.86116900
н	0.92838600	0.52055000	-2 81589900
C	3 32315800	1 88775600	-0 74176500
н	2 68825600	2 49251200	-0.09048100
н	3 67534200	2.43231200	-1 54579200
н	4 19174300	1 57176100	-0 17025700
C C	2 80351800	-2 46361000	-0.17025700
н	1 99/13800	-2 8/978800	-0 60981/00
н	3 21331600	-2.04078800	0.62324600
н	3 68095400	-3.18058300	-0.88992800
C C	-0.3/300900	-0.32170/00	2 72987200
н	-0.34300500	-0.32170400	3 70835200
н ц	-0.04317300	-0.71332300	2 21742000
н ц	-0.94994700	-1.00030300	2.21742000
П N	1 76516000	0.50599500	2.90978900
IN C	-1.70510000	-0.50249400	0.00785900
C C	-0.69996800	0.51507000	-0.27367800
C	-1.43916000	1.90493600	-0.125/1800
C C	-1.80031300	-1.08244800	-0.90380900
C	-3.05261400	0.13351900	0.45477500
	-2.61085400	1.56055500	0.79791800
н	-3.43505700	2.2/153200	0.70283600
н	-2.27262700	1.60250100	1.83482700
C	-2.//866000	-2./566/500	-0.39547000
н	-2.54/98900	-3.01954900	0.63836200
н	-2.65984300	-3.65468600	-1.00669900
Н	-3.82499000	-2.46499900	-0.45296800
C	-3.64730200	-0.53469000	1.71375400
Н	-4.08220900	-1.50934400	1.49733500
Н	-4.44740500	0.09769400	2.11110100
Н	-2.89982900	-0.65883300	2.49267100
С	-0.66925000	3.08243500	0.49254100
Н	-0.32951100	2.87225900	1.50731700
н	-1.34008200	3.94592900	0.54522100

Н	0.19440700	3.38534300	-0.10481800
С	-2.13345100	-1.34146400	-2.37892600
Н	-3.14894400	-0.97509800	-2.50750500
Н	-2.02377900	-2.23673100	-2.99684100
Н	-1.44557800	-0.59159900	-2.77596300
С	-0.42226800	-2.34722700	-0.89568200
Н	0.36859800	-1.65319500	-1.17155000
Н	-0.41208500	-3.18977200	-1.59234600
Н	-0.20079900	-2.73110000	0.10019600
С	-4.21371200	0.21798100	-0.57228600
Н	-3.94893700	0.75418100	-1.47877900
н	-5.03743400	0.76056300	-0.10066300
Н	-4.60022500	-0.75916000	-0.85500300
С	-1.91663800	2.37371200	-1.51770500
Н	-1.08940400	2.82026100	-2.07445500
Н	-2.69863500	3.13319600	-1.42489500
Н	-2.30546500	1.55749700	-2.12292400
Н	-0.43101900	0.41147700	-1.31841300

Zero-point correction0.689300 (Hartree/Particle)Thermal correction to Energy=0.719066Thermal correction to Enthalpy=0.720010Thermal correction to Gibbs Free Energy=0.636517Sum of electronic and zero-point Energies=-1052.667226Sum of electronic and thermal Energies=-1052.637460Sum of electronic and thermal Energies=-1052.63516Sum of electronic and thermal Energies=-1052.637400Sum of electronic and thermal Energies=-1052.6320008

Table S25. Cartesian coordinates and energy values of 3^{iPr-Me}2 for max1-(R/R).

N	-1.71147700	0.51234200	-0.00653700
С	-0.62588400	-0.30533900	-0.52000700
Н	-0.17374400	0.02855100	-1.45569400
С	-1.44801600	-1.55225200	-1.01569200
С	-2.70592100	-0.31928600	0.70691200
С	-2.42234200	-1.75632600	0.15179200
н	-1.97514900	-2.37417100	0.93103900
Н	-3.34501200	-2.25098100	-0.16321100
С	-4.16217600	0.09291800	0.43043800
Н	-4.37632900	1.09408400	0.80894100
н	-4.83551100	-0.59940500	0.94256000
н	-4.39839300	0.06830000	-0.63313800
С	-2.25360800	-1.08967700	-2.25699700
н	-2.87589500	-0.22558400	-2.04889700
н	-2.89851600	-1.90330900	-2.60203500
н	-1.57860700	-0.83031800	-3.07824500
С	-2.50440100	-0.32275600	2.24064700
н	-1.48571500	-0.61296900	2.50096300
н	-3.18606400	-1.04030600	2.70883700
н	-2.70013700	0.65863700	2.67452800
С	-0.68903400	-2.78739000	-1.51853900
н	-0.14959500	-2.53827100	-2.43721600
н	-1.40432900	-3.57538500	-1.77368700
Н	0.03187300	-3.20988000	-0.83371000
Ν	1.71133600	0.51219700	0.00611400
С	0.62571700	-0.30519300	0.52000700
н	0.17369700	0.02907600	1.45560800
С	1.44772200	-1.55203800	1.01599400
С	2.70567400	-0.31979700	-0.70703400
С	2.42168700	-1.75666800	-0.15168700
н	1.97399500	-2.37441200	-0.93072400
н	3.34425100	-2.25166200	0.16309500
С	4.16204300	0.09206200	-0.43055700
н	4.37643700	1.09316900	-0.80908600
н	4.83518800	-0.60044400	-0.94267800
н	4.39829900	0.06741000	0.63300700
С	2.25370600	-1.08918300	2.25691500
Н	2.87617400	-0.22533100	2.04836700
Н	2.89849500	-1.90284100	2.60211900
Н	1.57895200	-0.82934700	3.07821100
С	2.50425200	-0.32340500	-2.24078500

н	1.48544000	-0.61321200	-2.50107000
Н	3.18563500	-1.04127500	-2.70888900
Н	2.70038500	0.65786800	-2.67476000
С	0.68853600	-2.78682700	1.51941600
Н	0.14982200	-2.53744100	2.43844500
Н	1.40363000	-3.57515900	1.77408900
Н	-0.03305200	-3.20894600	0.83508400
С	1.74140100	1.95559800	0.19198800
С	1.89760400	2.75801700	-1.10965000
С	2.73488700	2.46343500	1.25867400
н	0.75663800	2.19618600	0.59000500
н	1.16325300	2.44301300	-1.85373300
н	1.75799200	3.82528500	-0.91528100
н	2.89231700	2.63346100	-1.54345400
н	2.59512700	1.92893000	2.19992200
н	3.77410900	2.34849800	0.94965900
н	2.56109800	3.52739000	1.44833500
С	-1.74093900	1.95577900	-0.19225500
С	-1.89647000	2.75827300	1.10942400
С	-2.73453000	2.46400600	-1.25865500
н	-0.75619300	2.19593500	-0.59059000
н	-1.16217600	2.44288700	1.85340000
н	-1.75634100	3.82547200	0.91505000
Н	-2.89118100	2.63421900	1.54337100
Н	-2.59539300	1.92925900	-2.19986000
Н	-3.77370400	2.34968300	-0.94924900
Н	-2.56023300	3.52783700	-1.44854100

Zero-point correction =0.629885 (Hartree/Particle)Thermal correction to Energy=0.658613Thermal correction to Enthalpy=0.575359Thermal correction to Gibbs Free Energy=0.575359Sum of electronic and zero-point Energies=-974.058073Sum of electronic and thermal Energies=-974.029345Sum of electronic and thermal Enthalpies=-974.028401Sum of electronic and thermal Free Energies=-974.112599

Table S26. Cartesian coordinates and energy values of 3^{iPr-Me2} for max2-(R/R).

N	1.55121500	-0.33454400	0.14875200
С	0.77440000	0.08368200	-1.01173700
н	1.08282100	0.05505300	-2.06755100
С	1.24671500	1.64465800	-1.14429600
С	2.08127500	0.80494300	0.97562500
С	1.46683700	2.04796600	0.29852500
Н	0.51047400	2.27927100	0.76948600
Н	2.11349000	2.92295400	0.40967600
С	3.62530800	0.91123000	1.03395400
Н	4.06682500	0.06251700	1.55603900
н	3.89426000	1.80802500	1.59831800
н	4.09257800	0.98452200	0.05650700
С	2.58917200	1.62632400	-1.92303300
н	3.22449500	0.79057700	-1.64360400
Н	3.14503000	2.55364400	-1.75834100
Н	2.39879000	1.54344900	-2.99755100
С	1.58897200	0.78805700	2.43477800
н	0.50424900	0.79743200	2.46178800
н	1.94698900	1.69055000	2.94024400
н	1.95175000	-0.06897800	3.00012400
С	0.34718400	2.56435600	-1.97695600
н	0.87469700	3.50302900	-2.17388700
н	-0.60344400	2.81991100	-1.52298000
Н	0.13159000	2.10719000	-2.94767600
N	-1.55171700	0.33468300	0.14849500
С	-0.77475100	-0.08335300	-1.01183100
н	-1.08329600	-0.05502700	-2.06761300
С	-1.24660800	-1.64451400	-1.14426500
С	-2.08059900	-0.80489100	0.97598300
С	-1.46620600	-2.04787300	0.29865800
Н	-0.50979200	-2.27918100	0.76945400
н	-2.11279100	-2.92290200	0.40992100

С	-3.62451400	-0.91174800	1.03561900
Н	-4.06593700	-0.06290600	1.55757300
Н	-3.89264200	-1.80832700	1.60071900
Н	-4.09252100	-0.98581500	0.05857300
С	-2.58944800	-1.62678300	-1.92230400
Н	-3.22524700	-0.79168700	-1.64204000
Н	-3.14451100	-2.55460600	-1.75775600
Н	-2.39977600	-1.54322100	-2.99688800
С	-1.58697700	-0.78734000	2.43465500
Н	-0.50223100	-0.79592900	2.46045300
Н	-1.94387700	-1.68993500	2.94073700
Н	-1.94979100	0.06963600	3.00008200
С	-0.34692300	-2.56353100	-1.97750900
Н	-0.13448300	-2.10714000	-2.94929200
Н	-0.87290900	-3.50355300	-2.17210400
Н	0.60534100	-2.81630600	-1.52545100
С	-2.15175200	1.66917600	0.19346500
С	-2.43726800	2.20240800	1.60279200
С	-3.36617300	1.86407300	-0.73310300
Н	-1.38078000	2.33435200	-0.17831600
Н	-1.54666200	2.14386200	2.23020400
Н	-2.72669500	3.25388600	1.52597200
Н	-3.24975200	1.68126400	2.10896000
Н	-3.13147300	1.52993300	-1.74625400
Н	-4.24196200	1.31431600	-0.38517200
Н	-3.63551000	2.92381000	-0.78650100
С	2.15052000	-1.66941700	0.19394700
С	2.43739500	-2.20193600	1.60326200
С	3.36379000	-1.86546800	-0.73385100
Н	1.37872900	-2.33450600	-0.17636400
Н	1.54752100	-2.14275300	2.23165100
Н	2.72628500	-3.25357400	1.52663500
Н	3.25066000	-1.68089400	2.10825800
Н	3.12818800	-1.53172800	-1.74692500
Н	4.24020200	-1.31593400	-0.38713000
Н	3.63255400	-2.92536200	-0.78697100

Zero-point correction=	0.630169 (Hartree/Particle)
Thermal correction to Energy=	0.658555
Thermal correction to Enthalpy=	0.659499
Thermal correction to Gibbs Free Ene	rgy= 0.577238
Sum of electronic and zero-point Ener	rgies= -974.022707
Sum of electronic and thermal Energi	es= -973.994321
Sum of electronic and thermal Enthal	pies= -973.993377
Sum of electronic and thermal Free E	nergies= -974.075638

 Table S27. Cartesian coordinates and energy values of 3^{iPr-Me2} for max1-(S/S).

N	1.47398500	-0.51297400	-0.04581500
С	0.67684600	0.67020300	0.42971300
С	1.78095000	1.79128900	0.40763100
С	2.60889500	-0.12876100	-0.91350600
С	2.54335600	1.41014100	-0.87225800
н	3.53616300	1.86560800	-0.91121100
н	1.98282200	1.78527500	-1.73483600
С	2.39661800	-0.63297800	-2.35637900
н	2.46881700	-1.72065300	-2.41159300
н	3.14975700	-0.21185600	-3.03074200
н	1.40904000	-0.33870000	-2.71707700
С	1.46846400	3.28703500	0.34507800
Н	0.96500800	3.57776000	-0.57058400
Н	2.42120100	3.82517800	0.37190400
Н	0.88779200	3.62980000	1.20238700
С	4.00745500	-0.59418100	-0.45200400
Н	4.27786000	-0.19456600	0.52340600
Н	4.74825300	-0.23611700	-1.17217400
Н	4.09333900	-1.67912300	-0.41522000
С	2.64800900	1.62198200	1.67224500
Н	2.09176400	1.96124500	2.55150300
Н	3.55134000	2.23400600	1.59445900
Н	2.95049300	0.59712300	1.84713200

N	-1.47401400	-0.51295200	0.04577300
С	-0.67686000	0.67019500	-0.42976300
С	-1.78093200	1.79130600	-0.40766700
С	-2.60884500	-0.12870700	0.91355700
С	-2.54331700	1.41020300	0.87224800
н	-3.53612800	1.86566200	0.91118100
н	-1.98279000	1.78537500	1.73481400
С	-2.39643900	-0.63286700	2.35643000
н	-1.40883400	-0.33857400	2.71704000
н	-2.46862900	-1.72054000	2.41168600
н	-3.14952200	-0.21172500	3.03084400
С	-1.46837100	3.28703500	-0.34516100
н	-2.42107600	3.82523400	-0.37198700
н	-0.88768800	3.62974300	-1.20248600
н	-0.96488700	3.57775500	0.57048600
С	-4.00743300	-0.59415900	0.45219300
н	-4.27790100	-0.19462800	-0.52323400
н	-4.74818500	-0.23603300	1.17238000
н	-4.09331700	-1.67910400	0.41551500
С	-2.64806300	1.62201200	-1.67223300
н	-2.09183900	1.96118200	-2.55154000
н	-3.55133600	2.23411700	-1.59442500
н	-2.95064700	0.59717100	-1.84704900
н	-0.38644400	0.34799900	-1.43099400
н	0.38644000	0.34801500	1.43094800
С	-1.42053000	-1.74067100	-0.75625100
C	-2.21821600	-1.76981100	-2.07877400
C	-1.72365300	-3.01619400	0.04561700
н	-0.37546000	-1.80343900	-1.05223200
н	-1.92385900	-0.95475500	-2.74165000
н	-2.00513500	-2.70610800	-2.60421500
н	-3.29666000	-1.71770600	-1.92211600
н	-1.19516100	-3.03236200	0.99814900
н	-2.78818100	-3.13850800	0.24988600
н	-1.40561800	-3.88858700	-0.53070400
С	1.42044600	-1.74068800	0.75621200
С	2.21811000	-1.76985400	2.07875000
С	1.72353500	-3.01620700	-0.04567000
н	0.37537000	-1.80342400	1.05218000
н	1.92376300	-0.95478700	2.74161700
н	2.00498300	-2.70614000	2.60419100
н	3.29655900	-1.71778300	1.92211900
Н	1.19495500	-3.03239100	-0.99815400
Н	2,78804600	-3.13849000	-0.25004400
н	1.40557800	-3.88860600	0.53068400
		2.000000000	
Zero-point	correction=	0	.631835 (Hartree
Thermal	orrection to Fr	nergy=	0.658746
	2		2.0007.10

0.631835 (Hartree/Particle)
0.658746
0.659691
ergy= 0.581457
ergies= -974.059536
gies= -974.032624
alpies= -974.031680
Energies= -974.109914

 Table S28. Cartesian coordinates and energy values of 3^{iPr-Me2} for max2-(S/S).

N	1.80768100	0.29021800	-0.02141900
С	0.75160600	-0.31475000	-0.87423100
С	0.92780900	-1.85517500	-0.57156600
С	2.19072700	-0.59536000	1.12119400
С	1.26543300	-1.80996500	0.92319800
Н	1.72658400	-2.73553700	1.27761300
Н	0.33354000	-1.67323700	1.47336400
С	1.91933800	0.09875300	2.46860400
Н	2.62707800	0.91093900	2.64460500
Н	2.01756500	-0.61433800	3.29351700
Н	0.91544900	0.51492500	2.49552300
С	-0.20657600	-2.85084100	-0.81013100
Н	-1.02094600	-2.71166100	-0.11268200
н	0.18679500	-3.86147400	-0.66162000

Н	-0.58383900	-2.80709400	-1.83509100
С	3.65728500	-1.08658100	1.16953000
Н	3.93127400	-1.70450100	0.31853300
н	3.77483400	-1.69924400	2.06724500
Н	4.37109400	-0.26810400	1.24746100
С	2.09792800	-2.38861600	-1.42427800
H	1.77882100	-2.49025600	-2.46648200
н	2.39707800	-3.38032300	-1.07236400
н	2.97180700	-1.75099500	-1.40982000
Ν	-1.80771900	-0.29017200	-0.02147900
С	-0.75162600	0.31480300	-0.87425000
С	-0.92782000	1.85520000	-0.57151500
С	-2.19067300	0.59531700	1.12122500
С	-1.26531900	1.80989200	0.92327600
н	-1.72638500	2.73545700	1.27781900
н	-0.33337800	1.67304400	1.47333200
С	-1.91925400	-0.09892100	2.46856300
н	-0.91539700	-0.51517900	2.49536900
н	-2.62704600	-0.91106200	2.64455900
н	-2.01735600	0.61411600	3.29353900
С	0.20653300	2.85086800	-0.81019700
н	-0.18685400	3.86151600	-0.66183400
н	0.58380600	2.80697700	-1.83514700
н	1.02090100	2.71182100	-0.11271300
С	-3.65720600	1.08661100	1.16967600
н	-3.93121400	1.70461400	0.31874700
н	-3.77468000	1.69919400	2.06745500
н	-4.37104700	0.26815700	1.24757300
С	-2.09803200	2.38866000	-1.42410100
н	-1.77899400	2.49045600	-2.46631000
н	-2.39722800	3.38030300	-1.07204600
н	-2.97185500	1.75096600	-1.40966600
н	-1.04063400	0.17670100	-1.92275100
н	1.04064300	-0.17660600	-1.92272000
С	-2.79911800	-1.15873000	-0.68453800
С	-3.87727200	-0.52145700	-1.59057900
С	-3.46008400	-2.14701300	0.28947800
Н	-2.21394900	-1.76321800	-1.36966900
Н	-3.42980900	0.06489800	-2.39385200
Н	-4.44716800	-1.32748700	-2.06343700
н	-4.58539800	0.10670400	-1.05210600
Н	-2.72378700	-2.61389600	0.94424200
н	-4.21132500	-1.67152400	0.92095600
н	-3.96516600	-2.93536500	-0.27484200
С	2.79908800	1.15877200	-0.68449700
С	3.87717200	0.52150200	-1.59061600
С	3.46009400	2.14701500	0.28952900
н	2.21391000	1.76329200	-1.36958300
н	3.42963300	-0.06485400	-2.39384500
Н	4.44702400	1.32753100	-2.06352700
Н	4.58535100	-0.10665500	-1.05221100
Н	2.72381000	2.61388100	0.94431900
Н	4.21135100	1.67151200	0.92097600
Н	3.96516500	2.93538000	-0.27478500
Zero-point	correction=	0	633137 (Hartree/Particle)

zero-point correction=	0.633137 (Hartree/Particle)	
Thermal correction to Energy=	0.660504	
Thermal correction to Enthalpy=	0.661448	
Thermal correction to Gibbs Free En	vergy= 0.581337	
Sum of electronic and zero-point En	ergies= -974.055361	
Sum of electronic and thermal Energy	gies= -974.027995	
Sum of electronic and thermal Entha	alpies= -974.027050	
Sum of electronic and thermal Free	Energies= -974.107161	

Table S29. Cartesian coordinates and energy values of 3^{iPr-Me_2} for max1-(R/S).

N	1.40853000	-0.60059500	-0.08065100
С	0.87429300	0.52757200	-0.81086600
Н	1.01481800	0.64794000	-1.89433300
С	2.03837200	1.61432500	-0.53349700
С	2.32391000	-0.21878300	1.03723600

С	2.41867000	1.31678200	0.905724	100
н	1.70249600	1.79504200	1.58028	700
н	3.41284100	1.68515700	1.172996	500
С	3.73540300	-0.84647500	0.967340	000
с Н	3 70/10800	_1 93199/00	1 05378	300
	4 22512200	0 47422800	1 00025	000
	4.32312200	-0.47452600	1.00925	900
H	4.26769300	-0.59250900	0.05381	300
C	3.18400800	1.20741600	-1.501890	000
н	3.33575000	0.13611600	-1.56243	000
н	4.12197300	1.67330400	-1.18666	000
Н	2.96080100	1.56890500	-2.51045	300
С	1.74887800	-0.54816300	2.42778	500
н	0.77292700	-0.08332600	2.55102	500
н	2 41179200	-0 14907000	3 20225	500
н	1 6/809700	-1 61958100	2 50777	200
C C	1 04162000	2 10025000	0.02000	200
C II	1.04105000	3.10855900	1 60000	200
H	1.16096200	3.26336400	-1.68002	200
н	2.80420600	3.53804600	-1.12/85	300
н	1.48769100	3.68628800	0.005576	500
N	-1.47107200	-0.44335400	-0.15918	600
С	-0.75856100	0.79042400	-0.70641	800
С	-1.51537800	1.94241200	0.042700	000
С	-2.26748900	-0.18828000	1.06266	300
Ċ	-1 86607100	1 25378300	1 37830	500
с н	-2 64491300	1 79370600	1 0770/	500
	-2.04491300	1.75370000	2.00570	000
П	-0.96964900	1.25756200	2.005/9	100
C	-1.86560700	-1.14556200	2.20163	100
н	-2.27598900	-2.14438200	2.04206	300
Н	-2.24330600	-0.78317800	3.16346	600
н	-0.78523000	-1.22957600	2.25471	200
С	-0.85866500	3.27090700	0.415002	200
н	0.00452200	3.13419800	1.061639	900
н	-1.59328700	3.85245200	0.98108	800
н	-0 57814900	3 86548000	-0.45110	700
C	2 91022200	0.27464700	0.45110	000
C II	-3.81022500	-0.27404700	0.94509	700
H	-4.23231800	0.43482500	0.23892	/00
н	-4.23542700	-0.05128800	1.92816	100
н	-4.14773200	-1.27403600	0.67318	100
С	-2.75780500	2.32359200	-0.78798	100
Н	-2.45005000	2.92067600	-1.65144	300
н	-3.44617300	2.92964200	-0.19136	800
н	-3.30174800	1.46360700	-1.16253	700
н	-1 07001000	0 58806900	-1 73138	200
C C	1 24020400	1 04802500	-0 64216	100
C	1.34020400	-1.94802300	-0.04210	100
C	1.24405500	-3.06044200	0.40895	900
C	2.42056800	-2.28937500	-1.69026	900
н	0.39888300	-1.97809400	-1.17946	700
н	0.45291100	-2.84531400	1.12554	200
Н	1.01170300	-4.00645400	-0.08714	800
н	2.17582300	-3.20664500	0.95688	400
н	2.43309600	-1.54951700	-2.49325	400
н	3,42073700	-2.34547100	-1.25808	500
н	2 10028000	-3 26123900	-2 1/295	600
C C	1 04026700	1 20500200	1 10100	100
C	-1.94026700	-1.38508200	-1.19108	100
C	-3.12456900	-0.95881300	-2.092/4	900
C	-2.18839200	-2.79835200	-0.65010	700
Н	-1.10004000	-1.47778400	-1.88528	100
Н	-2.94961300	0.00979300	-2.56302	800
Н	-3.23430700	-1.69094100	-2.89877	000
н	-4.07141500	-0.91570800	-1.55654	600
н	-1 35560300	-3 13851600	-0 03912	300
н	-3 09620000	-2 85610500	-0 0/211	100
	-3.03020000	2.85010500	1 40553	200
н	-2.31113300	-3.49290900	-1.48552	800
Zero-point	correction=	0	.632273 (I	Hartree/Particle)
Thermal c	orrection to Er	nergy=	0.6598	89
Thermal c	orrection to Er	nthalpy=	0.660	833
Thermal correction to Gibbs Free Energy= 0.579893				
Sum of electronic and zero-point Energies= -974.021823				
Sum of electronic and thermal Energies= -973.994207				
Sum of old	actronic and th	ermal Enthala	ies=	-973 003762
Juniorele	onic and th	cinai cinuidip	103-	515.555205

S104

Table S30. Cartesian coordinates and energy values of 3^{iPr-Me_2} for max2-(R/S).

N	-1.91275500	-0.25294100	-0.01562500
С	-0.60595800	0.30665500	0.39618200
Н	-0.42916900	0.02799800	1.43715900
С	-0.87465600	1.85258500	0.28571400
С	-2.55970600	0.61627900	-1.03457600
С	-1.66963200	1.88837000	-1.02872100
н	-0.97338700	1.86725900	-1.87253500
н	-2.26357900	2.80006300	-1.12875500
С	-4.02004800	1.02279200	-0.75329900
н	-4.69092000	0.16687500	-0.69966600
н	-4.36533400	1.65234200	-1.57748600
н	-4.12125000	1.60068200	0.16342500
С	-1.74779000	2.30218600	1.47390200
н	-2.65169700	1.71982300	1.58730000
н	-2.03996000	3.34769400	1.34097500
н	-1.18053300	2.23338800	2.40758000
С	-2.51869800	-0.06569400	-2.41613800
н	-1.50099200	-0.37817200	-2.65576100
н	-2.86418500	0.61615200	-3.20032300
н	-3.15630000	-0.95236400	-2.43320400
С	0.28751300	2.84346100	0.26084300
н	0.96261400	2.67968000	1.09897400
н	-0.11300700	3.85857300	0.34299600
н	0.85912100	2.80967800	-0.65974100
Ν	1.92650500	0.25356400	0.02036900
С	0.62190100	-0.25869400	-0.45374400
С	0.85304600	-1.81569800	-0.38756400
С	2.50136900	-0.66250100	1.04479700
С	1.58330700	-1.91294500	0.96011400
н	2.15336000	-2.83988900	1.05944400
н	0.84948300	-1.90114000	1.77169600
С	2.41866600	-0.01671400	2.44214400
Н	3.08716100	0.84412300	2.51286400
Н	2.70336200	-0.73190400	3.22110500
Н	1.40401200	0.32897300	2.64564600
С	-0.32564300	-2.78579800	-0.47097400
Н	-0.93378800	-2.80579300	0.42466900
Н	0.06377900	-3.79959900	-0.60727700
Н	-0.96656200	-2.55588300	-1.32105200
С	3.96236800	-1.10103800	0.81820700
Н	4.08750500	-1.66575300	-0.10375500
Н	4.25579400	-1.75338400	1.64479300
Н	4.65672600	-0.26228500	0.80842600
С	1.77627600	-2.23244700	-1.54989900
Н	1.25046700	-2.12987300	-2.50468800
Н	2.05590800	-3.28387600	-1.43909900
Н	2.68676800	-1.65295200	-1.60574400
Н	0.46418400	0.02972300	-1.49635500
С	-2.64336000	-1.12998300	0.90825600
С	-3.53957400	-2.15238200	0.18732000
С	-3.43639200	-0.50958600	2.08289300
Н	-1.86031600	-1.70468000	1.40344200
Н	-3.03642800	-2.59270600	-0.67087000
Н	-3.80567000	-2.95729400	0.87775000
Н	-4.47437200	-1.70796400	-0.15680100
Н	-2.79292600	0.07223500	2.74256300
Н	-4.26473800	0.11961000	1.75651500
Н	-3.86006300	-1.32288800	2.68053000
C	2.73084000	1.14201400	-0.82898900
Ċ	3.60106000	0.54398800	-1.96070300
C	3.57911400	2.13345600	-0.01428300
н	1.99407700	1./3806500	-1.36438900
н	3.00089000	-0.013/9900	-2.6/90/800
п	4.06960700	1.3/000600	-2.50502600
п	4.40132/00	-0.10058000	-1.59/36900
п	3.00199400	2.30000000	0.79222100
11	+.+	1.00201000	0.42243300

H 3.93740100 2.93516100 -0.66566900

Zero-point correction=	0.631581 (Hartree/Particle)
Thermal correction to Energy=	0.658638
Thermal correction to Enthalpy=	0.659582
Thermal correction to Gibbs Free Ene	ergy= 0.581178
Sum of electronic and zero-point Ene	rgies= -974.069177
Sum of electronic and thermal Energi	es= -974.042120
Sum of electronic and thermal Enthal	pies= -974.041175
Sum of electronic and thermal Free E	nergies= -974.119580

Table S31. Cartesian coordinates and energy values of 3^{tBu-Me_2} for max1-(R/R).

Ν	1.89887400	0.30509800	-0.14583000
С	0.63799500	-0.16456800	0.48472300
н	0.19172400	0.16785400	1,42912500
C	1 16753200	-1 /6196300	1 28502500
C C	2 20825300	1 7/065200	-0.40649100
C C	2.20823300	0.71028600	0.12852500
C	3.00207900	-0.71928600	-0.12852500
C	2.32108500	-1.97206200	0.44770800
н	1.95675800	-2.60126800	-0.35923800
н	3.02782500	-2.57137900	1.02772700
С	1.10985200	2.40377500	-1.26373100
Н	1.10307500	1.95363800	-2.25884600
н	1.32436800	3.47028000	-1.37082400
н	0.11763700	2.30902900	-0.86226400
С	4.23760600	-0.40262400	0.75620100
Н	4.81117600	0.45536200	0.41678700
н	4.90954200	-1.26502200	0.72134100
н	3,97410500	-0.23620500	1,79706800
C	1 67608400	-0.90016300	2 64316100
L L	2 1 2 7 1 2 0 0 0	0.05270200	2.5251/000
	2.18718000	1 60816600	2.33314900
п	2.55405000	-1.00810000	3.12723100
н	0.82860400	-0.73965800	3.31631300
С	2.43337600	2.49905900	0.92269900
н	1.64136500	2.30058400	1.64308700
н	2.48182100	3.57990300	0.76069800
Н	3.37505200	2.18502100	1.37681900
С	3.46362000	1.97159200	-1.28017200
Н	4.39408500	1.62570700	-0.84368700
Н	3.56205300	3.05034600	-1.42084200
Н	3.34719700	1.52419400	-2.26641300
С	3.51177800	-1.06970200	-1.54600600
H	2.67380200	-1.12659200	-2.24220600
н	4 00525800	-2 04605300	-1 52057000
н	4 23426900	-0 35508400	-1 93411600
C	0 17200200	2 55088000	1.55411000
с u	0.17200300	2.33088000	2 145 27900
п	-0.71918700	-2.11/35200	2.14557600
н	0.64165800	-3.19135500	2.44150600
н	-0.13991300	-3.19613100	0.8/545/00
N	-1.89889300	0.30511000	0.14573600
С	-0.63799600	-0.16456700	-0.48475200
Н	-0.19173000	0.16783300	-1.42916500
С	-1.16752400	-1.46194900	-1.28505900
С	-2.20829500	1.74064000	0.40648800
С	-3.00204100	-0.71932900	0.12854400
С	-2.32102500	-1.97209900	-0.44768900
н	-1.95665200	-2.60129400	0.35924300
н	-3.02777100	-2.57143500	-1.02768200
C	-1.10987600	2,40381300	1,26365000
н	-1 10278500	1 95346200	2 25866400
н	-1 32/65100	3 /7023800	1 37101/00
	0 11772900	2 20042600	0.96102200
п С	-0.11772800	2.30943000	0.80195200
	-4.23/60200	-0.402/6200	-0.75015800
П	-4.81105900	0.45538100	-0.41095300
н	-4.90961900	-1.26508800	-0.72103600
Н	-3.97413500	-0.23664900	-1.79708200
C	-1.67614400	-0.90007000	-2.64312700
Н	-2.18714700	0.05383900	-2.53503200
Н	-2.35481900	-1.60800400	-3.12714400
Н	-0.82871400	-0.73962400	-3.31635700

С	-2.43351100	2.49910600	-0.92265500
Н	-1.64155200	2.30066600	-1.64311500
Н	-2.48193700	3.57994300	-0.76059800
Н	-3.37521700	2.18509500	-1.37672700
С	-3.46359400	1.97148500	1.28029900
Н	-4.39406500	1.62543500	0.84396100
Н	-3.56215200	3.05023700	1.42089400
Н	-3.34699800	1.52417900	2.26656300
С	-3.51167300	-1.06968200	1.54606300
Н	-2.67367800	-1.12637300	2.24225800
Н	-4.00499800	-2.04611200	1.52072400
Н	-4.23426800	-0.35514000	1.93412100
С	-0.17196100	-2.55079800	-1.68822600
Н	0.71916400	-2.11720500	-2.14558600
Н	-0.64163400	-3.19129200	-2.44162000
Н	0.14006400	-3.19604000	-0.87563400

Zero-point correction=0.687750 (Hartree/Particle)Thermal correction to Energy=0.718146Thermal correction to Enthalpy=0.719091Thermal correction to Gibbs Free Energy=0.633740Sum of electronic and zero-point Energies=-1052.602064Sum of electronic and thermal Energies=-1052.571667Sum of electronic and thermal Enthalpies=-1052.570723Sum of electronic and thermal Free Energies=-1052.656074

Table S32. Cartesian coordinates and energy values of 3^{tBu-Me2} for max2-(R/R).

N	-1.76114800	-0.28172300	-0.29840900
С	-0.80596400	0.04545500	0.77441300
Н	-0.94885400	-0.09813200	1.85134700
С	-1.42614600	1.55678500	1.27565800
С	-1.98776500	-1.69350000	-0.72621000
С	-2.82221400	0.74582600	-0.56993300
С	-2.32493800	2.00948100	0.14415900
Н	-1.79209600	2.65099000	-0.55381400
Н	-3.16872700	2.59766500	0.51389600
С	-2.95413800	-1.90377300	-1.91448100
Н	-3.98710000	-1.62881300	-1.72193400
Н	-2.94654600	-2.97632500	-2.12652000
Н	-2.60992200	-1.39725500	-2.81378400
С	-4.23332200	0.39814800	-0.03031800
Н	-4.68667100	-0.45058000	-0.53554000
Н	-4.89262300	1.25587900	-0.19234300
Н	-4.22564900	0.18286400	1.03558600
С	-2.28941700	1.24419700	2.52970600
Н	-2.90425900	0.35355300	2.40637100
Н	-2.94740400	2.08627400	2.76068300
Н	-1.64726300	1.07845100	3.40107200
С	-0.65634600	-2.21700000	-1.28226900
Н	-0.51452000	-1.82932800	-2.29302400
Н	-0.63066600	-3.30965100	-1.32538800
Н	0.17048400	-1.85988200	-0.70194400
С	-2.56443300	-2.52357700	0.44395400
Н	-2.06389900	-2.30372800	1.38195900
Н	-2.48267800	-3.59761800	0.25217000
Н	-3.62290600	-2.28878700	0.57375500
С	-2.95121600	1.10334500	-2.06993700
Н	-1.96182800	1.15543900	-2.52648900
Н	-3.42233800	2.08674200	-2.15873900
Н	-3.56441700	0.40615800	-2.63464300
С	-0.46381600	2.64883600	1.73600100
Н	-1.04586700	3.44354800	2.21508600
Н	0.09922100	3.10327200	0.93029500
Н	0.23776800	2.27221300	2.48343700
Ν	1.76097600	0.28151200	-0.29883400
С	0.80596700	-0.04529500	0.77429200
Н	0.94909100	0.09887900	1.85110200
С	1.42605500	-1.55633800	1.27598900
С	1.98783900	1.69328100	-0.72653300
С	2.82222400	-0.74600100	-0.56979600

С	2.32492000	-2.00942400	0.14467900
н	1.79211900	-2.65116700	-0.55311100
Н	3.16867200	-2.59749400	0.51467200
С	2.95421500	1.90340800	-1.91480700
Н	3.98718300	1.62852700	-1.72218400
Н	2.94658600	2.97591800	-2.12706700
Н	2.61003900	1.39668800	-2.81401600
С	4.23325500	-0.39803900	-0.03014900
Н	4.68680300	0.45021900	-0.53598200
Н	4.89249600	-1.25596600	-0.19136500
Н	4.22539900	-0.18190200	1.03558000
С	2.28929700	-1.24350100	2.53001800
н	2.90416200	-0.35288200	2.40655000
Н	2.94726300	-2.08553100	2.76122200
Н	1.64709400	-1.07755000	3.40131300
С	0.65646400	2.21686900	-1.28254600
Н	0.51446600	1.82902700	-2.29321200
Н	0.63094500	3.30952100	-1.32584200
Н	-0.17031700	1.85998100	-0.70202800
С	2.56442300	2.52325300	0.44371600
Н	2.06375900	2.30332800	1.38164600
Н	2.48269000	3.59731100	0.25202900
Н	3.62288200	2.28847400	0.57362800
С	2.95147400	-1.10400500	-2.06965600
Н	1.96215900	-1.15653600	-2.52630600
Н	3.42290800	-2.08728700	-2.15807900
Н	3.56452600	-0.40680900	-2.63452400
С	0.46368000	-2.64826800	1.73650900
Н	1.04566700	-3.44290100	2.21580100
н	-0.09926700	-3.10282800	0.93082000
н	-0.23795300	-2.27147200	2.48380400

Zero-point correction0.687531 (Hartree/Particle)Thermal correction to Energy=0.717958Thermal correction to Enthalpy=0.718902Thermal correction to Gibbs Free Energy=0.632461Sum of electronic and zero-point Energies=-1052.552589Sum of electronic and thermal Energies=-1052.522162Sum of electronic and thermal Enthalpies=-1052.521218Sum of electronic and thermal Free Energies=-1052.607659

Table S33. Cartesian coordinates and energy values of 3^{tBu-Me2} for max1-(S/S).

N	-1.94976900	-0.15518100	0.04243200	
С	-0.74268800	0.39716700	-0.70271800	
С	-0.83553600	1.92300500	-0.34007600	
С	-3.09309600	-0.78770100	-0.72683500	
С	-2.20549600	0.62869600	1.29260800	
С	-1.25101500	1.83025800	1.13912700	
н	-1.71527200	2.76227200	1.47094600	
н	-0.35403800	1.69670600	1.74122200	
С	-4.30631300	0.09701000	-1.16112400	
н	-4.90646500	0.47507200	-0.34195800	
н	-4.96304600	-0.53287700	-1.76748800	
н	-4.00395700	0.92691000	-1.79596300	
С	-1.86788800	-0.20839000	2.54055500	
н	-2.56440400	-1.04211600	2.65020000	
н	-1.92717300	0.40434900	3.44607400	
Н	-0.86534800	-0.61706500	2.47890200	
С	0.36778600	2.86420500	-0.38724800	
Н	1.22828700	2.40965800	0.07944200	
Н	0.10644000	3.76864800	0.17198700	
Н	0.61295500	3.19091100	-1.39799700	
С	-2.62567700	-1.36410700	-2.08622500	
Н	-2.56844100	-0.57977900	-2.84485900	
Н	-3.37159100	-2.08451200	-2.42950000	
Н	-1.67194900	-1.87016600	-2.05235100	
С	-3.70001000	-1.92386000	0.12936900	
Н	-2.98387900	-2.71236700	0.34886500	
н	-4.54509500	-2.37567100	-0.39702300	
Н	-4.07483300	-1.54271800	1.07875200	
С	-3.62150000	1.19514300	1.54002900	
---	------------------	-------------	----------------------------	--
Н	-3.93515000	1.90875900	0.78102400	
Н	-3.58672200	1.73141300	2.49159400	
Н	-4.38280700	0.42217600	1.63928600	
С	-1.92507400	2.59843000	-1.18977100	
н	-1.66064000	2.55878700	-2.25088800	
н	-2.01096800	3.65207200	-0.90753700	
н	-2.89925400	2.14538000	-1.06510500	
N	1,94972500	0.15518900	0.04258100	
C	0 74250000	-0 39686800	-0.70269300	
C C	0.83531600	-1 92287700	-0 34077800	
C C	3 09281800	0 78830800	-0 72664900	
C C	2 20603100	-0 62950600	1 2921/100	
C C	1 25183200	-1 83119800	1 13821600	
ц	1 71660300	-2 76337700	1.15821000	
н Ц	0.25520400	-2.70357700	1.40884000	
C C	2 60055000	1 02/22/00	0 12987500	
L L	3.03333000	2 71252200	0.12987500	
	2.98320300	2.71252300	0.34994900	
	4.54439200	2.37001100	-0.39051000	
	4.07470900	1.54282200	1.07898800	
	1.808/0000	0.20057300	2.54087900	
н	0.86587300	0.61458300	2.48038500	
н	2.56479500	1.04069900	2.65049900	
Н	1.92920400	-0.406/3900	3.44593400	
C	-0.36820300	-2.86388000	-0.38750500	
Н	-0.10663200	-3.76854300	0.17127000	
Н	-0.61408900	-3.19027000	-1.39817400	
Н	-1.22836100	-2.40931000	0.07983900	
С	4.30634900	-0.09582300	-1.16124900	
Н	4.90741900	-0.47275500	-0.34223500	
Н	4.96215300	0.53412100	-1.76856200	
Н	4.00421900	-0.92645200	-1.79523400	
С	2.62512100	1.36486400	-2.08587200	
Н	2.56817600	0.58066600	-2.84466800	
Н	3.37077500	2.08561300	-2.42899300	
Н	1.67121900	1.87057400	-2.05191700	
С	3.62225200	-1.19581400	1.53861400	
Н	3.93586300	-1.90853300	0.77876000	
Н	3.58787100	-1.73306500	2.48963600	
Н	4.38336000	-0.42272500	1.63847500	
С	1.92417800	-2.59795000	-1.19164400	
Н	1.65884800	-2.55789200	-2.25252000	
Н	2.01042500	-3.65169400	-0.90989800	
Н	2.89841300	-2.14481100	-1.06759500	
Н	1.05624900	-0.08731400	-1.69307300	
н	-1.05637600	0.08785300	-1.69320500	
Zero-poin	t correction=	0	.689024 (Hartree/Particle)	
Thermal	correction to Er	nergy=	0.718212	
Thermal	correction to Er	nthalpy=	0.719156	
Thermal correction to Gibbs Free Energy= 0.637201				
Sum of electronic and zero-point Energies= -1052.598194				
Sum of electronic and thermal Energies= -1052.569006				
Sum of electronic and thermal Enthalpies= -1052.568062				
Sum of electronic and thermal Free Energies= -1052.650017				

 Table S34. Cartesian coordinates and energy values of 3^{tBu-Me2} for max2-(S/S).

N	1.63340300	-0.42530900	-0.10693300
С	0.68398400	0.59309600	0.44426900
С	1.64821300	1.82885700	0.60785800
С	2.00791200	-1.68791200	0.62531600
С	2.51879900	0.26704900	-1.10152100
С	2.37801500	1.77919900	-0.73853800
Н	3.35062600	2.27705900	-0.70209200
Н	1.78286400	2.29553100	-1.49670200
С	1.88345300	-2.89675300	-0.33029900
Н	0.85772400	-3.08415100	-0.62775400
Н	2.26292400	-3.80166100	0.15273200
Н	2.47372200	-2.73333600	-1.23429900
С	2.03403900	0.01913000	-2.54759600

н	2.08166600	-1.04302300	-2.79651400	
н	2,66523100	0.56337400	-3.25751700	
н	1 00878200	0.35/61600	-2 69801/00	
C C	1 12271200	2 22447100	0.96761500	
	1.13371200	3.23447100	0.90701300	
н	0.93993500	3.85132500	0.09952900	
н	1.89585400	3.75438900	1.55218100	
Н	0.23476500	3.19717100	1.58615300	
С	3.44023100	-1.84016800	1.23774200	
Н	4.21130800	-2.00701600	0.49164200	
н	3.41836200	-2.73077200	1.87075600	
н	3.74796400	-1.01614400	1.87681900	
C	1 06461000	-1 87789900	1 82449300	
н	1 34274000	-1 21570900	2 64831200	
	1.14001500	2 00511900	2.04031200	
	1.14901300	-2.90311800	1 5 6 5 2 9 0 0	
	0.03047000	-1.68442900	1.56552800	
C	4.01125900	-0.10095900	-1.08429100	
Н	4.48482000	0.10682800	-0.12683900	
Н	4.50999700	0.51293000	-1.83808600	
Н	4.18680800	-1.14307400	-1.35288400	
С	2.61202600	1.49590700	1.76661600	
н	2.08232600	1.54038900	2.72365800	
н	3.41956000	2.23249600	1.79979900	
н	3 05702200	0 51879500	1 67187900	
N	1 62260000	0.42527200	0.10617100	
N C	-1.03300000	-0.42537300	0.1061/100	
C	-0.68454100	0.59312500	-0.44505200	
С	-1.64869200	1.82900000	-0.60734000	
С	-2.00729200	-1.68833300	-0.62555700	
С	-2.51888300	0.26639200	1.10123400	
С	-2.37689600	1.77888200	0.73992500	
н	-3.34900400	2.27785500	0.70530500	
н	-1.78022800	2.29362900	1.49797400	
C	-1.06158900	-1 87961400	-1 82262500	
с ц	1 22972100	1 21862200	-2 64776500	
	1 1 4 4 6 0 5 0 0	-1.21803200	2 1825 6000	
н	-1.14469500	-2.90/33/00	-2.18356900	
н	-0.02810500	-1.68497900	-1.56203000	
С	-2.03495600	0.01661100	2.54723200	
н	-1.00935600	0.35077900	2.69823300	
Н	-2.08386400	-1.04571300	2.79517300	
Н	-2.66578900	0.56090000	3.25744300	
С	-1.13362700	3.23421200	-0.96774400	
н	-1.89551500	3.75438100	-1.55239400	
н	-0.23476300	3 19617800	-1 58637200	
	-0.23470300	3.19017800	-1.58057200	
	-0.93928300	3.85131400	-0.09997300	
C	-1.88561300	-2.89577600	0.33206500	
н	-0.86104800	-3.08066700	0.63510900	
Н	-2.26093300	-3.80203200	-0.15168300	
Н	-2.48085800	-2.73233200	1.23280600	
С	-3.43807300	-1.84043100	-1.24149900	
н	-4.21224600	-2.00127800	-0.49734600	
н	-3.41628600	-2.73443300	-1.86973600	
н	-3,74103500	-1.01904500	-1.88628500	
C	-4 01155100	-0 10077200	1 08269600	
L L	-1 19129200	0.10077200	0.12510200	
	4 5 1 0 5 8 6 0 0	0.10822000	1 82670000	
	-4.51058600	0.51251600	1.83679000	
н	-4.18//0/00	-1.14311100	1.35004200	
С	-2.61451000	1.49653400	-1.76456800	
Н	-2.08589600	1.53829600	-2.72233900	
Н	-3.42034700	2.23496400	-1.79786200	
н	-3.06178400	0.52068200	-1.66765500	
н	-0.37523000	0.27078200	-1.42675900	
н	0 37428700	0 27027400	1 42569100	
	0.37420700	0.27027400	1.42505100	
7		0		
zero-point	contection=	0		
i nermal c	orrection to Er	iergy=	0./18226	
Thermal correction to Enthalpy= 0.719170				
Thermal correction to Gibbs Free Energy= 0.636160				
Sum of electronic and zero-point Energies= -1052.620325				
Sum of electronic and thermal Energies= -1052.591152				
Sum of electronic and thermal Enthalpies= -1052.590208				

Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=

-1052.673218

N	1.54604300	-0.53044300	0.04573700
<u> </u>	0.04122000	0.27050500	0.96446000
C	0.04122000	0.57950500	-0.80440000
Н	0.97438100	0.41643900	-1.95079400
C	1.89294600	1.62164100	-0.87980100
c c	1 05220200	1 05159700	0 20619500
C	1.82339300	-1.95158/00	-0.29018500
С	2.42614400	0.23078700	1.03395400
C	2.30970700	1,70633300	0.57704700
	1 55247000	2.70000000	1 17200400
п	1.55347000	2.21013700	1.17260400
Н	3.25174000	2.24197300	0.72384200
C	1.87218300	-2.82444500	0.97463900
	0.01608000	2 76 41 2800	1 40592200
н	0.91698900	-2.76412800	1.49582300
Н	2.66094500	-2.54773200	1.67180400
н	2.04119900	-3.86708200	0.69330800
с С	2.07110000	0.15005000	1.00540400
C	3.92059700	-0.12982800	1.09540400
Н	4.07840200	-1.18239100	1.43718000
Н	4.39944300	0.49248200	1.83315000
н	1 16228200	-0 02/36800	0 16136100
	4.40220200	-0.02430800	0.10130100
C	3.104/9200	1.15630000	-1.73028000
Н	3.51245000	0.20290100	-1.43088000
н	3,89902000	1.90615700	-1.66616000
	2 91 61 45 00	1 07444700	2.702520000
п	2.81014500	1.07444700	-2.78253900
С	0.73110200	-2.47766500	-1.17691200
Н	0.80323300	-3.56241100	-1.28184500
н	0 79065600	-2 0/109000	-2 17/150600
	0.75005000	-2.04100000	-2.17450000
н	-0.21393500	-2.21502500	-0.72452500
С	3.15704500	-2.21461300	-1.09698900
н	3.15070100	-1.66892400	-2.04130300
ц	2 10779/00	2 27062800	1 2/208800
	3.19778400	-3.27902800	-1.34308800
н	4.06931700	-1.97478600	-0.55871300
С	1.93904300	0.12343100	2.49258400
н	0 91957200	0 47068000	2 60569400
	2 57472500	0.75017400	2 12522600
н	2.57472500	0.75017400	3.12532600
н	1.99308000	-0.89551000	2.87515600
С	1.44102500	2.91460500	-1.60230000
н	2 06440800	3 09126600	-2 /17007800
	2.00440800	5.05120000	-2.47557800
н	1.52915000	3.80085000	-0.97793400
Н	0.41537900	2.85256300	-1.95935300
N	-1.63669000	-0.35997100	-0.03631900
 C	0.70024000	0.755357.200	0 72080400
C	-0.78824000	0.75525000	-0.73080400
С	-1.38937000	2.01440000	0.01840800
С	-2.58644100	-1.22115500	-0.84324100
C	-1 95359800	-0 00334200	1 37602500
c	1.000000	0.000004200	1.37002300
C	-1.44709500	1.44752700	1.45404400
Н	-2.08003200	2.06545900	2.09560000
н	-0.44159700	1.49080000	1.87085800
C	4 06650200	0.75559400	1 04042500
C	-4.00050200	-0.75556400	-1.04042500
н	-4.61315800	-0.58468800	-0.12100500
Н	-4.59077500	-1.54943600	-1.57965600
н	-4.13351000	0.13566800	-1.66300800
C	1 21001700	0.05275500	2 22106200
C	-1.21091700	-0.93273300	2.33190300
н	-1.72381900	-1.91510300	2.39130100
н	-1.15729200	-0.54185700	3.34594000
н	-0 20962500	-1 12437200	1 95791400
	0.20302300	2.44.020000	1.55751400
L	-0.75385700	3.41028000	0.16118300
н	0.25478300	3.40254700	0.55511000
н	-1.36999800	3.95224700	0.88472400
н	-0 77273800	3 98885100	-0 76012700
	0.77273000	3.30003400	0.70012700
C	-2.11875200	-1.40563600	-2.31044000
н	-2.33660100	-0.51913300	-2.91131800
н	-2.69184400	-2.22577100	-2.74808000
н	-1 07015200	-1 6/220700	-2 42225400
	-1.0/012200	-1.04259/00	-2.42233400
C	-2.67229300	-2.61233800	-0.16991900
н	-1.69183600	-3.05179900	-0.00329400
н	-3.25183700	-3.29485400	-0.79715000
н	-3 17585700	-2 55540600	0 70//5600
	3.1/303/00	2.33343000	0.75445000
ι	-3.42/68300	0.01257000	1.84801000
н	-4.03859000	0.74987300	1.33081200
н	-3.41610600	0.28822100	2.90604100
	2 011E1200	0.06072100	1 792//900
н			

 Table S35. Cartesian coordinates and energy values of 3^{tBu-Me_2} for max1-(R/S).

С Н Н Н	-2.78548300 -2.69357500 -3.27660300 -3.43113600 -1.17245300	2.31257900 2.68394200 3.09103900 1.44904700 0.37045900	-0.55750 -1.58275 0.03345 -0.56865 -1.66482	400 100 400 700 700
Zero-point correction= 0.689106 (Hartree/Particle) Thermal correction to Energy= 0.718798 Thermal correction to Enthalpy= 0.719742				
Thermal correction to Gibbs Free Energy=0.636394Sum of electronic and zero-point Energies=-1052.560708Sum of electronic and thermal Energies=-1052.531017Sum of electronic and thermal Enthalpies=-1052.530073Sum of electronic and thermal Free Energies=-1052.613421				

Table S36. Cartesian coordinates and energy values of 3^{tBu-Me_2} for max2-(R/S).

N	2.09285600	0.01611900	0.12262000
С	0.71549500	-0.05939400	0.69720100
н	0.52533900	0.35527600	1.69395900
С	0.78573500	-1.57104400	1.20251300
С	2.83063100	1.27120200	-0.13348800
С	2.48342600	-1.27178400	-0.53621300
С	1.47405600	-2.28266200	0.04822300
H	0.75737300	-2.57653900	-0.70859400
н	1.97023600	-3.19571300	0.38379500
С	4.33332500	1.08179700	-0.44451200
H	4.51727900	0.57951900	-1.39231700
н	4.85782100	0.55764000	0.35222100
н	4 76703000	2 08229000	-0 52444900
C	3 89875600	-1 80090400	-0 18136400
н	4 70166000	-1 31278800	-0 72449100
н	3 9385/000	-2 86023700	-0.44702600
н ц	4 00861500	-2.80025700	0.44702000
п С	4.09801300	1.71803100	0.88707800
	1./1/48400	-1.55634800	2.44254800
	2.03030300	-1.00529100	2.25855700
п 	1.97112000	-2.58038500	2.73203400
н	1.20700800	-1.09180500	3.291/9800
C	2.28577700	2.02358500	-1.38016400
н	2.59896200	3.0/18/400	-1.38916800
н	1.20685000	1.97765000	-1.45585000
Н	2.68391600	1.55891500	-2.28371000
С	2.85452600	2.08435800	1.18272800
н	1.93471800	2.00296400	1.74482600
Н	3.05936800	3.14189900	0.99991100
Н	3.64748300	1.68963900	1.82166600
С	2.36878300	-1.23560200	-2.07487200
н	1.40117400	-0.84322700	-2.38925100
н	2.47816500	-2.24543600	-2.48267200
Н	3.14289400	-0.61430400	-2.52799300
С	-0.47427000	-2.29901000	1.67181400
н	-0.20968000	-3.34025800	1.88862700
н	-1.27982100	-2.27564900	0.95636500
Н	-0.85152400	-1.86739200	2.60008200
Ν	-1.87320000	-0.23790900	-0.00853800
С	-0.51688300	0.45266100	-0.22787400
С	-0.92405900	1.97562900	-0.01330800
С	-2.45055000	-1.11755900	-1.08312000
С	-2.79557200	0.58083400	0.83683300
С	-1.93747700	1.80450300	1.13330100
н	-2.53607100	2.70621800	1.27855400
н	-1.37471200	1.64673600	2.05871700
С	-3.55912700	-2.02005200	-0.49374200
н	-3.17778900	-2.60980000	0.34035400
н	-3.89797800	-2.71403200	-1.26676600
н	-4.43175600	-1.47480700	-0.14727600
C	-3.15687800	-0.13049400	2,15583400
н	-3.76313500	-1.02177700	1.99253100
н	-3 72402700	0 54617300	2 80294600
н	-2 25379900	-0 42651100	2.68620900
C	0.00341700	3.08454800	0.52124700
~	2.22271/00		J.J.L.L.T/ UU

0.37490700	2.86532000	1.51669000
-0.61806700	3.98031200	0.61739500
0.83436200	3.34962100	-0.11830700
-3.01229300	-0.37626200	-2.32664600
-3.78780300	0.34477000	-2.08881500
-3.44571400	-1.10632900	-3.01572900
-2.21212200	0.13569200	-2.86507300
-1.42370900	-2.10848000	-1.66401100
-0.55378900	-1.61838900	-2.09670500
-1.90552800	-2.66446400	-2.47085500
-1.09255400	-2.83213900	-0.92605800
-4.12071300	1.10369800	0.21833100
-3.95456900	1.77419600	-0.62129000
-4.63187300	1.68142800	0.99256800
-4.80799900	0.32236200	-0.09602900
-1.53933600	2.53828200	-1.30555300
-0.74860900	2.76402500	-2.02697000
-2.07001900	3.47261000	-1.09975500
-2.23096700	1.85534200	-1.78132100
-0.33208000	0.05696500	-1.22320900
	0.37490700 -0.61806700 0.83436200 -3.01229300 -3.78780300 -3.44571400 -2.21212200 -1.42370900 -1.90552800 -1.90552800 -1.09255400 -4.12071300 -3.95456900 -4.63187300 -4.63187300 -1.53933600 -0.74860900 -2.07001900 -2.23096700 -0.33208000	0.37490700 2.86532000 -0.61806700 3.98031200 0.83436200 3.34962100 -3.01229300 -0.37626200 -3.78780300 0.34477000 -3.44571400 -1.10632900 -2.21212200 0.13569200 -1.42370900 -2.10848000 -0.55378900 -1.61838900 -1.90552800 -2.66446400 -1.09255400 -2.83213900 -4.12071300 1.10369800 -3.95456900 1.77419600 -4.63187300 1.68142800 -4.63187300 2.53828200 -0.74860900 2.76402500 -2.07001900 3.47261000 -2.23096700 1.85534200 -0.33208000 0.05696500

Zero-point correction=	0.688984 (Hartree/Particle)
Thermal correction to Energy=	0.718736
Thermal correction to Enthalpy=	0.719680
Thermal correction to Gibbs Free End	ergy= 0.636244
Sum of electronic and zero-point Ene	ergies= -1052.616805
Sum of electronic and thermal Energ	ies= -1052.587052
Sum of electronic and thermal Entha	lpies= -1052.586108
Sum of electronic and thermal Free E	Energies= -1052.669544

Table S37. Cartesian coordinates and energy values of radical-cation state of 3^{iPr-Me2} for anti-(R/R).

N	1.89829400	0.15922900	0.27881300
С	0.66190000	-0.53293800	0.22489800
н	0.45667200	-0.97816100	1.20286900
С	0.82023500	-1.67499800	-0.81740400
С	2.93741700	-0.36927300	-0.66386100
С	2.09393500	-1.27058600	-1.58203800
Н	1.82232800	-0.71442000	-2.48076200
н	2.66305300	-2.14209300	-1.90780400
С	4.00437300	-1.17301500	0.10958300
н	4.61507300	-0.52464100	0.73769500
Н	4.66933900	-1.65004000	-0.61317000
Н	3.56986200	-1.95050700	0.73495000
С	1.01611200	-2.99341300	-0.03924100
Н	1.80165600	-2.92298200	0.71343700
Н	1.27964200	-3.80129900	-0.72518700
Н	0.09159600	-3.27972300	0.46952200
С	3.66138500	0.69427700	-1.50657800
Н	2.96398000	1.36157500	-2.00740800
Н	4.23247500	0.17195400	-2.27757800
Н	4.36639400	1.28605200	-0.92813000
С	-0.33799400	-1.88102700	-1.79089200
н	-1.23543300	-2.21582700	-1.27423600
Н	-0.06475400	-2.65388500	-2.51351400
Н	-0.57220000	-0.97607500	-2.34947300
Ν	-1.89816200	-0.15962600	0.27852700
С	-0.66185700	0.53276500	0.22506000
Н	-0.45665200	0.97748500	1.20329500
С	-0.82032800	1.67559200	-0.81634000
С	-2.93743500	0.36981700	-0.66340200
С	-2.09400400	1.27155500	-1.58120500
н	-1.82246100	0.71586200	-2.48021900
Н	-2.66313800	2.14323900	-1.90646100
С	-4.00385000	1.17334100	0.11098600
Н	-4.61447600	0.52476000	0.73895500
Н	-4.66897300	1.65105300	-0.61117100
Н	-3.56878800	1.95026500	0.73667300
С	-1.01648800	2.99347800	-0.03734000
Н	-1.80232200	2.92255300	0.71498800
н	-1.27979600	3.80178400	-0.72288100

Н	-0.09217400	3.27951800	0.47192600
С	-3.66195400	-0.69305900	-1.50650600
Н	-2.96501900	-1.36071000	-2.00758800
Н	-4.23277400	-0.17022700	-2.27736200
Н	-4.36726300	-1.28458900	-0.92818400
С	0.33789500	1.88253700	-1.78964600
Н	1.23505700	2.21807900	-1.27290300
Н	0.06416800	2.65517600	-2.51231900
Н	0.57286500	0.97775500	-2.34816400
С	-2.16592900	-0.97352600	1.47746300
С	-3.22506500	-2.05732800	1.29281200
С	-2.45017200	-0.11882400	2.72858200
н	-1.22369800	-1.49781800	1.66789700
н	-3.02194700	-2.67962200	0.42132400
н	-3.21241200	-2.70061500	2.17456700
н	-4.23108200	-1.64713900	1.20697800
н	-1.70251200	0.66443500	2.86686900
н	-3.43255700	0.34891500	2.67760300
Н	-2.42616500	-0.76011000	3.61184700
С	2.16609100	0.97212100	1.47841100
С	3.22463400	2.05657400	1.29436200
С	2.45106100	0.11639400	2.72866500
н	1.22364100	1.49576400	1.66960600
н	3.02083800	2.67957300	0.42353600
н	3.21204200	2.69906100	2.17670400
Н	4.23081800	1.64695700	1.20774400
Н	1.70371300	-0.66725200	2.86647200
Н	3.43358700	-0.35096400	2.67696200
Н	2.42709400	0.75688700	3.61250700

Zero-point correction=	0.632007 (Hartree/Particle)
Thermal correction to Energy=	0.660438
Thermal correction to Enthalpy=	0.661382
Thermal correction to Gibbs Free Ene	ergy= 0.578066
Sum of electronic and zero-point Ene	ergies= -973.861794
Sum of electronic and thermal Energ	ies= -973.833364
Sum of electronic and thermal Entha	lpies= -973.832420
Sum of electronic and thermal Free E	nergies= -973.915736

Table S38. Cartesian coordinates and energy values of radical-cation state of 3^{iPr-Me2} for gauche-(R/R).

N	-1.45096600	-0.47777800	0.26802500
С	-0.77915500	0.77520600	0.30035600
н	-0.60264700	1.05817800	1.33626000
С	-1.73127300	1.79240900	-0.41320500
С	-2.70627200	-0.49784500	-0.54256200
С	-2.61870800	0.85788200	-1.25735700
Н	-2.15158800	0.71222500	-2.23530200
Н	-3.60691700	1.28380100	-1.43487500
С	-3.95427300	-0.59992600	0.35677600
Н	-4.00909100	-1.56212000	0.86479500
Н	-4.84315400	-0.51037200	-0.27095700
Н	-3.99057300	0.18807100	1.10573700
С	-2.52824000	2.53816800	0.67493700
н	-2.93991700	1.86366500	1.42565400
н	-3.35666200	3.09174100	0.22757600
н	-1.89033900	3.25631000	1.19413000
С	-2.75861700	-1.62583300	-1.58697300
н	-1.85316900	-1.64643700	-2.19587300
н	-3.60062900	-1.43255100	-2.25541900
н	-2.91175200	-2.60757400	-1.14506200
С	-1.11421900	2.83895500	-1.35213900
Н	-1.92705000	3.42052500	-1.79361200
Н	-0.56337800	2.39261400	-2.18217500
Н	-0.46047200	3.54313200	-0.84161100
Ν	1.45095100	-0.47782000	-0.26800500
С	0.77917400	0.77518100	-0.30034100
Н	0.60266800	1.05814700	-1.33624500
С	1.73132800	1.79236600	0.41320100
С	2.70628900	-0.49789600	0.54253400
С	2.61874200	0.85782000	1.25735300

Н	2.15161800	0.71215900	2.23529500
Н	3.60695700	1.28372300	1.43487500
С	3.95425700	-0.59994100	-0.35685200
Н	4.00906800	-1.56211800	-0.86490200
Н	4.84316000	-0.51039400	0.27085100
Н	3.99052000	0.18808100	-1.10579100
С	2.52831400	2.53807900	-0.67495700
Н	2.93998600	1.86354600	-1.42564900
Н	3.35674200	3.09165300	-0.22760600
Н	1.89042900	3.25621700	-1.19417700
С	2.75868800	-1.62589800	1.58692700
Н	1.85327300	-1.64651200	2.19587600
Н	3.60073500	-1.43262600	2.25533200
Н	2.91180000	-2.60763300	1.14499500
С	1.11431700	2.83894500	1.35212700
Н	0.46058500	3.54313300	0.84159600
Н	1.92717100	3.42049700	1.79358100
Н	0.56347300	2.39263300	2.18217700
С	1.06665600	-1.44518400	-1.30074100
С	1.46243000	-2.89283800	-1.01991200
С	1.52690900	-1.02485900	-2.71133000
Н	-0.02980800	-1.39750300	-1.29107000
Н	1.14099100	-3.22688300	-0.03583500
Н	0.97848800	-3.52890000	-1.76357100
Н	2.53636300	-3.05517700	-1.11023600
Н	1.23982200	-0.00064900	-2.95261500
Н	2.60911300	-1.11177000	-2.81096400
Н	1.06516500	-1.68211600	-3.45080100
С	-1.06673800	-1.44513300	1.30079300
С	-1.46259100	-2.89277100	1.01999400
С	-1.52699300	-1.02474500	2.71136300
Н	0.02972800	-1.39751000	1.29113800
Н	-1.14116200	-3.22685700	0.03592800
Н	-0.97869500	-3.52884300	1.76367400
Н	-2.53653500	-3.05504400	1.11031000
Н	-1.23985800	-0.00054200	2.95262200
Н	-2.60920300	-1.11159900	2.81098200
Н	-1.06529300	-1.68200400	3.45086000

Zero-point correction=	0.631895 (Hartree/Particle)
Thermal correction to Energy=	0.660228
Thermal correction to Enthalpy=	0.661172
Thermal correction to Gibbs Free Ene	ergy= 0.578414
Sum of electronic and zero-point Ene	ergies= -973.873501
Sum of electronic and thermal Energ	ies= -973.845168
Sum of electronic and thermal Entha	lpies= -973.844224
Sum of electronic and thermal Free E	Energies= -973.926981

 Table S39. Cartesian coordinates and energy values of radical-cation state of 3^{iPr-Me2} for anti-(S/S).

N	-1.89877100	0.15969600	0.27855100
С	-0.66322400	-0.53328600	0.22472700
С	-0.82222100	-1.67564200	-0.81694200
С	-2.93836200	-0.36846100	-0.66398200
С	-2.09516600	-1.27003500	-1.58216500
н	-2.66476000	-2.14096200	-1.90863200
Н	-1.82257500	-0.71359100	-2.48040900
С	-3.66222700	0.69525100	-1.50651200
Н	-4.36678200	1.28726800	-0.92776400
Н	-4.23386100	0.17305400	-2.27720200
Н	-2.96502400	1.36241800	-2.00783400
С	0.33627600	-1.88358400	-1.78967500
Н	0.57166100	-0.97935200	-2.34889300
Н	0.06274700	-2.65683400	-2.51177100
Н	1.23311300	-2.21873800	-1.27219700
С	-4.00543100	-1.17173400	0.10975700
Н	-3.57102400	-1.94861100	0.73592000
Н	-4.67012900	-1.64943200	-0.61279400
Н	-4.61641400	-0.52294200	0.73716900
С	-1.01987200	-2.99349400	-0.03819700
Н	-0.09573600	-3.28082300	0.47066900

н	-1.28441000	-3.80128600	-0.72387400
Н	-1.80532100	-2.92183700	0.71443600
N	1.89877000	-0.15972900	0.27855400
С	0.66322300	0.53325600	0.22479100
С	0.82222700	1.67572500	-0.81675200
С	2.93837100	0.36853200	-0.66391000
С	2.09518500	1.27021000	-1.58200100
н	2.66478100	2.14117600	-1.90836000
н	1.82261000	0.71386900	-2.48031400
С	3.66224500	-0.69508400	-1.50655300
н	2.96504900	-1.36219600	-2.00795700
н	4.36679600	-1.28716500	-0.92786600
н	4.23388500	-0.17280000	-2.27718000
С	-0.33626100	1.88376200	-1.78947700
н	-0.06273200	2.65709400	-2.51148400
н	-1.23310700	2.21884900	-1.27197200
н	-0.57163000	0.97958900	-2.34879600
С	4.00543400	1.17171700	0.10993000
H	3.57102200	1.94852000	0.73618100
Н	4.67013600	1.64950000	-0.61256200
Н	4.61641500	0.52285200	0.73726900
C	1.01985500	2,99349500	-0.03786300
н	0.09570900	3,28076400	0.47101700
н	1 28440000	3 80136200	-0 72345000
н	1 80529200	2 92176300	0 71477600
н	0.45700200	0 97742400	1 20299300
н	-0.45701400	-0 97755900	1 20288200
C	2 16610000	-0 97318800	1 47798900
c	2.10010000	-0 11805200	2 72856100
C C	3 22429900	-2 05797300	1 29374900
н	1 22344400	-1 49653800	1 66884800
н	1 70464500	0.66620400	2 86633000
н	2 42657500	-0 75874800	3 61223500
н	3 43430400	0.34847400	2 67733500
н	3 02054500	-2 68064600	0.42267900
н	4 23062200	-1 64862800	1 20746300
н	3 21134200	-2 70072300	2 17589300
C C	-2 16611100	0.97303/00	1 47806500
C C	-2.10011100	0.11777300	2 7285/900
C C	-3 22/30900	2 05783700	1 20302200
ч	-1 223/5800	1 / 9636500	1.66898600
Ц	-1.22343000	0.66640500	2 86625000
Ц	-1.70407100	0.75929100	2.80023000
Ц	-2.42001300	0.73838100	2 67726200
Ц	-3.43432800	2 68050800	0.4220100
п	-3.02034400	2.08059800	1 2075 9200
	-4.25005100	2 70040800	2 17612100
11	-3.21130200	2.70049800	2.1/015100
Zaro noin	t correction-	0	631977 (Hartroo/Particia)
Thormal	correction to Fr		
menndl		icigy-	0.000420

Thermal correction to Energy=	0.660420
Thermal correction to Enthalpy=	0.661365
Thermal correction to Gibbs Free En	ergy= 0.578009
Sum of electronic and zero-point Ene	ergies= -973.861826
Sum of electronic and thermal Energy	gies= -973.833383
Sum of electronic and thermal Entha	alpies= -973.832438
Sum of electronic and thermal Free I	Energies= -973.915794

Table S40. Cartesian coordinates and energy values of radical-cation state of 3^{iPr-Me2} for gauche-(S/S).

N	1.45095100	-0.47778900	0.26801200
С	0.77916400	0.77520700	0.30034900
С	1.73130500	1.79239600	-0.41320600
С	2.70629500	-0.49785700	-0.54251200
С	2.61874100	0.85785300	-1.25733900
Н	3.60695300	1.28376600	-1.43485400
Н	2.15162900	0.71218100	-2.23528500
С	2.75870300	-1.62587500	-1.58688900
Н	2.91176800	-2.60760800	-1.14493400
Н	3.60078000	-1.43263700	-2.25526500
Н	1.85330900	-1.64647300	-2.19586900
С	1.11428200	2.83895000	-1.35215200

Н	0.56343800	2.39261400	-2.18219000
Н	1.92712900	3.42049900	-1.79362200
н	0.46054600	3.54314300	-0.84163500
С	3.95425200	-0.59989500	0.35688900
н	3.99051600	0.18814000	1.10581200
н	4,84316400	-0.51037100	-0.27080600
н	4.00904700	-1.56206400	0.86495800
C C	2 52827400	2 53814000	0 67494400
н	1 89037/00	3 25627800	1 19/1/600
н ц	2 25660600	2 00171700	0 22750000
н ц	2 02005000	1 86262700	1 42565200
N	2.93995000	0.47770100	0.26901100
	-1.43095000	-0.47779100	-0.20801100
C C	-0.77916400	0.77520600	-0.30034800
C	-1.73130700	1.79239400	0.41320600
C	-2.70629600	-0.49785900	0.54251100
C	-2.61874200	0.85785100	1.25734000
Н	-3.60695400	1.28376300	1.43485600
Н	-2.15162800	0.71217800	2.23528500
С	-2.75870700	-1.62587800	1.58688600
Н	-1.85331400	-1.64647700	2.19586900
Н	-2.91177100	-2.60761000	1.14493000
Н	-3.60078500	-1.43264000	2.25526100
С	-1.11428600	2.83895000	1.35215100
Н	-1.92713400	3.42049900	1.79362100
н	-0.46055100	3.54314400	0.84163400
н	-0.56344100	2.39261600	2.18218900
С	-3.95425100	-0.59989400	-0.35689200
н	-3.99051300	0.18814300	-1.10581400
н	-4.84316400	-0.51037000	0.27080200
н	-4.00904600	-1.56206200	-0.86496400
C	-2.52827700	2,53813600	-0.67494500
н	-1 89037800	3 25627300	-1 19414900
н	-3 35669900	3 09171300	-0 22759100
н	-2 93995300	1 86362000	-1 /2565100
н ц	-0.60265700	1.05917600	-1.42505100
н ц	0.60265700	1.05817000	1 22625200
C C	1 06666000	1.03817800	1.33023300
C C	1 52688200	1.02486000	-1.50072000
C C	-1.52688300	-1.02486000	-2.71132900
C	-1.46249500	-2.89280500	-1.01987100
н	0.02980500	-1.39/53000	-1.29103400
н	-1.23975400	-0.00066600	-2.95262800
Н	-1.06515600	-1.68214900	-3.45078200
Н	-2.60909000	-1.11173100	-2.81097400
Н	-1.14109700	-3.22683200	-0.03577400
Н	-2.53643400	-3.05510300	-1.11021500
Н	-0.97856100	-3.52890900	-1.76349900
С	1.06666300	-1.44517200	1.30072800
С	1.52688600	-1.02485700	2.71133000
С	1.46250000	-2.89280300	1.01987400
Н	-0.02980200	-1.39752900	1.29103600
н	1.23975500	-0.00066200	2.95262900
н	1.06515900	-1.68214500	3.45078400
н	2.60909200	-1.11172600	2.81097500
н	1.14110200	-3.22683100	0.03577700
н	2.53643900	-3.05509900	1.11021800
н	0.97856700	-3.52890700	1.76350300
	5.57 5507 00	5.52550700	, 0000000
7ero-noint	correction=	٥	631895 (Hartree
Thermal	correction to Fr	oergy=	0 660228
Thormold		thalay-	0.000220

Zero-point correction=0.631895 (Hartree/Particle)Thermal correction to Energy=0.660228Thermal correction to Enthalpy=0.661172Thermal correction to Gibbs Free Energy=0.578415Sum of electronic and zero-point Energies=-973.873500Sum of electronic and thermal Energies=-973.845168Sum of electronic and thermal Enthalpies=-973.844223Sum of electronic and thermal Free Energies=-973.926980

Table S41. Cartesian coordinates and energy values of radical-cation state of 3^{iPr-Me2} for gauche1-(S/R-R/S).

N	1.49370500	0.59387500	-0.03072100
С	0.76828500	-0.44433100	0.60378500
Н	0.40423100	-0.09056700	1.57174700

С	1.76525800	-1.61632500	0.85503800
С	2.93540700	0.27210200	-0.27972300
С	2.95490600	-1.25196300	-0.05537200
н	2.85002500	-1.75505400	-1.01748800
н	3.90533700	-1.57313400	0.37233400
С	3.82606500	1.02321200	0.73350800
H	3.83542100	2.09472100	0.53264900
н	4.85041300	0.66025400	0.62953100
н	3 51330300	0.86721000	1 76379400
C	2 15540900	-1 59022700	2 34707300
н	2.13340500	-0 60926800	2.54707500
и Ц	2.30278000	2 21047000	2.07131300
н ц	1 20096200	1 96270000	2.04400000
п С	1.29960200	-1.80570000	2.97114300
C	3.44955800	0.60614200	-1.68949900
н	2.83468200	0.16347400	-2.46997500
н	4.45309400	0.18516000	-1.78359600
Н	3.52933900	1.67640900	-1.86482500
С	1.25603100	-3.02734600	0.53742700
Н	0.43233300	-3.32435100	1.19179100
Н	2.06530400	-3.74219900	0.70276600
Н	0.93251400	-3.13453400	-0.49718900
Ν	-1.73484000	0.05796800	0.34866400
С	-0.70680000	-0.84614700	-0.06659100
С	-0.89789500	-1.04304300	-1.59887600
С	-2.56204300	0.61314100	-0.76790500
С	-1.72804500	0.19484800	-1.98943500
н	-2.35896600	0.00594600	-2.85865200
н	-1.05061300	1.01033600	-2.25546900
C	-2 71805100	2 14467900	-0 74182000
н	-3 38188000	2 48776400	0.04808000
н	-3 15/00900	2.46770400	-1 69367800
н ц	1 75075000	2.45051000	0.62729600
C C	-1.75575500	1 00049600	2 45905600
	0.30212400	-1.09048000	-2.43893000
п 	0.93145300	-0.17010900	-2.30534000
н	0.07454500	-1.20045400	-3.50/3/100
н	1.00907700	-1.9316/500	-2.21148600
C	-3.97789800	0.00140900	-0.79268900
Н	-3.96632600	-1.08574100	-0.80722700
Н	-4.48749300	0.34662200	-1.69447700
Н	-4.56936400	0.33036300	0.06175400
С	-1.67939400	-2.35566500	-1.81387000
Н	-1.04398200	-3.22056800	-1.61113200
Н	-2.01668500	-2.42763900	-2.85010900
Н	-2.55396800	-2.43358900	-1.16856200
Н	-0.83796800	-1.79714300	0.45287000
С	0.89477600	1.92870000	0.04503800
С	1.31238600	2.88001200	-1.07123300
С	1.03802700	2.58747000	1.43229700
н	-0.17280000	1.72071300	-0.06898100
н	1.21414200	2,41991300	-2.05495300
н	0.66151600	3,75633800	-1.04252200
н	2 33569800	3 23666900	-0 95104400
н	0 78284900	1 89754900	2 23844100
н ц	2 04914200	2 05782/00	1 60165000
н ц	0.25256200	2.33783400	1.00103000
C C	2 14061000	0.01700000	1,49137800
C C	-2.14961000	-0.01790900	1.75912000
C	-3.01/14200	-1.25388600	2.06966400
C	-2.78092700	1.26191400	2.30261100
н	-1.21415600	-0.16018100	2.31247700
Н	-2.58235000	-2.16688700	1.65853300
Н	-3.08860000	-1.37715600	3.15218100
Н	-4.02657600	-1.14552900	1.67599600
Н	-2.16233800	2.13560900	2.09515200
Н	-3.78011500	1.43394500	1.90251900
Н	-2.87864500	1.16683100	3.38558200
Zero-point	correction=	0	.631888 (Hartree/Particle)
Thermal o	orrection to Er	ergy=	0.660291
Thermal	orrection to Fr	thalpv=	0.661235

Thermal correction to Enthalpy=0.661235Thermal correction to Gibbs Free Energy=0.578040Sum of electronic and zero-point Energies=-973.869069

Sum of electronic and thermal Energies=	-973.840666
Sum of electronic and thermal Enthalpies=	-973.839722
Sum of electronic and thermal Free Energies=	-973.922917

Table S42. Cartesian coordinates and energy values of radical-cation state of 3^{iPr-Me2} for gauche2-(S/R-R/S).

Ν	1.73484400	0.05797000	0.34866500
С	0.70680400	-0.84614500	-0.06659300
Н	0.83797400	-1.79714300	0.45286400
С	0.89789900	-1.04303100	-1.59887900
С	2.56204200	0.61315400	-0.76790300
С	1.72804000	0.19486700	-1.98943100
Н	1.05060300	1.01035400	-2.25545600
Н	2.35895900	0.00597400	-2.85865300
С	3.97790000	0.00142900	-0.79269600
Н	4.56937100	0.33039100	0.06174100
Н	4.48748600	0.34664000	-1.69448900
Н	3.96633300	-1.08572100	-0.80722700
C	1.67940700	-2.35564700	-1.81388100
н	2.55397800	-2.43357100	-1.16856900
н	2.01670500	-2.42760800	-2.85011900
H	1.04400000	-3.22055600	-1.61115500
C	2.71804800	2.14469300	-0.74181100
н	1.75975400	2.65281500	-0.63/38800
н	3.15400700	2.45633000	-1.69366500
н с	3.3818/300	2.48777500	0.04809300
	-0.36212000	-1.09047900	-2.45895800
	-1.00905800	-1.93108300	-2.21150500
	-0.07453800	-1.20042200	-3.50/3/500
	-0.93140300	-0.17011200	-2.30533100
C C	-1.49570800	0.39387200	-0.03072000
C C	-0.76626500	-0.44433300	0.00578500
C C	-2.925/1000	0.27200700	0.83302800
C C	-2.953941000	1 25106000	-0.05528000
ц	-2.95490400	-1.23190900	0.372323000
н	-2.85002000	-1.75505200	-1 01750000
C C	-3 44956300	0.60614600	-1 68949500
н	-3 52935200	1 67641400	-1 86481000
н	-4 45309500	0 18515600	-1 78359800
н	-2.83468100	0.16349200	-2.46997400
C	-1.25602600	-3.02735000	0.53741100
H	-0.93251600	-3.13453400	-0.49720800
н	-2.06529600	-3.74220600	0.70275400
н	-0.43232200	-3.32435400	1.19176800
С	-3.82606900	1.02319600	0.73351600
н	-3.51329900	0.86719400	1.76380000
н	-4.85041400	0.66022800	0.62954400
н	-3.83543600	2.09470500	0.53265800
С	-2.15540700	-1.59024000	2.34706200
Н	-1.29986000	-1.86371300	2.97113100
Н	-2.95234400	-2.31049600	2.54403400
Н	-2.50278300	-0.60928400	2.67191100
Н	-0.40423200	-0.09057300	1.57174800
С	2.14961900	-0.01792300	1.75912000
С	2.78093300	1.26189600	2.30262500
С	3.01715600	-1.25390000	2.06964700
Н	1.21416800	-0.16020400	2.31247700
Н	2.16234200	2.13559100	2.09517700
Н	2.87865400	1.16680000	3.38559500
Н	3.78012000	1.43393300	1.90253300
Н	2.58236900	-2.16689700	1.65850000
Н	4.02659100	-1.14553300	1.67598300
Н	3.08861200	-1.37718700	3.15216200
С	-0.89478800	1.92869900	0.04505000
С	-1.03804600	2.58746200	1.43231100
C	-1.31240400	2.88001400	-1.07121700
н	0.17278900	1.72071700	-0.06896900
Н	-0.78287300	1.89753700	2.23845300
н	-0.35358000	3.43646800	1.49139900
Н	-2.04816200	2.95/82800	1.60166000

н	-1.21415900	2.41991600	-2.05493	800	
н	-2.33571800	3.23666500	-0.95102	500	
Н	-0.66153900	3.75634300	-1.04250	600	
Zero-po	int correction=	0	.631888 (H	lartree/Parti	cle)
Thermal correction to Energy=			0.6602	91	
Thermal correction to Enthalpy=			0.6612	235	
Thermal correction to Gibbs Free Energy= 0.578040					
Sum of	electronic and ze	ro-point Ener	gies=	-973.869069)
Sum of	electronic and the	ermal Energie	s=	-973.840666	
Sum of	electronic and the	ermal Enthalp	ies=	-973.839722	2

Sum of electronic and thermal Enthalpies=-973.839722Sum of electronic and thermal Free Energies=-973.922917

References

- S1 D. Mandal, R. Dolai, N. Chrysochos, P. Kalita, R. Kumar, D. Dhara, A. Maiti, R. S. Narayanan, G. Rajaraman,
 C. Schulzke, V. Chandrasekhar and A. Jana, *Org. Lett.*, 2017, **19**, 5605–5608.
- D. Mandal, R. Dolai, R. Kumar, S. Suhr, N. Chrysochos, P. Kalita, R. S. Narayanan, G. Rajaraman, C. Schulzke,
 B. Sarkar, V. Chandrasekhar and A. Jana, *J. Org. Chem.*, 2019, 84, 8899–8909.
- S3 I. S. Weitz and M. Rabinovitz, J. Chem. Soc. Perkin Trans 1, 1993, 117–120.
- S4 D. Mandal, R. Dolai, P. Kalita, R. S. Narayanan, R. Kumar, S. Sobottka, B. Sarkar, G. Rajaraman, V.
 Chandrasekhar and A. Jana, *Chem. Eur. J.*, 2018, 24, 12722–12727.
- A. Mahata, S. Chandra, A. Maiti, D. K. Rao, C. B. Yildiz, B. Sarkar and A. Jana, *Org. Lett.*, 2020, 22, 8332–8336.
- A. Mahata, N. Chrysochos, I. Krummenacher, S. Chandra, H. Braunschweig, C. Schulzke, B. Sarkar, C. B.
 Yildiz and A. Jana, J. Org. Chem., 2021, 86, 10467–10473.
- S7 A. Kundu, S. Chandra, D. Mandal, N. I. Neuman, A. Mahata, S. Anga, H. Rawat, S. Pal, C. Schulzke, B. Sarkar,
 V. Chandrasekhar and A. Jana, *J. Org. Chem.*, 2021, 86, 12683–12692.
- V. Lavallo, Y. Canac, C. Präsang, B. Donnadieu and G. Bertrand, Angew. Chem., Int. Ed., 2005, 44, 5705–
 5709.
- S9 A. J. Touchton, G. Wu and T. W. Hayton, *Organometallics* 2020, **39**, 1360–1365.
- (a) Y. Chen, J. Li, Y. Zhao, L. Zhang, G. Tan, H. Zhu and H. W. Roesky, J. Am. Chem. Soc., 2021, 143, 2212–2216; (b) C. Glidewell, D C. Liles, D. J. Walton and G. M. Sheldrick, Acta Cryst., 1979. B35, 500–502; (c) A. Denhof, M. Olaru, E. Lork, S. Mebs, L. Chęcińska and J. Beckmann, Chem. Eur. J. 2020, 2020, 4093–4110.
- S11 H. Yang, Y. Li, M. Jiang, J. Wang and H. Fu, *Chem. Eur. J.*, 2011, **17**, 5652–5660.
- s12 R. J. Abraham and M. Reid, J. Chem. Soc. Perkin Trans. 2, 2002, 1081–1091.
- (a) N. L. Oldroyd, S. S. Chitnis, V. T. Annibale, M. A. Arz, H. A. Sparkes and I. Manners, *Nat. Commun.*, 2019, **10**, 1370(1)–1370(9); (b) E. Gruden and G Tavčar, *Polyhedron*, 2021, **196**, 115009(1)–115009(8).
- (a) G. D. Frey, V. Lavallo, B. Donnadieu, W. W. Schoeller and G. Bertrand, *Science*, 2007, **316**, 439–441;
 (b) D. Moock, M. P. Wiesenfeldt, M. Freitag, S. Muratsugu, S. Ikemoto, R. Knitsch, J. Schneidewind, W. Baumann, A. H. Schäfer, A. Timmer, M. Tada, M. R. Hansen and F. Glorius, *ACS Catal.*, 2020, **10**, 6309–6317.
- S15 CrysAlisPro: Rigaku Oxford Diffraction (1995-2017). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- S16 G. M. Sheldrick, Acta Cryst. A, 2015, **71**, 3–8.
- S17 G. M. Sheldrick, Acta Cryst. C, 2015, 71, 3–8.
- S18 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009,
 42, 339–341.
- Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria; M. A. Robb; J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Williams; F. Ding; F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski,

J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc. Wallingford CT, 2016.

- S20 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652; (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785–789.
- S21 S. Grimme, J. Anthony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104-1–154104-19.
- S22 S. Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.*, 2011, **32**, 1456–1465.
- (a) F. London, J. Phys. Radium., 1937, 8, 397–409; (b) R. McWeeny, Phys. Rev., 1962, 126, 1028–1034; (c)
 R. Ditchfield, Mol. Phys., 1974, 27, 789–807; (d) K. Wolinski, J. F. Hinton and P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251–8260; (e) J. R. Cheeseman, G. W. Trucks, T. A. Keith and M. J. Frisch, J. Chem. Phys., 1996, 104, 5497–5509.
- S24 V. Barone and M. Cossi, J. Phys. Chem. A, 1998, **102**, 1995–2001.
- GaussView v.5.0.9 Visualizer and Builder, Dennington RII, T. Keith, J. Millam, K. Eppinnett, W. L. Hovell, R.
 Gilliland, Gaussian Inc, Wallingford CT, 2009.