Teaching Old Tricks to New Dogs - Rational Synthesis of MultiDecker Complexes Bearing cyclo-P5 Decks

Christoph Riesinger, David Röhner, Ingo Krossing, Manfred Scheer*

Supporting Information

Author Contributions

Christoph Riesinger - performing experimental work, writing of original draft.
David Röhner - performing experimental work (synthesis of 2-Co).
Ingo Krossing - project administration, funding acquisition, co-writing final manuscript.
Manfred Scheer - project administration, funding acquisition, co-writing final manuscript.
All authors contributed in preparing the manuscript.

Contents

1. Synthesis and Analytical Data 3
1.1. General Considerations 3
1.2. $1-\mathrm{Cr}$ 3
1.3. 1-Mn 4
1.4. $1-\mathrm{Fe}$ 4
1.5. 1-Co 5
1.6. 1-Ni 5
1.7. $2-\mathrm{Fe}$ 6
1.8. 2-Co 6
1.9. 3 7
1.10. $\quad\left[\mathrm{Fe}(\mathrm{tol})_{2}\right][p f]_{2}$ 7
2. Crystallographic Data 8
2.1. General Consideration. 8
2.2. $1-\mathrm{Cr}$ 10
2.3. $1-\mathrm{Mn}$ 10
2.4. 1-Fe 11
2.5. 1-Ni 11
2.6. $2-\mathrm{Fe}$ 12
2.7. 2-Co 12
2.8. 3 13
2.9. $\left.\left[\mathrm{Fe}(\mathrm{tol})_{2}\right]_{[p f}\right]_{2}$ 13
3. Spectroscopic Data 14
3.1. $1-\mathrm{Cr}$ 14
3.2. $1-\mathrm{Mn}$ 15
3.3. 1-Fe 16
3.4. 1-Co 17
3.5. 1-Ni 18
3.6. 2-Fe 19
3.7. 2-Co 20
3.8. 3 21
3.9. $\left[\mathrm{Fe}(\mathrm{tol})_{2}\right][p f]_{2}$ 21
4. Computational Data 22
4.1. General Remarks 22
4.2. Spin Density Distribution and Energetic Comparison 22
4.3. Optimized Geometries 23
4.4. References 36

Synthesis and Analytical Data

1.1. General Considerations

All manipulations were carried out using standard Schlenk techniques at a Stock apparatus under N_{2} as an inert gas or in a glove box with Ar atmosphere. All glassware was dried with a heat gun $\left(600^{\circ} \mathrm{C}\right)$ for at least 30 min prior to use. o-DFB (1,2-difluorobenzene) was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ was distilled from CaH_{2} and other solvents were directly taken from an MBraun SPS-800 solvent purification system and degassed at room temperature. Solution ${ }^{1} \mathrm{H}$ (400.130 MHz), ${ }^{11} \mathrm{~B}(128.432 \mathrm{MHz}),{ }^{19} \mathrm{~F}(376.498 \mathrm{MHz}) \mathrm{a}$ and ${ }^{31} \mathrm{P}(161.976 \mathrm{MHz})$ NMR spectra were recorded at an Avance400 (Bruker) spectrometer using $\left(\mathrm{H}_{3} \mathrm{C}\right) 4 \mathrm{Si}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right), \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\left({ }^{11} \mathrm{~B}\right)$ $\mathrm{CFCl}_{3}\left({ }^{(9} \mathrm{F}\right)$ or 85% phosphoric acid $\left({ }^{31} \mathrm{P}\right)$, respectively, as external standards. Chemical shifts (δ) are provided in parts per million (ppm) and coupling constants (J) are reported in Hertz (Hz). The following abbreviations are used: $s=$ singlet, $d=$ doublet, $d d=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{t}=$ triplet, $\mathrm{td}=$ triplet of doublets $\mathrm{br}=$ broad and $\mathrm{m}=$ multiplet. Mass spectra were recorded at the internal mass spectrometry department using a ThermoQuest Finnigan TSQ 7000 (ESI) or Finnigan MAT 95 (LIFDI) mass spectrometer or by the first author on a Waters Micromass LCT ESI-TOF mass-spectrometer and peak assignment was performed using the Molecular weight calculator 6.50. Elemental analysis of the products was conducted by the elemental analysis department at the University of Regensburg using an Elementar Vario EL. The starting materials $\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right],{ }^{1}\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{As}\right)\right],{ }^{2}\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{M}(\mu-\mathrm{X})\right]_{2}(\mathrm{M}$ $\left.=\mathrm{Cr},{ }^{3} \mathrm{Mn},{ }^{4} \mathrm{Fe},{ }^{5} \mathrm{Co},{ }^{6} \mathrm{Ni},{ }^{7} \mathrm{X}=\mathrm{Cl}, \mathrm{Br}\right), \mathrm{K}\left[\mathrm{BAr}{ }^{\mathrm{F}}\right],{ }^{8} \mathrm{~T} \mid[p f]^{9}$ and $[\mathrm{Co}(o-\mathrm{dfb}) 2][p f]^{10}$ were synthesized according to literature procedures. All other chemicals were purchased from commercial vendors and used without further purification.

1.2.1-Cr

A dark blue solution of $\left[\operatorname{Cp}{ }^{\prime \prime \prime} \operatorname{Cr}(\mu-\mathrm{Cl})\right]_{2}(64 \mathrm{mg}, 0.1 \mathrm{mmol}, 1 \mathrm{eq}$.) in 6 mL of $o-\mathrm{DFB}$ was added to a dark green solution of $\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right]$ ($70 \mathrm{mg}, 0.2 \mathrm{mmol}, 2$ eq.) and $\mathrm{K}\left[\mathrm{BAr}{ }^{\mathrm{F}}\right]$ (144 mg , 0.2 mmol , 2 eq.) in 6 mL of $o-$ DFB. A rapid colour change to red and formation of a colourless solid was observed and the reaction was completed by stirring the solution at room temperature for 1 h . Afterwards the solution was filtered, constricted to 3 mL and layered with 15 mL of n-hexane. Storage of this mixture at room temperature for 4 days yielded dark red plate shaped crystals of $\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\mu ; \eta^{5: 5}-\mathrm{P}_{5}\right) \mathrm{CrCp}^{\prime \prime}\right]\left[\mathrm{BAr}{ }^{\mathrm{F}}\right](1-\mathrm{Cr})$, which were isolated by decanting the solvent and drying under reduced pressure ($10^{-3} \mathrm{mbar}$).

Yield:
Elemental Analysis:

ESI(+)-MS (o-DFB):
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:
${ }^{11}{ }^{\mathrm{B}}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:

```
140 mg (0.12 mmol, 60%)
calculated (%) for [Cp*Fe( }\mu;\mp@subsup{\eta}{}{5:5}\mp@subsup{}{}{5}-\mp@subsup{P}{5}{\prime})\textrm{CrCp}\mp@subsup{}{}{\prime\prime\prime}][\textrm{BAr}\mp@subsup{}{}{\textrm{F}}]
C: 46.72 H: 3.38, found: C: 47.17 H: 3.24
m/z (%) = 631.3 (100, [1-Cr]+)
\delta/ ppm = 1.10 (s, 9 H, 'Bu}\mp@subsup{}{3}{\prime}\mp@subsup{\textrm{C}}{5}{}\mp@subsup{\textrm{H}}{2}{\prime}), 1.26 (s, 18 H
'Bu}\mp@subsup{}{3}{}\mp@subsup{\textrm{C}}{5}{}\mp@subsup{\textrm{H}}{2}{2}),1.53 (\textrm{s},15 H, Cp*), 4.41 (s, 2 H
'Bu3\mp@subsup{C}{5}{\prime}\mp@subsup{\underline{H}}{2}{\prime}
\delta/ ppm = 14.2 ppm (s, cyclo-P5)
\delta/ ppm = 14.2 ppm (s, cyclo-P5)
\delta/ ppm =-167.3 (br, 8 F, [BArF]}\mp@subsup{]}{}{-}), -163.4 (br, 4 F
[BArF]}\mp@subsup{]}{}{-}), -133.0 (br, 8 F, [BArF]-)
\delta/ ppm = - 16.9 ppm (s,[BArF]}\mp@subsup{]}{}{-}
```


1.3.1-Mn

$\left[C p^{\prime \prime \prime} \mathrm{Mn}(\mathrm{thf})(\mu-\mathrm{Cl})\right]_{2}(79 \mathrm{mg}, 0.1 \mathrm{mmol}, 1 \mathrm{eq}),.\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right](70 \mathrm{mg}, 0.2 \mathrm{mmol}, 2 \mathrm{eq}$.$) and$ TIIpf] ($234 \mathrm{mg}, 0.2 \mathrm{mmol}, 2$ eq.) were suspended in 4 mL of $o-\mathrm{DFB}$ to afford a clear green solution and formation of a colourless precipitate. The solution was stirred for 17 h and the solvent was removed under reduced pressure ($10^{-3} \mathrm{mbar}$). 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added to the mixture and the solution was then filtered. The now green solution was layered with 20 mL of n-hexane. Storage of this mixture for 2 weeks yielded dark green block shaped crystals of $\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\mu ; \eta^{5: 5}-\mathrm{P}_{5}\right) \mathrm{MnCp}{ }^{\prime \prime \prime}\right][p f](1-\mathrm{Mn})$. As the formation of a polymeric coordination compound of $\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right]$ and $\mathrm{TI}[p f]$ during this reaction cannot be suppressed, the product has to be isolated by mechanical separation of the crystals of $\mathbf{1 - M n}$, which results in decreased yields.

Yield:
Elemental Analysis:

ESI(+)-MS (o-DFB):
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:

65 mg ($0.04 \mathrm{mmol}, 20 \%$)
calculated (\%) for [$\left.\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\mu ; \eta^{5: 5}-\mathrm{P}_{5}\right) \mathrm{MnCp}{ }^{\prime \prime \prime}\right][p f]$: C: $32.25 \mathrm{H}: 2.77$, found: C: $32.21 \mathrm{H}: 2.97$
$\mathrm{m} / \mathrm{z}(\%)=634.0$ (100, [1-Mn] ${ }^{+}$)
$\delta / \mathrm{ppm}=$ broad signal between $1-3 \mathrm{ppm}$
$\delta / \mathrm{ppm}=$ no signal observed between $+/-500 \mathrm{ppm}$
$\delta / \mathrm{ppm}=-75.7\left(\mathrm{~s},[p f]^{-}\right)$

1.4.1-Fe

$\left[C p^{\prime \prime \prime} \mathrm{Fe}(\mu-\mathrm{Br})\right]_{2}(74 \mathrm{mg}, 0.1 \mathrm{mmol}, 1 \mathrm{eq}),.\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right]$ ($70 \mathrm{mg}, 0.2 \mathrm{mmol}, 2$ eq.) and TI[BArF] ($277 \mathrm{mg}, 0.2 \mathrm{mmol}$, 2 eq.) were suspended in 4 mL of o-DFB to afford a rapid colour change to greenish blue and formation of a colourless solid. The reaction was completed by stirring the solution at room temperature for 2 h and then the solvent was constrained to 2 mL . Afterwards the solution was filtered, the solvent removed, the residue dissolved in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and layered with 30 mL of n-hexane. Storage of this mixture for 7 days yielded dark brownish blue block shaped crystals of $\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\mu ; \eta^{5: 5}-\mathrm{P}_{5}\right) \mathrm{FeCp}^{\prime \prime \prime}\right]\left[\mathrm{BAr}{ }^{\mathrm{F}}\right]$ (1-Fe), which were isolated by decanting the solvent and drying under reduced pressure ($10^{-3} \mathrm{mbar}$).

Yield:
Elemental Analysis:

ESI(+)-MS (o-DFB):
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:
${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right):$

185 mg ($0.14 \mathrm{mmol}, 70 \%$)
calculated (\%) for [Cp*Fe($\left.\left.\mu ; \eta^{5: 5}-\mathrm{P}_{5}\right) \mathrm{FeCp} p^{\prime \prime \prime}\right]\left[\mathrm{BAr}{ }^{\mathrm{F}}\right]$: C: $46.61 \mathrm{H}: 3.37$, found: C: $46.27 \mathrm{H}: 3.50$

```
m/z (%) = 635.1 (100, [1-Fe]+)
```

$\delta / \mathrm{ppm}=1.10\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{Cp}^{*}\right), 1.19(\mathrm{~s}, 9 \mathrm{H}$, ${ }^{t} \mathrm{Bu}_{3} \mathrm{C}_{5} \mathrm{H}_{2}$), $1.31\left(\mathrm{~s}, 18 \mathrm{H},{ }^{\mathrm{B}} \mathrm{Bu}_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right), 3.36(\mathrm{~s}, 2 \mathrm{H}$, ${ }^{t} \mathrm{Bu}_{3} \mathrm{C}_{5} \underline{\mathrm{H}}_{2}$)
$\delta / \mathrm{ppm}=-12.5 \mathrm{ppm}\left(\mathrm{s}\right.$, cyclo- $\left.\mathrm{P}_{5}\right)$
$\delta / \mathrm{ppm}=-12.5 \mathrm{ppm}\left(\mathrm{s}\right.$, cyclo- $\left.\mathrm{P}_{5}\right)$
$\delta / \mathrm{ppm}=-167.4\left(\mathrm{br}, 8 \mathrm{~F},\left[\mathrm{BAr}^{\mathrm{F}}\right]^{-}\right),-163.6(\mathrm{br}, 4 \mathrm{~F}$, [BArF] ${ }^{-}$), - 132.9 (br, 8 F, $\left.\left[B A r^{F}\right]^{-}\right)$
$\delta / \mathrm{ppm}=-16.8\left(\mathrm{~s},\left[\mathrm{BAF}^{\mathrm{F}}\right]^{-}\right)$

1.5.1-Co

1-Co has already been prepared on a different route, we reported previously. ${ }^{11}$
$\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Co}(\mu-\mathrm{Cl})\right]_{2}(33 \mathrm{mg}, 0.05 \mathrm{mmol}, 1 \mathrm{eq}),.\left[\mathrm{Cp}^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right](35 \mathrm{mg}, 0.1 \mathrm{mmol}, 2 \mathrm{eq}$.$) and \mathrm{TI}[p f]$ ($134 \mathrm{mg}, 0.1 \mathrm{mmol}, 2$ eq.) were suspended in 4 mL of o-DFB to afford arapid colour change to dark olive green and formation of a colourless solid. The reaction was completed by stirring the solution at room temperature for 4 h . The solution was filtered and 40 mL of n-hexane were added to precipitate $\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\mu ; \eta^{5: 5}-\mathrm{P}_{5}\right) \mathrm{CoCp}{ }^{\prime \prime \prime}\right][\mathrm{pf}]$ (1-Co) as an olive green powder, which could be isolated in 53% yield ($85 \mathrm{mg}, 0.085 \mathrm{mmol}$). Spectroscopic data of this product matches that reported earlier.

1.6.1-Ni

$\left[\mathrm{Cp}^{\prime \prime \prime} \mathrm{Ni}(\mu-\mathrm{Br})\right]_{2}(74 \mathrm{mg}, 0.1 \mathrm{mmol}, 1 \mathrm{eq}),.\left[\mathrm{Cp}^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right]$ ($70 \mathrm{mg}, 0.2 \mathrm{mmol}, 2 \mathrm{eq}$.) and K[BAr$\left.{ }^{\mathrm{F}}\right]$ ($144 \mathrm{mg}, 0.2 \mathrm{mmol}$, 2 eq.) were suspended in 6 mL of o-DFB to afford a rapid colour change to brown and formation of a colourless solid. The reaction was completed by stirring the solution at $90^{\circ} \mathrm{C}$ for 4 h . Afterwards the solution was filtered, the solvent removed, and the residue washed two times with 15 mL of n-hexane, each. The residue was dissolved in 2 mL of o-DFB and layered with 10 mL of n-hexane. Storage of this mixture at room temperature for 4 days yielded dark brownish block shaped crystals of $\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\mu ; \eta^{5: 5}-\mathrm{P}_{5}\right) \mathrm{NiCp}{ }^{\prime \prime}\right]\left[\mathrm{BAr}{ }^{\mathrm{F}}\right]$ (1-Ni), which were isolated by decanting the solvent and drying under reduced pressure ($10^{-3} \mathrm{mbar}$).

Yield:
Elemental Analysis:

ESI(+)-MS (o-DFB):
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$-NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:
${ }^{11}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:

108 mg ($0.1 \mathrm{mmol}, 50 \%$)
calculated (\%) for [Cp*Fe($\left.\left.\mu ; \eta^{5: 5}-\mathrm{P}_{5}\right) \mathrm{NiCp}{ }^{\prime \prime \prime}\right]\left[\mathrm{BAr}{ }^{\mathrm{F}}\right]$: C: $46.50 \mathrm{H}: 3.37$, found: C: $46.62 \mathrm{H}: 3.26$
$\mathrm{m} / \mathrm{z}(\%)=637.1\left(70,[1-\mathrm{Ni}]^{+}\right), 332.2\left(100,[\mathbf{A}]^{+}\right)$
$\delta / \mathrm{ppm}=15.83\left(\mathrm{br}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right), 12.19$ (br, 18 $\mathrm{H},{ }^{t} \mathrm{Bu}_{3} \mathrm{C}_{5} \mathrm{H}_{2}$), 9.21 (br, $15 \mathrm{H}, \mathrm{Cp}^{*}$), signals for the ${ }^{t} \mathrm{Bu}_{3} \mathrm{C}_{5} \mathrm{H}_{2}$ could not be found within the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 - N i}$
$\delta / \mathrm{ppm}=$ no signals observed within $+/-500 \mathrm{ppm}$
$\delta / \mathrm{ppm}=$ no signals observed within $+/-500 \mathrm{ppm}$
$\delta / \mathrm{ppm}=-166.3\left(\mathrm{br}, 8 \mathrm{~F},\left[\mathrm{BAr} \mathrm{F}^{-}\right),-162.7(\mathrm{br}, 4 \mathrm{~F}\right.$, $\left.\left[\mathrm{BAr}^{\mathrm{F}}\right]^{-}\right),-132.3\left(\mathrm{br}, 8 \mathrm{~F},\left[\mathrm{BAr}^{\mathrm{F}}\right]^{-}\right)$
$\delta / \mathrm{ppm}=-16.8\left(\mathrm{~s},\left[\mathrm{BAr}^{\mathrm{F}}\right]^{-}\right)$

1.7.2-Fe

$\left[\mathrm{Fe}(\mathrm{tol})_{2}\right][\mathrm{pf}]_{2}\left(217 \mathrm{mg}, 0.1 \mathrm{mmol}, 1\right.$ eq.) and $\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right](70 \mathrm{mg}, 0.2 \mathrm{mmol}, 2$ eq.) were dissolved in 3 mL of o-DFB affording a dark green solution, which was stirred for 10 min . Afterwards the solution was layered with 20 mL of n-hexane and stored at $4^{\circ} \mathrm{C}$ for three days, yielding dark green plate shaped crystals of $\left[\left\{\mathrm{Cp}^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right\}_{2} \mathrm{Fe}\right][p]_{2}(2-\mathrm{Fe})$.

As crystal quality of 2-Fe could not be improved to a level suitable for single crystal X-ray diffractometry, its ${ }^{\prime}\left[\mathrm{BAr}^{\mathrm{F}}\right]^{-}$salt was prepared by sonication of $\left[\mathrm{Cp}^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right]$, $\mathrm{K}\left[\mathrm{BAr}{ }^{\mathrm{F}}\right]$ and $\mathrm{FeBr}_{2} \cdot \mathrm{dme}$ in o-DFB and crystallized from a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane layering ($3 \mathrm{~mL} / 20 \mathrm{~mL}$). Notably, the turnover and yield of $\mathbf{2 - F e}$ in this reaction is drastically decreased compared to the procedure using $\left.\left[\mathrm{Fe}(\mathrm{tol})_{2}\right]_{[p f}\right]_{2}$. Spectroscopic data for both compounds matches.

Yield:
Elemental Analysis:

ESI(+)-MS (o-DFB):
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$:

$$
240 \text { mg (} 0.09 \mathrm{mmol}, 90 \% \text {) }
$$

calculated (\%) for $\quad\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta^{5}-\right.\right.\right.$ $\left.\left.\left.\mathrm{P}_{5}\right)\right\}_{2} \mathrm{Fe}\right]\left[p f_{2} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2}\right)_{0.7}: \quad \mathrm{C}: 24.42 \mathrm{H}: 1.20\right.$, found: C: $24.46 \mathrm{H}: 1.30$

```
m/z (%) = 373.8 (100, [2-Fe] ['), 747.7 (20,
[{Cp*Fe(\eta}\mp@subsup{}{}{5}-\mp@subsup{\textrm{P}}{5}{5})\mp@subsup{}}{2}{}\textrm{Fe}\mp@subsup{]}{}{+}
\delta/ ppm = 0.70 (s, Cp*)
\delta/ ppm = 12.9 (s, cyclo-P5)
\delta/ ppm = 12.9 (s, cyclo-P5)
\delta/ ppm = - 75.4 (s, [pf]-)
```


1.8.2-Co

[Co(dfb) $)_{2}[p f]$ ($125 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ eq.) dissolved in 2 mL of o-DFB was slowly added to $\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right]$ ($70 \mathrm{mg}, 0.2 \mathrm{mmol}, 2$ eq.) dissolved in 2 mL of $o-\mathrm{DFB}$ at $-30^{\circ} \mathrm{C}$. A rapid colour change to dark green was observed, the solution stirred for 1 h at room temperature and then constrained to 1 mL .30 mL of n-hexane were added to precipitate a dark green powder, which was dried under reduced pressure ($10^{-3} \mathrm{mbar}$). 3 mL of o-DFB were added, and the solution was layered with 30 mL of n-hexane. Storage at room temperature for two days yielded dark green plate shaped crystals of $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right\}_{2} \mathrm{Co}\right][\mathrm{pf}](\mathbf{2}-\mathrm{Co})$.

Yield:
Elemental Analysis:

ESI(+)-MS (o-DFB):
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(o-\mathrm{DFB} / \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$:
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(o-\mathrm{DFB} / \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right):$
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(o-\mathrm{DFB} / \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$:
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(o-\mathrm{DFB} / \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$:

154 mg ($0.09 \mathrm{mmol}, 90 \%$)
calculated (\%) for $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right\}_{2} \mathrm{Fe}\right]\left[p f_{2} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2}\right): \mathrm{C}: 27.54 \mathrm{H}:\right.$ 1.87, found: C: $27.59 \mathrm{H}: 1.98$
$\mathrm{m} / \mathrm{z}(\%)=750.8$ (100, [2-Co] ${ }^{+}$)
$\delta / \mathrm{ppm}=11.81\left(\mathrm{br}, \mathrm{Cp}^{*}\right)$
$\delta / \mathrm{ppm}=$ no signals observed within $+/-500 \mathrm{ppm}$
$\delta / \mathrm{ppm}=$ no signals observed within $+/-500 \mathrm{ppm}$
$\delta / \mathrm{ppm}=-74.1\left(\mathrm{~s},[\mathrm{pf}]^{-}\right)$

1.9. 3

$\left[\mathrm{Fe}(\mathrm{tol})_{2}\right][\mathrm{pf}]_{2}(24 \mathrm{mg}, 0.01 \mathrm{mmol}, 1 \mathrm{eq}$.$) and \left[\mathrm{Cp}^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{As}_{5}\right)\right](11 \mathrm{mg}, 0.02 \mathrm{mmol}, 2 \mathrm{eq}$.$) were$ dissolved in 3 mL of o-DFB affording a dark brown solution, which was stirred for 2 h . Afterwards the solution was layered with 50 mL of n-hexane and stored at room temperature for three days, yielding dark brownish green plate shaped crystals of $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta^{5}-\right.\right.\right.$ $\left.\left.\left.\mathrm{As}_{5}\right)\right\}_{2} \mathrm{Fe}\right][\mathrm{TEF}]_{2}$ (3).

Yield:
Elemental Analysis:

ESI(+)-MS (o-DFB):
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(o-\mathrm{DFB} / \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$:
${ }^{19}$ F\{ $\left.{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(o-\mathrm{DFB} / \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$:

30 mg ($0.0096 \mathrm{mmol}, 96 \%$)
calculated (\%) for
$\left[\left\{\mathrm{Cp}{ }^{\star} \mathrm{Fe}\left(\eta^{5}-\mathrm{As}_{5}\right)\right\}_{2} \mathrm{Fe}\right]\left[p f_{2} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2}\right): \mathrm{C}: 21.51 \mathrm{H}:\right.$ 1.06, found: C: $21.30 \mathrm{H}: 1.24$
$\mathrm{m} / \mathrm{z}(\%)=593.6\left(100,[2-\mathrm{Fe}]^{2+}\right), 1187.2(20$, $\left.\left[\left\{\mathrm{Cp}^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{As}_{5}\right)\right\}_{2} \mathrm{Fe}\right]^{+}\right)$
$\delta / \mathrm{ppm}=0.36\left(\mathrm{~s}, \mathrm{Cp}^{*}\right)$
$\delta / \mathrm{ppm}=-75.4\left(\mathrm{~s},[p f]^{-}\right)$

1.10. $\left[\mathrm{Fe}(\mathrm{tol})_{2}\right][p]_{2}$

$\mathrm{Fe}(\mathrm{CO})_{5}$ in 1.3 mL of toluene ($1.96 \mathrm{mmol}, 384 \mathrm{mg}$, 1 eq.) was added to a purple suspension of $\left[\mathrm{Ag}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{2}\right][p f]\left(3.92 \mathrm{mmol}, 4.88 \mathrm{~g}, 2\right.$ eq.) and $\mathrm{I}_{2}(497 \mathrm{mg}, 1.96 \mathrm{mmol}, 1 \mathrm{eq}$.$) in 20 \mathrm{~mL}$ of $o-$ DFB, which resulted in a rapid colour change to dark red and precipitation of colourless solid. Stirring at $90^{\circ} \mathrm{C}$ for 16 hours completed the reaction, after which an orange solution with colourless precipitate was obtained. Filtration and precipitation with n-hexane afforded $\left.\left[\mathrm{Fe}(\mathrm{tol})_{2}\right]_{[\mathrm{pf}}^{2}\right]_{2}$ as analytically pure compound. Crystals suitable for X-ray diffraction studies could be obtained by layering a concentrated solution in o-DFB with n-hexane and storage at room temperature for two days.

Yield:
Elemental Analysis:

ESI(+)-MS (o-DFB):
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(o-\mathrm{DFB} / \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$:
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(o-\mathrm{DFB} / \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right):$
3.45 g ($1.6 \mathrm{mmol}, 82 \%$)
calculated (\%) for $\left[\mathrm{Fe}(\mathrm{tol})_{2}\right]\left[p f_{2}: \mathrm{C}: 25.39 \mathrm{H}: 0.76\right.$, found: C: $25.77 \mathrm{H}: 0.93$
$\mathrm{m} / \mathrm{z}(\%)=239.0\left(10,\left[\mathrm{Fe}(\mathrm{tol})_{2}\right]-\mathrm{H}^{+}\right)$, 240.1 (10, $\left.\left[\mathrm{Fe}(\mathrm{tol})_{2}\right]^{+}\right)$
$\delta / \mathrm{ppm}=7.49(\mathrm{~m}, 3 \mathrm{H}, \underline{\mathrm{PhMe}}), 7.41(\mathrm{~m}, 2 \mathrm{H}$, PhMe), 3.21 (s, $3 \mathrm{H}, \mathrm{PhMe}$)
$\delta / \mathrm{ppm}=-75.5\left(\mathrm{~s},[\mathrm{pf}]^{-}\right)$

2. Crystallographic Data

2.1. General Consideration

The crystallographic data for all described compounds were collected on a GV50 diffractometer (Rigaku) with a Titan ${ }^{\text {S2 }}$ detector using $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation (1-Cr, 1-Mn, 1-Ni, 2-Co) or an XtaLAB Synergy R, DW System with a HyPix-Arc 150 detector using $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation from a rotating anode (1-Fe, 2-Fe[BArF], 3). Data reduction and absorption correction were performed with the CrysAlisPro software package. ${ }^{[12]}$ Structure solution and refinement was conducted in Olex2 (1.5-alpha) ${ }^{[13]}$ with ShelXT ${ }^{[14]}$ (solution) and ShelXL-2018/[315] (least squares refinement (F^{2})). All non-H atoms were refined with anisotropic displacement parameters and H atoms were treated as riding models with isotropic displacement parameters and fixed C-H bond lengths ($\mathrm{sp}^{3}: 0.96\left(\mathrm{CH}_{3}\right), 0.97\left(\mathrm{CH}_{2}\right)$; $\mathrm{sp}^{2}: 0.93(\mathrm{CH})$). Visualisation of the crystal structures was performed with Olex2 (1.5-alpha). ${ }^{[13]}$
CIF files with comprehensive information on the details of the diffraction experiments and full tables of bond lengths and angles for $\mathbf{1 - C r}, \mathbf{1 - M n}, \mathbf{1}-\mathrm{Fe}, \mathbf{1}-\mathrm{Ni}, \mathbf{2}-\mathrm{Fe}, \mathbf{2 - C o}, 3$ and $\left[\mathrm{Fe}(\mathrm{tol})_{2}\right]\left[p f_{2}\right.$ are deposited in Cambridge Crystallographic Data Centre under the deposition codes CCDC 2242844-2242851.

Table S 1: Crystallographic and refinement data for compounds 1-Cr-1 -Ni, 2-Fe, 2-Co and 3.

Compound	1-Cr	1-Mn	1-Fe	1-Ni
CCDC	2242844	2242845	2242846	2242847
Empirical formula	$\mathrm{C}_{54} \mathrm{H}_{46} \mathrm{BCrF}_{21} \mathrm{FeP}_{5}$	$\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{AlF}_{36} \mathrm{FeMnO}_{4} \mathrm{P}_{5}$	$\mathrm{C}_{51.5} \mathrm{H}_{45} \mathrm{BClF}_{20} \mathrm{Fe}_{2} \mathrm{P}_{5}$	$\mathrm{C}_{102} \mathrm{H}_{88} \mathrm{~B}_{2} \mathrm{~F}_{40} \mathrm{Fe}_{2} \mathrm{Ni}_{2} \mathrm{P}_{10}$
Formula weight	1367.42	1601.40	1356.68	2634.16
Temperature/K	122.99(10)	123.00(10)	123.00(10)	122.99(10)
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$P 2_{1} / \mathrm{c}$	$P 2_{1} / \mathrm{c}$	$P 2_{1 / c}$	$P 2_{1}$
a/ \AA	15.7984(2)	11.95740 (10)	15.6478(3)	15.8271(2)
b/Å	19.8256(2)	21.6035(2)	19.8608(3)	19.95370(10)
c/A	18.1573(2)	23.2630(2)	18.1588(2)	17.9342(2)
$\alpha /{ }^{\circ}$	90	90	90	90
$\beta /{ }^{\circ}$	104.2570(10)	93.7580(10)	104.7420(10)	105.1610(10)
$\gamma /{ }^{\circ}$	90	90	90	90
Volume/Å3	5511.94(11)	5996.42(9)	5457.58(15)	5466.65(10)
Z	4	4	4	2
ρ calcg/cm3	1.648	1.774	1.651	1.600
$\mu / \mathrm{mm}-1$	6.102	6.488	7.058	4.886
F(000)	2756.0	3188.0	2732.0	2656.0
Crystal size/mm3	$0.38 \times 0.22 \times 0.04$	$0.259 \times 0.2 \times 0.163$	$0.29 \times 0.23 \times 0.06$	$0.293 \times 0.248 \times 0.219$
Radiation	$\begin{gathered} \mathrm{Cu} \mathrm{~K} \alpha(\lambda= \\ 1.54184) \end{gathered}$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	7.294 to 133.46	7.41 to 133.506	5.84 to 144.244	7.288 to 133.626
Index ranges	$\begin{aligned} & -18 \leq h \leq 18,-23 \leq \\ & k \leq 23,-20 \leq 1 \leq 21 \end{aligned}$	$\begin{gathered} -13 \leq \mathrm{h} \leq 14,-25 \leq \mathrm{k} \leq \\ 25,-27 \leq 1 \leq 27 \end{gathered}$	$\begin{gathered} -19 \leq \mathrm{h} \leq 17,-24 \leq \mathrm{k} \leq \\ 23,-21 \leq 1 \leq 22 \end{gathered}$	$\begin{gathered} -18 \leq \mathrm{h} \leq 18,-20 \leq \mathrm{k} \leq \\ 23,-21 \leq 1 \leq 20 \end{gathered}$
Reflections collected	57435	63995	52174	52429
	9708 [Rint =	10585 [Rint =	10344 [Rint =	15560 [Rint $=$
Independent reflections	$\begin{gathered} 0.0577, \text { Rsigma }= \\ 0.0324] \end{gathered}$	$\begin{gathered} \text { 0.0488, Rsigma }= \\ 0.0256] \end{gathered}$	$\begin{gathered} \text { 0.0479, Rsigma }= \\ 0.0331] \end{gathered}$	$\begin{gathered} \text { 0.0533, } \text { Rsigma }= \\ 0.0411] \end{gathered}$
Data/restraints/parameters	9708/200/906	10585/1041/1179	10344/18/803	15560/0/1449
Goodness-of-fit on F2	1.046	1.019	1.099	1.018
Final R indexes [I>=2 ${ }^{\text {(I) }}$]	$\begin{gathered} \mathrm{R} 1=0.0384, \mathrm{wR} 2= \\ 0.1067 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0370, \mathrm{wR} 2= \\ 0.0943 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0446, \mathrm{wR} 2= \\ 0.1226 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0363, \mathrm{wR} 2= \\ 0.0914 \end{gathered}$
Final R indexes [all data]	$\begin{gathered} \mathrm{R} 1=0.0427, \mathrm{wR} 2= \\ 0.1114 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0389, \text { wR2 }= \\ 0.0961 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0541, \mathrm{wR} 2= \\ 0.1286 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0377, \mathrm{wR} 2= \\ 0.0928 \end{gathered}$
$\begin{aligned} & \text { Largest diff. peak/hole / e Å- } \\ & 3 \end{aligned}$	0.45/-0.62	0.71/-0.37	0.67/-0.72	0.57/-0.44
Flack parameter	1	/	/	0.488(5)

Compound	2-Fe	2-Co	3	[Fe(tol $\left.)_{2}\right][p]_{2}$
CCDC	2242848	2242849	2242850	2242851
Empirical formula	$\mathrm{C}_{69} \mathrm{H}_{32} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{40} \mathrm{Fe}_{3} \mathrm{P}_{10}$	$\mathrm{C}_{39} \mathrm{H}_{32} \mathrm{AlCoF}_{37} \mathrm{Fe}_{2} \mathrm{O}_{4} \mathrm{P}_{10}$	$\mathrm{C}_{70} \mathrm{H}_{42} \mathrm{Al}_{2} \mathrm{As}_{10} \mathrm{~F}_{78} \mathrm{Fe} 3 \mathrm{O} 8$	$\mathrm{C}_{92} \mathrm{H}_{32} \mathrm{Al}_{4} \mathrm{~F}_{144} \mathrm{Fe}_{2} \mathrm{O}_{16}$
Formula weight	2190.71	1774.95	3463.74	4348.79
Temperature/K	123.02(10)	123.00(10)	123.01(10)	123.00(10)
Crystal system	monoclinic	monoclinic	monoclinic	triclinic
Space group	$P 2_{1} / \mathrm{c}$	$P 2_{1} / \mathrm{c}$	$P 2_{1} / \mathrm{c}$	$P \overline{1}$
a/Å	19.4743(2)	10.87740(10)	33.7409(2)	15.9325(4)
b/ \AA	20.2790(2)	28.6587(3)	14.01600(10)	16.1088(4)
c/Å	20.0413(2)	20.0246(2)	22.6687(2)	26.3304(6)
$\alpha /{ }^{\circ}$	90	90	90	92.872(2)
$\beta /{ }^{\circ}$	91.7850(10)	96.7550(10)	102.8080(10)	91.023(2)
$\gamma /{ }^{\circ}$	90	90	90	94.758(2)
Volume/Å3	7910.86(14)	6198.98(11)	10453.57(14)	6724.4(3)
Z	4	4	4	2
ρ calcg/cm3	1.839	1.902	2.201	2.148
$\mu / \mathrm{mm}-1$	8.166	9.782	8.760	4.454
F(000)	4312.0	3492.0	6648.0	4224.0
Crystal size/mm3	$0.22 \times 0.14 \times 0.03$	$0.29 \times 0.23 \times 0.09$	$0.19 \times 0.17 \times 0.07$	$0.251 \times 0.166 \times 0.112$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	6.202 to 150.304	7.604 to 133.968	5.372 to 143.816	7.502 to 134.246
Index ranges	$\begin{gathered} -23 \leq \mathrm{h} \leq 24,-24 \leq \mathrm{k} \leq \\ 17,-24 \leq 1 \leq 24 \end{gathered}$	$\begin{gathered} -12 \leq \mathrm{h} \leq 12,-34 \leq \mathrm{k} \leq \\ 33,-18 \leq \mathrm{l} \leq 23 \end{gathered}$	$\begin{gathered} -39 \leq \mathrm{h} \leq 41,-17 \leq \mathrm{k} \leq \\ 15,-26 \leq 1 \leq 27 \end{gathered}$	$\begin{gathered} -18 \leq \mathrm{h} \leq 18,-19 \leq \mathrm{k} \leq \\ 19,-31 \leq \mathrm{l} \leq 31 \end{gathered}$
Reflections collected	85089	66406	103420	42141
Independent reflections	$\begin{gathered} 15714 \text { [Rint }=0.0379, \\ \text { Rsigma }=0.0302] \end{gathered}$	$\begin{gathered} 10977[\text { Rint }=0.0698, \\ \text { Rsigma }=0.0392] \end{gathered}$	$\begin{gathered} 20045[\text { Rint }=0.0521, \\ \text { Rsigma }=0.0336] \end{gathered}$	$\begin{gathered} 42141 \text { [Rint }=?, \\ \text { Rsigma }=0.0374] \end{gathered}$
Data/restraints/parameters	15714/280/1236	10977/1392/1244	20045/1584/2363	42141/2636/2870
Goodness-of-fit on F2	1.044	1.028	1.069	0.997
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\begin{gathered} \mathrm{R} 1=0.0543, \mathrm{wR} 2= \\ 0.1477 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0470, \mathrm{wR} 2= \\ 0.1154 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0411, \mathrm{wR} 2= \\ 0.1087 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0579, \mathrm{wR} 2= \\ 0.1540 \end{gathered}$
Final R indexes [all data]	$\begin{gathered} \mathrm{R} 1=0.0708, \mathrm{wR} 2= \\ 0.1582 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0570, \mathrm{wR} 2= \\ 0.1235 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0534, \mathrm{wR} 2= \\ 0.1155 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0795, \mathrm{wR} 2= \\ 0.1642 \end{gathered}$
Largest diff. peak/hole / e Å3	0.91/-0.92	0.93/-0.70	0.99/-0.58	1.52/-0.68
Flack parameter	1	/	/	/

2.2.1-Cr

Compound $1-\mathrm{Cr}$ crystallizes in the monoclinic space group $P 2_{1} / \mathrm{c}$ forming dark red plates from $o-D F B / n$-hexane mixtures at room temperature. The asymmetric unit contains the cation, one anion and one o-DFB molecule. All non-hydrogen atoms were refined anisotropically and the H atoms were treated as riding models.

Figure S 1: Solid state structure of 1-Cr; Shown is the asymmetric unit containing one cation, one anion as well as one o-DFB molecule; thermal ellipsoids are drawn at the 50\% probability level.

2.3.1-Mn

Compound 1-Mn crystallizes in the monoclinic space group $P 2_{1} / c$ forming dark green blocks from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane mixtures at room temperature. The asymmetric unit contains the cation and one anion. All non-hydrogen atoms were refined anisotropically and the H atoms were treated as riding models. Disorder within the anion was treated with appropriate restraints.

Figure S 2: Solid state structure of 1-Mn; Shown is the asymmetric unit containing one cation and one anion; thermal ellipsoids are drawn at the 50\% probability level.

2.4.1-Fe

Compound 1-Fe crystallizes in the monoclinic space group $P 2_{1} / c$ forming dark brownish-blue blocks from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane mixtures at room temperature. The asymmetric unit contains the cation and one anion. All non-hydrogen atoms were refined anisotropically and the H atoms were treated as riding models. Disorder within on ${ }^{\text {tBu }}$ group was treated with appropriate restraints.

Figure S 3: Solid state structure of 1-Fe; Shown is the asymmetric unit containing one cation and one anion; thermal ellipsoids are drawn at the 50\% probability level.

2.5.1-Ni

Compound 1-Ni crystallizes in the monoclinic space group $P 2_{1}$ forming dark brown blocks from $o-D F B / n$-hexane mixtures at room temperature. The asymmetric unit contains two distinct cations and two anions. All non-hydrogen atoms were refined anisotropically and the H atoms were treated as riding models.

Figure S 4: Solid state structure of 1-Ni; Shown is the asymmetric unit containing two distinct cations and two anions; thermal ellipsoids are drawn at the 50\% probability level.

2.6.2-Fe

Compound 2-Fe crystallizes in the monoclinic space group $P 2_{1} / C$ forming dark green plates from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane mixtures at room temperature. The asymmetric unit contains one cation and two anions, as well $0.9 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules. All non-hydrogen atoms were refined anisotropically and the H atoms were treated as riding models. Disorder within the cyclo- P_{5} ligands was treated with appropriate restraints.

Figure S 5: Solid state structure of 2-Fe; Shown is the asymmetric unit containing one dication, two anions as well as one $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule; thermal ellipsoids are drawn at the 50% probability level.

2.7.2-Co

Compound 2-Co crystallizes in the monoclinic space group $P 2_{1} / c$ forming dark green plates from $o-D F B / n$-hexane mixtures at room temperature. The asymmetric unit contains one cation and one anion and an o-DFB molecule. All non-hydrogen atoms were refined anisotropically and the H atoms were treated as riding models. Disorder within the anion was treated with appropriate restraints.

Figure S 6: Solid state structure of 2-Co; Shown is the asymmetric unit containing one cation, one anion as well as one o-DFB molecule; thermal ellipsoids are drawn at the 50\% probability level.

2.8. 3

Compound 3 crystallizes in the monoclinic space group $P 2_{1} / c$ forming dark brownish green plates from o - DFB $/ n$-hexane mixtures at room temperature. The asymmetric unit contains one cation, two anions and three o-DFB molecules. All non-hydrogen atoms were refined anisotropically and the H atoms were treated as riding models. Disorder within the anions and solvent molecules was treated with appropriate restraints.

Figure S 7: Solid state structure of 3; Shown is the asymmetric unit containing one dication, two anions as well as three o-DFB molecules; thermal ellipsoids are drawn at the 50% probability level.

2.9. $\left[\mathrm{Fe}\left(\mathrm{tol}^{2}\right)_{2}\right][\mathrm{pf}]_{2}$

Figure S 8: Solid state structure of $\left[\mathrm{Fe}(\mathrm{tol})_{2}\right][\mathrm{pf}]_{2}$; Shown is the asymmetric unit containing four half dications and four anions; thermal ellipsoids are drawn at the 50\% probability level.

3. Spectroscopic Data

3.1.1-Cr

Figure S 9: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 - C r}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature.

Figure S 10: ${ }^{31} \mathrm{P}$ (top) and $\left.{ }^{31} \mathrm{P}^{1} \mathrm{H}\right\}$ (bottom) NMR spectrum of 1-Cr in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature.

Figure S 11: ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 - C r}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature.

Figure S 12: $\left.{ }^{11} \mathrm{~B}_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1-Cr in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature.

3.2.1-Mn

Figure S 13: ${ }^{1} \mathrm{H}$ NMR spectrum of 1-Mn in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature; 32 mg of substance were dissolved in 0.6 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ inside the NMR tube and a coaxial capillary filled with $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was added to determine the number of unpaired electrons in 1-Mn via the Evans method.

Figure S 14: ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1-Mn in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature.

Figure S 15: X-band EPR spectrum of 1-Mn in o-DFB recorded at room temperature.

Figure S 16: Experimental (bottom) and simulated (top) X-band EPR spectrum of 1-Mn in frozen o-DFB solution recorded at 77 K; Simulation: $g_{\|}=1.977, g_{\perp}=1.903, A_{\|}=125.26 \mathrm{MHz}, A_{\perp}=337.72 \mathrm{MHz}, / \mathrm{w}=3.2 \mathrm{mT}$.

3.3.1-Fe

Figure S 17: ${ }^{1} \mathrm{H}$ NMR spectrum of 1-Fe in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature.

Figure S 18: ${ }^{31} \mathrm{P}$ (top) and $\left.{ }^{31} P_{\{ }^{1} \mathrm{H}\right\}$ (bottom) NMR spectrum of 1-Fe in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature.

Figure S 19: ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1-Fe in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature.

Figure $\left.S 20:{ }^{11} \mathrm{~B}_{2}{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1-Fe in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature.

3.4.1-Co

Figure S 21: ${ }^{1} \mathrm{H}$ NMR spectrum of 1-Co in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature.

3.5.1-Ni

Figure S 22: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 - N i}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature.

Figure $\left.\mathrm{S} 23:{ }^{19} \mathrm{~F}_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1-Ni in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature.

Figure S 24: ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1-Ni in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature.

Figure $\mathrm{S} 25:{ }^{1} \mathrm{H}$ NMR spectrum of 1-Ni in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature; 18 mg of substance were dissolved in 0.6 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ inside the NMR tube and a coaxial capillary filled with $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was added to determine the number of unpaired electrons in 1-Ni via the Evans method.

3.6.2-Fe

Figure S 26: ${ }^{1} \mathrm{H}$ NMR spectrum of 2-Fe in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature.

Figure S 27: ${ }^{31} P$ (top) and ${ }^{31} P\left\{\begin{array}{l}1 \\ H\end{array}\right.$ (bottom) NMR spectrum of 2-Fe in $C D_{2} \mathrm{Cl}_{2}$ recorded at room temperature.

Figure $S 28:{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2-Fe in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature.

3.7.2-Co

Figure S 29: ${ }^{1} \mathrm{H}$ NMR spectrum of 2-Co in o-DFB with added $C_{6} D_{6}$ capillary recorded at room temperature.

Figure S 30: $\left.{ }^{19} F^{1}{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2-Co in o-DFB with added $C_{6} D_{6}$ capillary recorded at room temperature.

Figure S 31: ${ }^{1} \mathrm{H}$ NMR spectrum of 2-Co in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature; 20 mg of substance were dissolved in 0.2 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ inside the NMR tube and a coaxial capillary filled with $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was added to determine the number of unpaired electrons in 2-Co via the Evans method.

3.8. 3

Figure S 32: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature with traces of o-DFB at $\delta=7.1 \mathrm{ppm}$.

Figure S 33: ${ }^{19}{ }^{[}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 3 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ recorded at room temperature with traces of o-DFB at $\delta=140$ ppm.

3.9. $\left[\mathrm{Fe}(\mathrm{tol})_{2}\right][\mathrm{pf}]_{2}$

Figure S 34: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Fe}(\mathbf{t o l})_{2}\right][p \mathrm{pf}]_{2}$ in o-DFB with added $C_{6} D_{6}$ capillary recorded at room temperature.

Figure S 35: ${ }^{19} F\left\{{ }^{1} H\right\}$ NMR spectrum of $\left[F e(t o l)_{2}\right][p f]_{2}$ in o-DFB with added $C_{6} D_{6}$ capillary recorded at room temperature.

4. Computational Data

4.1. General Remarks

DFT calculations were performed using the Orca 5.0 software package. ${ }^{16}$ The sterically demanding Cp^{*} ligands in 2-Fe and 2-Co were replaced with unsubstituted Cp ligands to save computational resources. Geometry optimizations were performed at the ω B97X-D3 ${ }^{17} /$ def2-TZVP ${ }^{18}$ level of theory with PCM solvent correction for $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{19}$ Stationary points were verified by analytical frequency calculations. Single point calculations were performed at the ω B97X-D3/def2-TZVP level of theory with solvent correction as described above.

4.2. Spin Density Distribution and Energetic Comparison

To gain insight into the electronic structure of especially the paramagnetic species $\mathbf{1 - M n}, \mathbf{1 - N i}$ and 2-Co, their spin densities were analysed (Figure S36). While the spin density in 1-Mn is clearly localized at the Mn atom, the two unpaired electrons in $\mathbf{1 - N i}$ and $\mathbf{2 - C o}$ are centred at the Ni and Co atoms, respectively. Only in 1-Ni, minor contributions from the $\mathrm{Cp}^{\prime \prime \prime}$ ligand are apparent. As for both latter species a hypothetical singlet electron configuration would be possible and is transiently even observed for $\mathbf{1 - N i}$ in the solid state, the energetic separation between this singlet configuration and the experimentally observed triplet ground state was of interest. Thus, both the compounds $\mathbf{1 - N i}$ and $\mathbf{2 - C o}$ were optimized as singlet as well as triplet configuration, the geometries compared, and the energetic separation determined (Figure S37). In both cases, the triplet configuration is $55.31 \mathrm{~kJ} / \mathrm{mol}$ (1-Ni) and $127.17 \mathrm{~kJ} / \mathrm{mol}(\mathbf{2 - C o})$ more stable, respectively.

Figure S 36: Calculated spin density distribution for 1-Mn, 1-Ni and 2-Co; surfaces are drawn at isovalues of 0.02, 0.01 and 0.01, respectively.

Figure S 37: Comparison of optimized molecular structures for 1-Ni (left) and 2-Co (right) in case of a singlet or triplet electronic configuration, each.

4.3. Optimized Geometries

1-Mn

ω B97XD/def2TZVP (CPCM $\left.\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$: Energies/H $=-5176.41492301$, Enthalpies/ $\mathrm{H}=-$ 5176.41397880, Free Energies $/ \mathrm{H}=-5176.51963493$, ZPVE/ $\mathrm{kcal} / \mathrm{mol}=441.30$

H	4.967972000	7.588491000	22.749361000
H	6.655441000	8.083454000	22.615632000
C	12.760610000	7.507749000	19.524673000
C	9.989981000	6.029348000	26.590508000
C	9.826442000	2.415849000	25.852270000
H	10.160820000	2.933762000	26.748914000
H	10.218806000	1.397799000	25.893751000
H	8.735694000	2.362603000	25.875222000
C	11.384119000	5.512854000	26.939925000
H	12.129597000	5.850583000	26.218129000
H	11.431544000	4.429610000	27.011260000
H	11.666948000	5.913297000	27.915079000
C	6.256293000	5.524214000	21.559866000
H	6.874707000	6.144987000	20.910846000
H	5.223087000	5.617728000	21.220225000
H	6.555989000	4.483371000	21.425665000
C	13.501481000	8.045873000	20.615666000
C	5.357138000	5.116252000	23.848131000
H	5.573529000	4.050375000	23.751083000
H	4.339466000	5.294105000	23.494166000
H	5.403869000	5.381109000	24.906589000
C	10.050439000	7.559772000	26.718892000
H	10.384654000	7.809413000	27.727202000
H	9.084507000	8.042354000	26.574528000
H	10.764397000	7.996559000	26.019554000
H	9.988068000	2.140934000	23.403942000
H	8.940845000	1.834105000	23.404428000
H	10.595973000	1.241337000	23.513156000
H	10.223105000	2.583901000	22.433244000
H	10.686905000	8.244623000	18.141129000
H			
H			

H	9.744094000	8.736103000	18.380669000
C	13.095331000	6.270670000	18.760023000
H	13.600447000	5.535076000	19.385384000
H	13.761922000	6.519648000	17.930916000
H	12.202406000	5.806418000	18.341789000
C	13.356450000	10.184382000	22.087288000
H	12.531814000	10.734421000	22.540154000
H	14.055816000	10.912161000	21.669261000
H	13.874111000	9.641536000	22.877936000
C	10.854121000	10.671616000	20.187289000
H	9.838075000	10.414405000	19.887723000
H	11.226169000	11.426169000	19.490172000
H	10.813034000	11.123557000	21.177985000
C	14.751667000	7.470743000	21.192736000
H	14.846302000	7.697020000	22.254706000
H	15.620157000	7.894430000	20.682877000
H	14.788716000	6.388397000	21.071914000

1-Ni (triplet)

ω B97XD/def2TZVP (CPCM $\left.\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$: Energies/ $\mathrm{H}=-5533.77609673$, Enthalpies $/ \mathrm{H}=-$ 5533.77515253, Free Energies $/ \mathrm{H}=-5533.88116412$, ZPVE/ $\mathrm{kcal} / \mathrm{mol}=439.97$

C	11.365329000	3.910753000	18.404663000
H	10.854947000	4.870768000	18.312838000
H	12.187569000	3.901319000	17.686255000
H	11.798574000	3.850691000	19.404595000
C	7.158599000	3.177534000	23.448501000
H	7.366833000	4.246797000	23.394861000
H	7.095698000	2.912333000	24.506333000
H	6.186786000	3.006188000	22.999325000
C	9.598467000	2.969080000	23.344033000
H	10.472812000	2.390257000	23.041203000
H	9.553831000	2.959048000	24.434602000
H	9.738380000	4.005333000	23.028086000
C	8.246458000	0.910515000	23.246565000
H	7.287232000	0.438159000	23.046530000
H	8.420987000	0.857097000	24.323466000
H	9.023210000	0.327779000	22.746362000
C	5.252733000	1.354011000	19.007236000
H	4.975628000	2.403728000	18.894620000
H	4.331360000	0.772182000	19.066978000
H	5.775057000	1.037090000	18.105352000
C	6.466503000	-0.367251000	20.320219000
H	7.060564000	-0.628497000	19.442077000
H	5.567453000	-0.988216000	20.322023000
H	7.051039000	-0.613213000	21.206439000
C	5.134196000	1.421218000	21.454426000
H	5.561507000	1.167921000	22.420736000
H	4.227779000	0.824393000	21.336264000
H	4.836895000	2.471897000	21.466877000
C	8.267035000	9.599290000	18.155115000
H	9.096899000	9.541603000	18.858619000
H	8.139248000	10.646583000	17.871311000
H	8.539090000	9.040281000	17.259958000

C	7.472840000	9.711802000	21.233234000
H	7.261271000	10.779207000	21.331082000
H	8.537954000	9.599235000	21.032455000
H	7.254964000	9.239062000	22.190523000
C	5.820920000	8.365410000	16.554673000
H	6.803758000	8.195217000	16.116179000
H	5.406724000	9.271757000	16.106727000
H	5.174806000	7.531842000	16.280469000
C	3.511007000	7.710305000	18.638618000
H	3.109755000	7.101782000	19.448897000
H	3.528911000	7.104436000	17.733158000
H	2.821911000	8.541589000	18.472248000
C	4.531625000	8.548623000	21.529197000
H	3.797649000	7.743895000	21.500069000
H	3.994011000	9.488967000	21.671654000
H	5.173315000	8.395043000	22.396549000

1-Ni (singlet)

$\omega \mathrm{B97XD} /$ def2TZVP $\left(\mathrm{CPCM}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right):$ Energies $/ \mathrm{H}=-5533.75348611$, Enthalpies $/ \mathrm{H}=-$
5533.75254190 , Free Energies $/ \mathrm{H}=-5533.86009630, \mathrm{ZPVE} / \mathrm{kcal} / \mathrm{mol}=440.62$
C
C 5.323371000
8.615463000
20.265968000

Ni 7.803515000
4.062555000
19.865378000

P 7.868925000
5.829919000
17.999674000

P $\quad 5.678036000$
5.291258000 20.574025000

P $\quad 5.937916000$
5.113278000 18.479408000

P 8.811134000
6.435977000
19.793535000

C 9.327822000
2.633908000
19.166084000

C 9.463603000
2.858590000
20.554932000

H 10.337472000
3.282306000
21.020783000

C 8.036736000 2.093799000 18.990014000

H $\quad 7.616448000$
1.815418000 18.037675000

C 8.302529000
2.418407000
21.254779000
$\begin{array}{llll}\text { C } & 7.381517000 & 1.925414000 & 20.246051000\end{array}$
$\begin{array}{llll}\mathrm{Fe} & 6.580160000 & 7.171919000 & 19.450461000\end{array}$
P 7.453088000
6.12118200021 .379291000

C $\quad 10.421801000$
2.738547000
18.123754000

C 8.292278000
2.378036000
22.790797000

C 6.073489000
1.121453000
20.286401000

C 6.999883000
9.088230000
18.754917000

C 6.642798000
9.137330000
20.133956000

C 5.901665000
8.535282000
18.035096000

C 4.865399000
8.242130000
18.968734000

C 9.845313000
2.868315000
16.712243000

H 9.220054000
2.012231000
16.452597000

H 10.659149000
$2.918204000 \quad 15.986023000$
H 9.245230000
$3.773499000 \quad 16.603146000$
$\begin{array}{llll}C & 11.225432000 & 1.427804000 & 18.209436000\end{array}$
H $11.672226000 \quad 1.308229000 \quad 19.198692000$
$\begin{array}{llll}H & 12.028281000 & 1.431150000 & 17.468379000\end{array}$
$\begin{array}{llll}H & 10.584211000 & 0.564925000 & 18.017468000\end{array}$

C	11.365329000	3.910753000	18.404663000
H	10.854947000	4.870768000	18.312838000
H	12.187569000	3.901319000	17.686255000
H	11.798574000	3.850691000	19.404595000
C	7.158599000	3.177534000	23.448501000
H	7.366833000	4.246797000	23.394861000
H	7.095698000	2.912333000	24.506333000
H	6.186786000	3.006188000	22.999325000
C	9.598467000	2.969080000	23.344033000
H	10.472812000	2.390257000	23.041203000
H	9.553831000	2.959048000	24.434602000
H	9.738380000	4.005333000	23.028086000
C	8.246458000	0.910515000	23.246565000
H	7.287232000	0.438159000	23.046530000
H	8.420987000	0.857097000	24.323466000
H	9.023210000	0.327779000	22.746362000
C	5.252733000	1.354011000	19.007236000
H	4.975628000	2.403728000	18.894620000
H	4.331360000	0.772182000	19.066978000
H	5.775057000	1.037090000	18.105352000
C	6.466503000	-0.367251000	20.320219000
H	7.060564000	-0.628497000	19.442077000
H	5.567453000	-0.988216000	20.322023000
H	7.051039000	-0.613213000	21.206439000
H	5.134196000	1.421218000	21.454426000
H	5.561507000	1.167921000	22.420736000
H	4.227779000	0.824393000	21.336264000
H	4.836895000	2.471897000	21.466877000
H	8.267035000	9.599290000	18.155115000
H	9.096899000	9.541603000	18.858619000
H	10.646583000	17.871311000	
H	9.040281000	17.259958000	
H			
H			

C	7.472840000	9.711802000	21.233234000
H	7.261271000	10.779207000	21.331082000
H	8.537954000	9.599235000	21.032455000
H	7.254964000	9.239062000	22.190523000
C	5.820920000	8.365410000	16.554673000
H	6.803758000	8.195217000	16.116179000
H	5.406724000	9.271757000	16.106727000
H	5.174806000	7.531842000	16.280469000
C	3.511007000	7.710305000	18.638618000
H	3.109755000	7.101782000	19.448897000
H	3.528911000	7.104436000	17.733158000
H	2.821911000	8.541589000	18.472248000
C	4.531625000	8.548623000	21.529197000
H	3.797649000	7.743895000	21.500069000
H	3.994011000	9.488967000	21.671654000
H	5.173315000	8.395043000	22.396549000

2-Fe'

	XD/def2TZVP 65998606, Free	$\mathrm{CPCM}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ Energies/ $/ \mathrm{H}=$	$\begin{aligned} & \text {): Energies/H = } \\ & 7591.73656363, \end{aligned}$	$\begin{aligned} & \text { :nthalpies/H = } \\ & .09 \end{aligned}$
Fe	3.832713000	2.015632000	14.356746000	$0-3$
Fe	3.813755000	5.201005000	14.509974000	
Fe	3.790546000	8.385606000	14.662908000	
P	2.222021000	3.502489000	15.265999000	$0-\infty$
P	2.532311000	3.603941000	13.166905000	
P	2.509027000	6.903730000	13.329164000	
P	2.202119000	6.799588000	15.429352000	0
P	4.603273000	6.933537000	12.971410000	
P	4.126091000	3.465271000	16.209118000	
P	4.627220000	3.632686000	12.812439000	
P	5.590300000	6.852922000	14.851766000	
P	5.612336000	3.549021000	14.692867000	
P	4.106910000	6.767194000	16.370100000	
C	2.995844000	0.370799000	13.418235000	
C	4.021607000	0.280729000	15.469761000	
C	4.398681000	0.388197000	13.208236000	
C	2.762899000	0.303750000	14.816011000	
C	5.032479000	0.332946000	14.476081000	
H	4.896448000	0.453919000	12.252641000	
H	6.097009000	0.349619000	14.654507000	
C	4.970652000	10.066872000	14.910977000	
H	2.238500000	0.421224000	12.650655000	
C	2.909602000	10.097164000	13.901483000	
C	4.306971000	10.119792000	13.658353000	
H	4.181687000	0.251168000	16.536923000	
C	2.709780000	10.030880000	15.304277000	
H	1.797225000	0.294329000	15.298293000	
C	3.983600000	10.011946000	15.928175000	
H	6.039332000	10.048992000	15.062015000	
H	4.781597000	10.148373000	12.689268000	

H	1.756099000	9.980607000	15.807564000
H	4.168903000	9.945178000	16.989501000
H	2.134565000	10.105497000	13.150093000

ω B97XD/def2TZVP $\left(\mathrm{CPCM}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$: Energies $/ \mathrm{H}=-7710.95679967$, Enthalpies $/ \mathrm{H}=$ 7710.95585546 , Free Energies $/ \mathrm{H}=-7711.03591349$, ZPVE $/ \mathrm{kcal} / \mathrm{mol}=123.19$				
Fe	7.522234000	12.483643000	12.579632000	
Fe	11.974036000	16.328787000	15.913898000	
Co	9.750639000	14.405681000	14.243586000	
P	10.911286000	14.284925000	16.524974000	
P	12.225338000	14.203733000	14.865862000	
P	8.524832000	12.208109000	14.724003000	
P	9.831632000	12.136245000	13.058601000	0.8
P	11.771595000	15.833612000	13.590770000	
P	9.647310000	15.966567000	16.277686000	
P	10.177761000	16.921645000	14.463326000	
P	7.255268000	13.887160000	14.488150000	
P	9.368022000	13.769000000	11.791424000	
P	7.776578000	14.851581000	12.675701000	
C	6.959468000	11.799005000	10.711671000	
C	7.272053000	10.704155000	11.557324000	
C	5.893657000	12.521672000	11.306074000	
C	13.050173000	16.513178000	17.669842000	
C	6.399380000	10.750102000	12.674434000	
C	5.547800000	11.873657000	12.519350000	
H	7.461076000	12.052135000	9.790523000	
H	8.052992000	9.978227000	11.391954000	
C	13.933523000	16.448977000	16.562042000	
C	12.208608000	17.641176000	17.494659000	
H	5.443043000	13.420839000	10.915281000	
H	4.787046000	12.193986000	13.214224000	
H	6.400238000	10.065498000	13.508416000	
C	13.637854000	17.537589000	15.702246000	
C	12.571691000	18.274274000	16.278426000	
H	13.009032000	15.812440000	18.489295000	
H	14.682248000	15.691048000	16.391219000	
H	11.414847000	17.948222000	18.157875000	
H	12.102553000	19.148237000	15.853800000	
H	14.122589000	17.752394000	14.762531000	

```
2-Co' (singlet)
\omegaB97XD/def2TZVP (CPCM ( }\mp@subsup{\textrm{CH}}{2}{}\mp@subsup{\textrm{Cl}}{2}{}))\mathrm{ ) Energies/H = -7710.90921936, Enthalpies/H = -
7710.90827516, Free Energies/H =-7710.98747581, ZPVE/ kcal/mol = 123.07
```

Fe 7.619011000
Fe 11.864829000
Co 9.736019000
P 10.822598000P 12.084765000
12.475142000
12.650199000
$16.385590000 \quad 15.837958000$
$14.309834000 \quad 14.246688000$
$14.337733000 \quad 16.381160000$
12.084765000
P 8.632946000
14.329193000 14.695537000

P 8.632946000
12.114136000 14.781731000

| P | 9.913733000 | 12.055851000 | 13.119032000 |
| :--- | :--- | :--- | :--- | :--- |

P	11.335827000	15.938651000	13.464929000

P	9.436045000	15.948722000	15.998734000

P	10.179517000	17.329122000	14.572449000

P	7.399194000	13.851844000	14.585855000

P	9.486059000	13.774950000	11.920305000

P	7.856161000	14.839078000	12.766486000

C	7.091087000	11.780117000	10.774894000

C	7.306979000	10.688882000	11.653649000

C	6.045552000	12.574159000	11.311462000

C	12.981564000	16.368799000	17.579902000

| C | 6.395003000 | 10.808255000 | 12.734193000 |
| :--- | :--- | :--- | :--- |$\begin{array}{llll}C & 5.616445000 & 11.973846000 & 12.523170000\end{array}$$\begin{array}{llll}H & 7.643621000 & 11.983655000 & 9.870517000\end{array}$

H	8.051455000	9.917081000	11.533334000

C	13.840617000	16.342441000	16.448713000

| C | 12.202101000 | 17.549931000 | 17.510693000 |
| :--- | :--- | :--- | :--- |$\begin{array}{llll}H & 5.659136000 & 13.486928000 & 10.884889000\end{array}$$\begin{array}{llll}H & 4.850460000 & 12.352351000 & 13.182473000\end{array}$$\begin{array}{llll}H & 6.324454000 & 10.144951000 & 13.582455000\end{array}$$\begin{array}{llll}\text { C } & 13.591422000 & 17.508108000 & 15.682126000\end{array}$$\begin{array}{llll}C & 12.582396000 & 18.257366000 & 16.340461000\end{array}$$\begin{array}{llll}H & 12.921057000 & 15.613502000 & 18.348226000\end{array}$$\begin{array}{llll}H & 14.549166000 & 15.564680000 & 16.208785000\end{array}$$\begin{array}{llll}H & 11.434367000 & 17.843859000 & 18.209641000\end{array}$$\begin{array}{llll}H & 12.168242000 & 19.193545000 & 16.001336000\end{array}$$\begin{array}{llll}H & 14.064572000 & 17.765196000 & 14.746815000\end{array}$

4.4. References

1 O. J. Scherer and T. Brück, Angew. Chem. Int. Ed. Engl. 1987, 26, 59.
2 O. J. Scherer, C. Blath and G. Wolmershäuser, J.Organomet. Chem., 1990, 387, C21.
3 M. Kreye, C. G. Daniliuc, M. Freytag, P. G. Jones annd M. D. Walter, Dalt. Trans., 2014, 43, 9052.

4 M. Kaekawa, M. Römelt, C. G. Daniliuc, P. G. Jones, P. S. White, F. Neese and M. D. Walter, Chem. Sci., 2012, 3, 2972.

5 M. Wallasch, G. Wolmershäuser and H. Sitzmann, Angew. Chem. Int. Ed., 2005, 44, 2597.
6 F. Baumann, E. Dormann, Y. Ehleiter, W. Kaim, J. Kärcher, M. Kelemen, R. Krammer, D. Saurenz, D. Stalke, C. Wachter, G. Wolmershäuser and H. Sitzmann, J. Organomet. Chem., 1999, 587, 267.

7 M. Schär, D. Saurenz, F. Zimmer, I. Schädlich, G. Wolmershäuser, S. Demeshko, F. Meyer, H. Sitzmann, O. M. Heigl and F. H. Köhler, Organometallics, 2013, 32, 6298.

8 V. D. Makhaev, A. N. Galiullin, E. E. Faingol'd, N. M. Bravaya and L. A. Petrova, Russ. Chem. Bull., 2014, 63, 651.

9 M. Gonsior, I. Krossing and N. Mitzel, Z. anorg. allg. Chem., 2002, 628, 1821.
10 S. C. Meier, A. Holz, J. Kulenkampff, A. Schmidt, D. Kratzert, D. Himmel, D. Schmitz, E.W. Scheidt, W. Scherer, C. Bülow, M. Timm, R. Lindblad, S. T. Akin, V. Zamudio-Bayer, B. v. Issendorff, M. A. Duncan, J. T. Lau and I. Krossing, Angew. Chem. Int. Ed., 2018, 57, 9310.

11 M. Piesch, S. Reichl, C. Riesinger, M. Seidl, G. Balazs and M. Scheer, Chem. Eur. J., 2021, 27, 9129.

12 Agilent Technologies Ltd, CrysAlis PRO, Yarnton, Oxfordshire, England, 2014.
13 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339.

14 G. M. Sheldrick, Acta Cryst. A 2015, 71, 3.
15 a) G. M. Sheldrick, Acta Cryst. A 2008, 64, 112; b) G. M. Sheldrick, Acta Cryst. C, 2015, 71, 3.

16 a) F. Neese, F. Wennmohs, U. Becker and C. Rieplinger, J. Chem. Phys., 2020, 152, 224108; b) F. Neese, WIREs Comput. Mol. Sci., 2022, 12, 1606.

17 Y.-S. Lin, G.-D. Li, S.-P. Mao and J. D. Chai, J. Chem. Theory Comput., 2013, 9, 263.
18 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
19 J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999.

