Supporting Information

Photocatalyst-Free Visible-Light Induced Highly Selective Acylation

of Purine Nucleosides at C6 Position

Table of Contents

1. General Information	. 2
2. General Procedures for Preparation 3 (3aa as an example)	. 2
3. The Exploration of Reaction Conditions ^a	.3
4. Scale-up Reaction	. 4
5. Radical Trapped Experiments	. 4
6. UV-visible Study	. 5
7. Characterization of Compounds	. 6
8. NMR Spectra of Products	23

1. General Information

All commercial reagents were purchased from Sigma-Aldrich, Alfa-Aesar, Acros and were used without further purification unless specified. The progress of the reaction was monitored by TLC. ¹H and ¹³C NMR spectra were recorded on Bruker AV-400 spectrometers operating respectively at 400 MHz for 1H and 100 MHz for ¹³C. The peaks were internally referenced to TMS (0.00 ppm) or residual undeuterated solvent signal. Peak multiplicities are reported as follows: s = singlet, brs = broad singlet, d = doublet, t = triplet, m = multiplet, hept = heptet, dd = doublet of doublets. The high-resolution mass spectra (HRMS) of the new compounds were acquired on a Bruker microTOF-Q III spectrometer. Melting points were determined using X-4 apparatus and not corrected. The source of the blue LEDs is common LED lights. The power of each light is 24W. There is 3.0 cm distance between the reactor and the LEDs. This reaction could be well-performed using a quartz reaction tube (20 mL). Below we showed some photos of the setup for the photochemical reaction and at the beginning of the experiment, the WATTCAS parallel photoreactor (WP-TEC-1020HPL) was used to find a suitable light source.

2. General Procedures for Preparation 3 (3aa as an example)

A mixture of (2R, 3R, 4R, 5R)-2-(acetoxymethyl)-5-(9*H*-purin-9-yl) tetrahydrofuran-3,4diyl diacetate **1a** (0.2 mmol), 4-methylbenzaldehyde **2a** (1.0 mmol), TBHP (0.4 mmol), TFA (0.3 mmol) and dry MgSO₄ (0.6mmol) were stirred in ethyl acetate (2 mL) for 24 hours at room temperature irradiated by blue LEDs. After completion of the reaction, saturated aqueous NaHCO₃ solution (10 mL) was added, then extracted with ethyl acetate 3 times (3×20 mL). The extract was washed with brine, dried over anhydrous Na₂SO₄, and concentrated. The crude mixture was purified by flash chromatography (petroleum ether/ethyl acetate = 1/2) to afford product **3aa**.

Aco	СНО	TBHP (2.0 equiv) TFA (1.5 equiv) MgSO ₄ (3.0 equiv) EA r.t. 24h blue LEDs	AcO OAc OAc
1	•		2

3. The Exploration of Reaction Conditions^a

1a	2a	3aa
Entry	Variation from "standard conditions"	Yield ^b (%)
1	None	82
2	No light irradiation	n.r.
3	No light irradiation, 120°C	19
4	No TBHP	n.r.
5	No TFA	n.r.
6	No MgSO ₄	46
7	20 mol % of AgNO3 instead of TFA	23
8	20 mol % of AgCO3 instead of TFA	trace
9	20 mol % of Ag ₂ O instead of TFA	trace
10	20 mol % of CF3COOAg instead of TFA	19
11	20 mol % of K ₂ CO instead of TFA	trace
12	1.5 equiv of TFAA instead of TFA	17
13	1.5 equiv of TsOH instead of TFA	42
14	1.5 equiv of TsOH·H ₂ O instead of TFA	35
15	1.5 equiv of Ts ₂ O instead of TFA	n.r.
16	1.5 equiv of AcOH instead of TFA	trace
17	1.5 equiv of Ac ₂ O instead of TFA	n.r.
18	1.5 equiv of TfOH instead of TFA	n.r.
19	2.0 equiv of TBHP (in water) instead of TBHP	29
	(in decane)	
20	2.0 equiv of DTBP instead of TBHP (in decane)	56
21	2.0 equiv of $K_2S_2O_8$ instead of TBHP (in decane)	trace
22	2.0 equiv of $(NH_4)_2S_2O_8$ instead of TBHP (in	trace
	decane)	
23	2.0 equiv of BPO instead of TBHP (in decane)	37
24	2.0 equiv of PIFA instead of TBHP (in decane)	n.r.
25	DCM as the solvent	43
26	THF as the solvent	25
27	DCE as the solvent	39
28	CH ₃ CN as the solvent	33

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (1.0 mmol), TBHP (0.4 mmol), TFA (0.3 mmol) and dry MgSO₄ (0.6 mmol) were stirred in ethyl acetate (2 mL) for 24 hours at room temperature irradiated by blue LEDs. ^{*b*} Isolated yield.

4. Scale-up Reaction

A mixture of (2R,3R,4R,5R)-2-(acetoxymethyl)-5-(9*H*-purin-9-yl) tetrahydrofuran-3,4diyl diacetate **1a** (1.0 mmol), 4-methylbenzaldehyde **2a** (5.0 mmol), TBHP (2.0 mmol), TFA (1.5 mmol) and dry MgSO₄ (3.0 mmol) were stirred in ethyl acetate (5 mL) for 24 hours at room temperature irradiated by blue LEDs. After completion of the reaction, saturated aqueous NaHCO₃ solution (10 mL) was added, then extracted with ethyl acetate 3 times (3×20 mL). The extract was washed with brine, dried over anhydrous Na₂SO₄ and concentrated. The crude mixture was purified by flash chromatography (petroleum ether/ethyl acetate = 1/2) as a yellow oil 307 mg, 0.618 mmol, 62% yield.

5. Radical Trapped Experiments

To further investigate the reaction mechanism for this acylation reaction, radical scavengers, including TEMPO and 1,1-diphenylethylene, were employed in the standard reaction, and the process was inhibited obviously. This result suggested that a free radical process might be involved in the present acylation reaction.

(a) Reaction in the presence of TEMPO

A mixture of (2R,3R,4R,5R)-2-(acetoxymethyl)-5-(9*H*-purin-9-yl) tetrahydrofura n-3,4-diyl diacetate **1a** (0.2 mmol), 4-methylbenzaldehyde **2a** (1.0 mmol), TBHP (0.4 mmol), TFA (0.3 mmol), 1,1-diphenylethylene and dry MgSO₄ (0.6 mmol) were stirred in ethyl acetate (2 mL) for 24 hours at room temperature irradiated by blue LEDs. The reaction was completely suppressed.

(b) Reaction in the presence of 1,1-diphenylethylene

A mixture of (2R,3R,4R,5R)-2-(acetoxymethyl)-5-(9*H*-purin-9-yl) tetrahydrofu ran-3,4-diyl diacetate **1a** (0.2 mmol), 4-methylbenzaldehyde **2a** (1.0 mmol), TBHP (0.4 mmol), TFA (0.3 mmol), 1,1-diphenylethylene and dry MgSO₄ (0.6 mmol) were stirred in ethyl acetate (2 mL) for 24 hours at room temperature irradiated by blue LEDs. The reaction was completely suppressed.

6. UV-visible Study

Figure S1. UV-vis absorption spectra.

7. Characterization of Compounds

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(4-methylbenzoyl)-9*H*-purin-9-yl) tetrahy drofuran-3,4-diyl diacetate (3aa):

Yield: 82%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.10 (s, 1H), 8.35 (s, 1H), 7.93 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.2 Hz, 2H), 6.29 (d, *J* = 5.2 Hz, 1H), 6.00 (t, *J* = 5.4 Hz, 1H), 5.67 (t, *J* = 5.4 Hz, 1H), 4.51 – 4.35 (m, 3H), 2.42 (s, 3H), 2.15 (s, 3H), 2.11 (s, 3H), 2.08 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.8, 170.3, 169.6, 169.3, 153.8, 152.7, 152.1, 145.3, 145.0, 132.7, 132.4, 130.9, 129.3, 86.6, 80.5, 73.0, 70.5, 62.9, 21.8, 20.7, 20.5, 20.3; HRMS (ESI): m/z calcd for C₂₄H₂₄N₄NaO₈⁺ [M+Na]⁺: 519.1487; found: 519.1477.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-benzoyl-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3ab):

Yield: 83%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.12 (s, 1H), 8.37 (s, 1H), 8.04 (d, *J* = 8.2 Hz, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.49 ((t, *J* = 7.8 Hz, 2H), 6.30 (d, *J* = 5.2 Hz, 1H), 6.01 (t, *J* = 5.4 Hz, 1H), 5.67 (t, *J* = 5.0 Hz, 1H), 4.55 – 4.37 (m, 3H), 2.15 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.1, 170.2, 169.5, 169.3, 153.4, 152.7, 152.1, 145.1, 135.1, 134.1, 132.4, 130.7, 128.5, 86.6, 80.5, 73.0, 70.5, 62.9, 20.7, 20.5, 20.3; HRMS (ESI): m/z calcd for C₂₃H₂₂N₄NaO₈⁺ [M+Na]⁺: 505.1330; found: 505.1323.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(4-ethylbenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3ac):

Yield: 74%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.11 (s, 1H), 8.35 (s, 1H), 7.97 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 6.30 (d, J = 5.2 Hz, 1H), 6.01 (t, J = 5.4 Hz, 1H), 5. 67 (t, J = 5.2 Hz, 1H), 4.53 – 4.36 (m, 3H), 2.72 (q, J = 7.6 Hz, 2H), 2.16 (s, 3H), 2.13 (s, 3H), 2.10 (s, 3H), 1.26 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 190.8, 170.3, 169.6, 169.3, 153.8, 152.7, 152.1, 151.4, 144.9, 132.8, 132.4, 131.0, 128.1, 86.6, 80.5, 73.0, 70.5, 62.9, 29.1, 20.7, 20.5, 20.4, 15.0; HRMS (ESI): m/z calcd for C₂₅H₂₆N₄NaO₈⁺ [M+Na]⁺: 533.1643; found: 533.1641.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(4-(tert-butyl)benzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3ad):

Yield: 69%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.11 (s, 1H), 8.37 (s, 1H), 7.98 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H), 6.30 (d, *J* = 5.2 Hz, 1H), 6.01 (t, *J* = 5.4 Hz, 1H), 5.68 (t, *J* = 5.0 Hz, 1H), 4.52 – 4.37 (m, 3H), 2.16 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H), 1.33 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.8, 170.3, 169.6, 169.3, 158.1, 153.7, 152.7, 152.1, 145.0, 132.5, 132.3, 130.7, 125.6, 86.6, 80.5, 73.0, 70.5, 62.9, 35.2, 31.0, 20.7, 20.5, 20.4; HRMS (ESI): m/z calcd for C₂₇H₃₁N₄O₈⁺ [M+H]⁺: 539.2137; found: 539.2127.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(4-fluorobenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3ae):

Yield: 47%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.12 (s, 1H), 8.37 (s, 1H), 8.15 – 8.10 (m, 2H), 7.21 – 7.12 (m, 2H), 6.29 (d, *J* = 5.2 Hz, 1H), 6.00 (t, *J* = 5.2 Hz, 1H), 5.67 (t, *J* = 5.4Hz, 1H), 4.52 – 4.37 (m, 3H), 2.16 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 189.4, 170.2, 169.6, 169.3, 166.4 (d, *J* = 257.0 Hz), 153.0, 152.8, 152.0, 145.2, 133.6 (d, *J* = 9.6 Hz), 132.5, 131.5 (d, *J* = 2.8 Hz), 115.8 (d, *J* = 22.0 Hz), 86.7, 80.5, 73.0, 70.4, 62.9, 20.7, 20.5, 20.4; HRMS (ESI): m/z calcd for C₂₃H₂₂FN₄O₈⁺ [M+H]⁺: 501.1417; found: 501.1391.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(4-chlorobenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3af):

Yield: 51%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.13 (s, 1H), 8.44 (s, 1H), 8.03 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 6.31 (d, J = 5.0 Hz, 1H), 6.01 (t, J = 5.4 Hz, 1H), 5.67 (t, J = 5.2 Hz, 1H), 4.54 – 4.40 (m, 3H), 2.17 (s, 3H), 2.14 (s, 3H), 2.11 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 189.8, 170.2, 169.5, 169.3, 152.9, 152.6, 152.0, 145.3, 140.7, 133.5, 132.5, 132.1, 128.9, 86.7, 80.5, 73.0, 70.4, 62.9, 20.7, 20.5, 20.3; HRMS (ESI): m/z calcd for C₂₃H₂₁ClN₄NaO₈⁺ [M+Na]⁺: 539.0941; found: 539.0949.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(4-bromobenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3ag):

Yield: 58%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.13 (s, 1H), 8.39 (s, 1H), 7.99 – 7.94 (m, 2H), 7.68 – 7.64 (m, 2H), 6.30 (d, *J* = 5.2 Hz, 1H), 6.00 (t, *J* = 5.4 Hz, 1H), 5.69 – 5.65 (m, 1H), 4.53 – 4.49 (m, 1H), 4.44 (dd, *J* = 15.4, 3.8 Hz, 2H), 2.17 (s, 3H), 2.13 (s, 3H), 2.10 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 190.1, 170.3, 169.6, 169.4, 152.9, 152.5, 152.1, 145.4, 133.9, 132.2, 131.9, 131.6, 129.7, 86.7, 80.5, 73.0, 70.5, 62.9, 20.8, 20.5, 20.4; HRMS (ESI): m/z calcd for C₂₃H₂₁BrN₄NaO₈⁺ [M+Na]⁺: 585.0415; found: 585.0424.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(4-hydroxybenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3ah):

Yield: 43%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.11 (s, 1H), 8.43 (s, 1H), 7.74 (d, J = 8.4 Hz, 2H), 6.71 (d, J = 8.8 Hz, 2H), 6.31 (d, J = 5.2 Hz, 1H), 6.01 (t, J = 5.4 Hz, 1H), 5.67 (t, J = 5.2 Hz, 1H), 4.54 – 4.39 (m, 3H), 2.16 (s, 3H), 2.12 (s, 3H), 2.11 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 189.2, 170.4, 169.6, 169.4, 162.6, 154.8, 152.4, 152.2, 144.9, 133.3, 131.5, 127.2, 115.9, 86.8, 80.5, 73.0, 70.4, 62.9, 20.8, 20.5, 20.4; HRMS (ESI): m/z calcd for C₂₃H₂₃N₄O₉⁺ [M+H]⁺: 499.1460; found:499.1465.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(4-methoxybenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3ai):

Yield: 64%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.12 (s, 1H), 8.34 (s, 1H), 8.13 – 8.02 (m, 2H), 7.07 – 6.92 (m, 2H), 6.30 (d, *J* = 5.4 Hz, 1H), 6.02 (t, *J* = 5.4 Hz, 1H), 5.68 (dd, *J* = 5.5, 4.4 Hz, 1H), 4.52 – 4.39 (m, 3H), 3.89 (s, 3H), 2.17 (s, 3H), 2.14 (s, 3H), 2.11 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 189.5, 170.2, 169.5, 169.3, 164.4, 154.1, 152.5, 152.1, 144.8, 133.2, 132.3, 128.1, 113.9, 86.5, 80.4, 72.9, 70.4, 62.9, 55.5, 20.7, 20.5, 20.3; HRMS (ESI): m/z calcd for C₂₄H₂₄N₄NaO₉⁺ [M+Na]⁺: 535.1436; found: 535.1431.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(4-ethoxybenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3aj):

Yield: 52%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.10 (s, 1H), 8.34 (s, 1H), 8.03 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 6.29 (d, J = 5.2 Hz, 1H), 6.00 (t, J = 5.4 Hz, 1H), 5.71 – 5.62 (m, 1H), 4.51 – 4.36 (m, 3H), 4.11 (q, J = 7.0 Hz, 2H), 2.16 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H), 1.43 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 189.4, 170.3, 169.6, 169.3, 163.9, 154.2, 152.5, 152.1, 144.8, 133.3, 132.3, 127.9, 114.3, 86.5, 80.4, 72.9, 70.5, 63.8, 62.9, 20.7, 20.5, 20.4, 14.6; HRMS (ESI): m/zcalcd for C₂₅H₂₆N₄NaO₉⁺ [M+Na]⁺: 549.1592; found: 549.1590.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(4-butoxybenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3ak):

Yield: 63%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.09 (s, 1H), 8.33 (s, 1H), 8.04 – 7.96 (m, 2H), 6.97 – 6.89 (m, 2H), 6.28 (d, *J* = 5.2 Hz, 1H), 6.00 (t, *J* = 5.4 Hz, 1H), 5.66 (t, *J* = 5.0 Hz, 1H), 4.49 – 4.35 (m, 3H), 4.02 (t, *J* = 6.4 Hz, 2H), 2.14 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 1.76 (p, *J* = 6.6 Hz, 2H), 1.54 – 1.40 (m, 2H), 0.95 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 189.4, 170.2, 169.5, 169.3, 164.1, 154.2, 152.5, 152.0, 144.8, 133.2, 132.2, 127.8, 114.3, 86.5, 80.4, 72.9, 70.4, 67.9, 62.8, 30.9, 20.7, 20.4, 20.3, 19.0, 13.7; HRMS (ESI): m/z calcd for C₂₇H₃₁N₄O₉⁺ [M+H]⁺: 555.2086; found: 555.2077.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(4-phenoxybenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3al):

Yield: 60%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.10 (s, 1H), 8.35 (s, 1H), 8.05 (d, J = 8.8 Hz, 2H), 7.43 – 7.35 (m, 2H), 7.20 (t, J = 7.4 Hz, 1H), 7.08 (d, J = 7.4 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 6.30 (d, J = 5.2 Hz, 1H), 6.00 (t, J = 5.4 Hz, 1H), 5.72 – 5.61 (m, 1H), 4.53 – 4.37 (m, 3H), 2.16 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 189.5, 170.3, 169.6, 169.3, 163.1, 155.0, 153.7, 152.7, 152.1, 144.9, 133.2, 132.4, 130.1, 129.5, 124.9, 120.4, 117.1, 86.6, 80.5, 73.0, 70.5, 62.9, 20.8, 20.5, 20.4; HRMS (ESI): m/z calcd for C₂₉H₂₆N₄NaO₉⁺ [M+Na]⁺: 597.1592; found: 597.1595.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(2-methylbenzoyl)-9*H*-purin-9-yl) tetrahy drofuran-3,4-diyl diacetate (3am):

Yield: 32%, Yellow oil; ¹H NMR (400 MHz, Chloroform-d) δ 9.10 (s, 1H), 8.37 (s, 1H), 7.55 – 7.32 (m, 3H), 7.24 (d, J = 7.4 Hz, 1H), 6.30 (d, J = 5.2 Hz, 1H), 6.01 (t, J = 5.2Hz, 1H), 5.68 (t, J = 5.0 Hz, 1H), 4.55 – 4.37 (m, 3H), 2.61 (s, 3H), 2.14 (s, 3H), 2.11 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.0, 170.3, 169.5, 169.3, 153.7, 152.9, 152.2, 145.2, 140.3, 135.0, 132.6, 132.3, 132.2, 131.9, 125.4, 86.6, 80.5, 73.0, 70.5, 62.9, 21.4, 20.7, 20.5, 20.3; HRMS (ESI): m/z calcd for C₂₄H₂₄N₄NaO₈⁺ [M+Na]⁺: 519.1487; found: 519.1489.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(2-fluorobenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3an):

Yield: 43%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.08 (s, 1H), 8.39 (s, 1H), 7.91 (td, *J* = 7.4, 1.8 Hz, 1H), 7.66 – 7.56 (m, 1H), 7.32 (td, *J* = 7.6, 1.0 Hz, 1H), 7.11 (ddd, *J* = 10.2, 8.2, 1.0 Hz, 1H), 6.30 (d, *J* = 5.2 Hz, 1H), 5.99 (t, *J* = 5.4 Hz, 1H), 5.68 (t, *J* = 5.0 Hz, 1H), 4.51 – 4.36 (m, 3H), 2.15 (s, 3H), 2.11 (s, 3H), 2.09 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 190.0, 170.3, 169.6, 169.3, 161.7 (d, *J* = 256.2 Hz), 153.1, 152.4, 152.3, 145.5, 135.4 (d, *J* = 8.8 Hz), 131.5, 131.5 (d, *J* = 1.8 Hz), 125.2 (d, *J* = 12.0 Hz), 124.6 (d, *J* = 3.4 Hz), 116.4 (d, *J* = 21.8 Hz), 86.6, 80.5, 73.0, 70.5, 62.9, 20.7, 20.5, 20.4; HRMS (ESI): m/z calcd for C₂₃H₂₁FN₄NaO₈⁺ [M+Na]⁺: 523.1236; found: 523.1230.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(2-methoxybenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3ao):

Yield: 56%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.01 (s, 1H), 7.85 – 7.76 (m, 1H), 7.54 (ddd, J = 8.6, 7.4, 1.8 Hz, 1H), 7.09 (td, J = 7.4, 0.8 Hz, 1H), 6.92 (d, J = 8.2 Hz, 1H), 6.27 (d, J = 5.2 Hz, 1H), 5.96 (t, J = 5.4 Hz, 1H), 5.66 (t, J = 5.0 Hz, 1H), 4.49 – 4.34 (m, 3H), 3.46 (s, 3H), 2.14 (s, 3H), 2.09 (s, 3H), 2.06 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.5, 170.2, 169.5, 169.3, 159.4, 154.4, 152.6, 152.1, 144.7, 134.8, 131.1, 131.0, 126.5, 120.9, 111.8, 86.5, 80.3, 72.9, 70.4, 62.8, 55.5, 20.7, 20.4, 20.3; HRMS (ESI): m/z calcd for C₂₄H₂₄N₄NaO₉⁺ [M+Na]⁺: 535.1436; found:535.1444.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(3,4-dimethylbenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3ap):

Yield: 48%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.11 (s, 1H), 8.34 (s, 1H), 7.81 (d, *J* = 1.8 Hz, 1H), 7.72 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.23 (d, *J* = 7.8 Hz, 1H), 6.29 (d, *J* = 5.2 Hz, 1H), 6.01 (t, *J* = 5.4 Hz, 1H), 5.68 (t, *J* = 5.0 Hz, 1H), 4.53 – 4.36 (m, 3H), 2.32 (s, 3H), 2.30 (s, 3H), 2.16 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.1, 170.3, 169.6, 169.3, 154.0, 152.6, 152.2, 144.9, 144.2, 137.1, 133.0, 132.3, 131.5, 129.8, 128.7, 86.6, 80.4, 72.9, 70.5, 62.9, 20.7, 20.5, 20.4, 20.2, 19.7; HRMS (ESI): m/z calcd for C₂₅H₂₆N₄NaO₈⁺ [M+Na]⁺: 533.1643; found: 533.1644.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(3-fluorobenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3aq):

Yield: 35%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.14 (s, 1H), 8.40 (s, 1H), 7.88 – 7.79 (m, 2H), 7.49 (td, J = 8.0, 5.4 Hz, 1H), 7.38 – 7.32 (m, 1H), 6.31 (d, J = 5.2 Hz, 1H), 6.01 (t, J = 5.4 Hz, 1H), 5.67 (dd, J = 5.4, 4.6 Hz, 1H), 4.53 – 4.48 (m, 1H), 4.47 – 4.39 (m, 2H), 2.17 (s, 3H), 2.14 (s, 3H), 2.11 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 189.8 (d, J = 2.2 Hz), 170.3, 169.6, 169.3, 162.6 (d, J = 248.0 Hz), 152.9, 152.4, 152.0, 145.4, 137.1 (d, J = 6.8 Hz), 132.4, 130.2 (d, J = 7.8 Hz), 126.8 (d, J = 3.2 Hz), 121.2 (d, J = 21.6 Hz), 117.3 (d, J = 22.8 Hz), 86.7, 80.5, 73.0, 70.5, 62.9, 20.8, 20.5, 20.4; HRMS (ESI): m/z calcd for C₂₃H₂₂FN₄O₈⁺ [M+H]⁺: 501.1417; found: 501.1379.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(3-chlorobenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3ar):

Yield: 39%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.13 (s, 1H), 8.39 (s, 1H), 8.06 (t, *J* = 1.9 Hz, 1H), 7.95 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.60 (ddd, *J* = 8.0, 2.2, 1.1 Hz, 1H), 7.44 (t, *J* = 7.9 Hz, 1H), 6.30 (d, *J* = 5.2 Hz, 1H), 6.00 (t, *J* = 5.4 Hz, 1H), 5.72 – 5.62 (m, 1H), 4.52 – 4.38 (m, 3H), 2.16 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 189.8, 170.3, 169.6, 169.3, 152.9, 152.2, 152.0, 145.4, 136.7, 134.8, 134.0, 132.5, 130.6, 129.8, 128.9, 86.7, 80.5, 73.0, 70.4, 62.9, 20.7, 20.5, 20.4; HRMS (ESI): m/zcalcd for C₂₃H₂₂ClN₄O₈⁺ [M+H]⁺: 517.1121; found: 517.1117.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(3-bromobenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3as):

Yield: 46%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.14 (s, 1H), 8.40 (s, 1H), 8.23 (t, *J* = 1.8 Hz, 1H), 8.01 (dt, *J* = 7.8, 1.4 Hz, 1H), 7.77 (ddd, *J* = 8.0, 2.0, 1.0 Hz, 1H), 7.39 (t, *J* = 7.8 Hz, 1H), 6.31 (d, *J* = 5.2 Hz, 1H), 6.01 (t, *J* = 5.2 Hz, 1H), 5.67 (t, *J* = 5.0 Hz, 1H), 4.52 – 4.39 (m, 3H), 2.17 (s, 3H), 2.14 (s, 3H), 2.11 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 189.8, 170.4, 169.6, 169.4, 153.0, 152.2, 152.1, 145.5, 136.9, 133.6, 132.5, 130.1, 129.5, 128.6, 122.8, 86.7, 80.6, 73.1, 70.5, 63.0, 20.8, 20.6, 20.4; HRMS (ESI): m/zcalcd for C₂₃H₂₂BrN₄O₈⁺ [M+H]⁺: 563.0596; found: 563.0597.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(2,4,6-trimethylbenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3at):

Yield: 34%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.07 (s, 1H), 8.46 (s, 1H), 6.91 (s, 2H), 6.29 (d, *J* = 5.0 Hz, 1H), 5.98 (t, *J* = 5.4 Hz, 1H), 5.66 (t, *J* = 5.2 Hz, 1H), 4.52 – 4.35 (m, 3H), 2.32 (s, 3H), 2.15 (s, 3H), 2.13 (s, 6H), 2.12 (s, 3H), 2.09 (s, 3H); ¹³C NMR (10 MHz, Chloroform-*d*) δ 199.7, 170.2, 169.5, 169.3, 153.7, 152.6, 150.4, 146.2, 139.6, 136.1, 135.0, 131.7, 128.5, 86.7, 80.3, 73.0, 70.3, 62.8, 21.3, 20.7, 20.5, 20.3, 19.7; HRMS (ESI): m/z calcd for C₂₆H₂₉N₄O₈⁺ [M+H]⁺: 525.1980; found: 525.1981.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-(3,4-dimethoxybenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3au):

Yield: 32%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.11 (s, 1H), 8.34 (s, 1H), 7.75 (d, J = 2.0 Hz, 1H), 7.54 (dd, J = 8.4, 2.0 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 6.29 (d, J = 5.2 Hz, 1H), 6.01 (t, J = 5.2 Hz, 1H), 5.67 (t, J = 5.0 Hz, 1H), 4.53 – 4.36 (m, 3H), 3.95 (d, J = 1.6 Hz, 6H), 2.16 (s, 3H), 2.13 (s, 3H), 2.10 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 189.5, 170.2, 169.5, 169.3, 154.4, 154.3, 152.5, 152.1, 149.3, 144.8, 132.4, 128.3, 127.2, 111.5, 109.9, 86.6, 80.5, 73.0, 70.5, 62.9, 56.1, 56.1, 20.7, 20.5, 20.4; HRMS (ESI): m/z calcd for C₂₅H₂₆N₄NaO₁₀⁺ [M+Na]⁺: 565.1542; found: 565.1538.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-acetyl-9*H*-purin-9-yl) tetrahydrofuran-3,4diyl diacetate (3av):

Yield: 65%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.11 (s, 1H), 8.42 (s, 1H), 6.28 (d, J = 5.2 Hz, 1H), 5.96 (t, J = 5.4 Hz, 1H), 5.64 (t, J = 5.2 Hz, 1H), 4.50 – 4.34 (m, 3H), 2.88 (s, 3H), 2.15 (s, 3H), 2.12 (s, 3H), 2.07 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 198.7, 170.2, 169.5, 169.3, 153.7, 152.2, 149.2, 145.9, 131.5, 86.6, 80.4, 73.0, 70.4, 62.9, 27.9, 20.7, 20.5, 20.3; HRMS (ESI): m/z calcd for C₁₈H₂₀N₄NaO₈⁺ [M+Na]⁺: 433.1174; found:433.1167.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-propionyl-9*H*-purin-9-yl) tetrahydrofuran -3,4-diyl diacetate (3aw):

Yield: 70%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.10 (s, 1H), 8.43 (s, 1H), 6.28 (d, J = 5.2 Hz, 1H), 5.96 (t, J = 5.2 Hz, 1H), 5.65 (t, J = 5.2 Hz, 1H), 4.50 – 4.36 (m, 3H), 3.35 (q, J = 7.2 Hz, 2H), 2.15 (s, 3H), 2.12 (s, 3H), 2.07 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 201.3, 170.3, 169.5, 169.3, 153.6, 152.3, 149.7, 145.7, 131.4, 86.6, 80.5, 73.0, 70.5, 62.9, 33.7, 20.7, 20.5, 20.3, 7.6; HRMS (ESI): m/z calcd for C₁₉H₂₂N₄NaO₈⁺ [M+Na]⁺: 457.1330; found:457.1336.

(2*R*,3*R*,4*R*,5*R*)-2-(acetoxymethyl)-5-(6-butyryl-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3ax):

Yield: 79%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.09 (s, 1H), 8.41 (s, 1H), 6.27 (d, *J* = 5.2 Hz, 1H), 5.96 (t, *J* = 5.4 Hz, 1H), 5.68 – 5.61 (m, 1H), 4.53 – 4.36 (m, 3H), 3.30 (t, *J* = 7.4 Hz, 2H), 2.23 – 2.03 (m, 10H), 1.82 (q, *J* = 7.4 Hz, 2H), 1.03 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.8, 170.3, 169.6, 169.3, 153.6, 152.3, 149.7, 145.7, 131.5, 86.6, 80.4, 73.0, 70.5, 62.9, 42.0, 20.7, 20.5, 20.3, 17.2, 13.8; HRMS (ESI): m/z calcd for C₂₀H₂₅N₄O₈⁺ [M+H]⁺: 449.1667; found: 449.1678.

(2*R*,3*R*,4*R*,5*R*)-2-methyl-5-(6-(4-methylbenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3ba):

Yield: 80%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.13 (s, 1H), 8.27 (s, 1H), 7.94 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 6.19 (d, *J* = 5.0 Hz, 1H), 6.06 (t, *J* = 5.2 Hz, 1H), 5.44 (t, *J* = 5.2 Hz, 1H), 4.38 (dt, *J* = 11.6, 6.2 Hz, 1H), 2.43 (s, 3H), 2.16 (s, 3H), 2.10 (s, 3H), 1.55 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 190.8, 169.7, 169.4, 153.7, 152.6, 152.1, 145.3, 145.2, 132.7, 132.5, 130.9, 129.3, 87.0, 79.0, 74.4, 73.0, 21.8, 20.5, 20.4, 18.7; HRMS (ESI): m/z calcd for C₂₂H₂₂N₄NaO₆⁺ [M+Na]⁺: 461.1432; found: 461.1423.

(2*R*,3*R*,4*R*,5*R*)-2-((benzoyloxy)methyl)-5-(6-(4-methylbenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl dibenzoate (3ca):

Yield: 57%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.94 (s, 1H), 8.36 (s, 1H), 8.15 – 8.08 (m, 2H), 8.06 – 7.99 (m, 2H), 7.97 – 7.89 (m, 4H), 7.64 – 7.51 (m, 3H), 7.50 – 7.33 (m, 6H), 7.31 – 7.24 (m, 2H), 6.56 – 6.47 (m, 2H), 6.30 (t, *J* = 5.2 Hz, 1H), 4.96 (dd, *J* = 12.2, 3.2 Hz, 1H), 4.91 – 4.84 (m, 1H), 4.73 (dd, *J* = 12.2, 4.2 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.7, 166.1, 165.3, 165.1, 153.7, 152.7, 152.1, 145.4, 145.2, 133.9, 133.8, 133.5, 132.7, 132.4, 130.8, 129.8, 129.8, 129.7, 129.2, 129.2, 128.6, 128.6, 128.6, 128.5, 128.2, 87.2, 80.9, 73.6, 71.4, 63.34, 21.8; HRMS (ESI): m/z calcd for C₃₉H₃₁N₄O₈⁺ [M+H]⁺: 683.2137; found: 683.2135.

(2*R*,3*R*,4*R*,5*R*)-2-(6-(4-methylbenzoyl)-9*H*-purin-9-yl) tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (3da):

Yield: 82%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.12 (s, 1H), 8.31 (s, 1H), 7.93 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 6.13 (d, *J* = 9.6 Hz, 1H), 5.88 (t, *J* = 2.8 Hz, 1H), 5.75 (dd, *J* = 9.6, 2.8 Hz, 1H), 5.27 (ddd, *J* = 10.4, 6.0, 2.8 Hz, 1H), 4.14 – 4.00 (m, 2H), 2.42 (s, 3H), 2.28 (s, 3H), 2.06 (s, 3H), 1.81 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.8, 169.8, 169.3, 168.8, 153.6, 153.2, 152.3, 145.3, 144.6, 132.6, 131.8, 130.9, 129.3, 78.7, 68.0, 67.7, 65.7, 63.8, 21.8, 20.8, 20.6, 20.3; HRMS (ESI): m/z calcd for C₂₄H₂₅N₄O₈⁺ [M+H]⁺: 497.1667; found: 497.1658.

Yield: 68%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.94 (s, 1H), 8.36 (s, 1H), 8.14 – 8.09 (m, 2H), 8.05 – 8.01 (m, 2H), 7.95 – 7.90 (m, 4H), 7.63 – 7.53 (m, 3H), 7.48 – 7.35 (m, 6H), 7.28 (d, *J* = 8.2 Hz, 2H), 6.55 – 6.49 (m, 2H), 6.30 (t, *J* = 5.2 Hz, 1H), 4.96 (dd, *J* = 12.2, 3.2 Hz, 1H), 4.90 – 4.85 (m, 1H), 4.73 (dd, *J* = 12.2, 4.2 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.8, 166.1, 165.3, 165.1, 153.7, 152.7, 152.1, 145.4, 145.2, 133.9, 133.8, 133.5, 132.7, 132.4, 130.8, 129.8, 129.8, 129.7, 129.2, 129.2, 128.6, 128.6, 128.5, 128.5, 128.2, 87.2, 80.9, 73.6, 71.3, 63.4, 21.8; HRMS (ESI): m/z calcd for C₃₉H₃₀N₄NaO₈⁺ [M+Na]⁺: 705.1956; found: 705.1949.

(2*R*,3*S*,4*S*,5*R*)-2-(acetoxymethyl)-5-(6-(4-methylbenzoyl)-9*H*-purin-9-yl) tetrahydrofuran-3,4-diyl diacetate (3fa):

Yield: 80%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.13 (s, 1H), 8.33 (s, 1H), 7.93 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 6.14 (d, J = 9.6 Hz, 1H), 5.89 (d, J = 2.8 Hz, 1H), 5.75 (dd, J = 9.6, 2.8 Hz, 1H), 5.28 (ddd, J = 10.4, 6.0, 2.8 Hz, 1H), 4.17 – 4.00 (m, 2H), 2.42 (s, 3H), 2.28 (s, 3H), 2.06 (s, 3H), 1.82 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.9, 169.8, 169.4, 168.8, 153.6, 153.2, 152.3, 145.4, 144.7, 132.7, 130.9, 129.3, 129.1, 78.8, 68.1, 67.8, 65.8, 63.8, 21.9, 20.9, 20.6, 20.4; HRMS (ESI): m/z calcd for C₂₄H₂₄N₄NaO₈⁺ [M+Na]⁺: 519.1487; found: 519.1479.

2-((6-(4-methylbenzoyl)-9*H*-purin-9-yl) methoxy) ethyl acetate (3ga):

Yield: 81%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.11 (s, 1H), 8.34 (s, 1H), 7.93 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H), 5.77 (s, 2H), 4.19 (t, J = 4.6 Hz, 2H), 3.80 (t, J = 4.6 Hz, 2H), 2.41 (s, 3H), 2.01 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.9, 170.7, 153.4, 152.3, 146.5, 145.3, 132.7, 131.4, 130.8, 129.2, 72.8, 68.0, 62.7, 21.8, 20.7. HRMS (ESI): m/z calcd for C₁₈H₁₉N₄O₄[M+H]⁺: 355.1401; found: 355.1408.

(9-benzyl-9H-purin-6-yl) (p-tolyl) methanone (3ha):

Yield: 56%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.05 (s, 1H), 7.87 (d, J = 8.2 Hz, 2H), 7.34 – 7.22 (m, 5H), 7.20 (d, J = 7.8 Hz, 2H), 5.42 (s, 2H), 2.34 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 191.2, 153.2, 153.1, 151.9, 146.5, 145.1, 134.6, 132.8, 131.5, 130.8, 129.2, 129.1, 128.7, 127.9, 47.4, 21.8; HRMS (ESI): m/z calcd for C₂₀H₁₆N₄NaO⁺ [M+Na]⁺: 351.1217; found: 351.1215.

ethyl 2-(6-(4-methylbenzoyl)-9H-purin-9-yl) acetate (3ia):

Yield: 78%, Yellow solid; mp 129–133 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.09 (s, 1H), 8.28 (s, 1H), 7.94 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 7.8 Hz, 2H), 5.11 (s, 2H), 4.28 (q, J = 7.2 Hz, 2H), 2.42 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 191.1, 166.7, 153.3, 153.2, 152.2, 147.0, 145.3, 132.9, 131.3, 131.0, 129.3, 62.7, 44.3, 21.9, 14.1. HRMS (ESI): m/z calcd for C₁₇H₁₇N₄O₃⁺ [M+H]⁺: 325.1296; found: 325.1297.

methyl 2-(6-(4-methylbenzoyl)-9H-purin-9-yl) propanoate (3ja):

Yield: 76%, Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.08 (s, 1H), 8.38 (s, 1H), 7.95 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 7.6 Hz, 2H), 5.59 (q, *J* = 7.6 Hz, 1H), 3.80 (s, 3H), 2.42 (s, 3H), 1.94 (d, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 191.1, 170.1, 153.2, 153.0, 151.9, 145.2, 132.8, 131.4, 130.9, 129.3, 53.3, 52.0, 21.9, 18.0. HRMS (ESI): m/z calcd for C₁₇H₁₇N₄O₃⁺ [M+H]⁺: 325.1296; found: 325.1285.

8. NMR Spectra of Products

¹H-NMR spectrum for **3aa** (in CDCl₃)

¹³C-NMR spectrum for **3aa** (in CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) ¹H-NMR spectrum for **3ac** (in CDCl₃)

¹H-NMR spectrum for **3ad** (in CDCl₃)

¹H-NMR spectrum for **3ae** (in CDCl₃)

¹³C-NMR spectrum for **3ae** (in CDCl₃)

¹H-NMR spectrum for **3af** (in CDCl₃)

¹³C-NMR spectrum for **3af** (in CDCl₃)

¹H-NMR spectrum for **3ag** (in CDCl₃)

¹³C-NMR spectrum for **3ag** (in CDCl₃)

¹H-NMR spectrum for **3ah** (in CDCl₃)

¹³C-NMR spectrum for **3ah** (in CDCl₃)

¹H-NMR spectrum for **3ai** (in CDCl₃)

¹³C-NMR spectrum for **3ai** (in CDCl₃)

¹H-NMR spectrum for **3aj** (in CDCl₃)

¹³C-NMR spectrum for **3aj** (in CDCl₃)

¹H-NMR spectrum for **3ak** (in CDCl₃)

¹H-NMR spectrum for **3al** (in CDCl₃)

¹³C-NMR spectrum for **3al** (in CDCl₃)

-86.6 -80.4 -77.3 CDCl3 -77.0 170.3 169.6 169.5 163.1 155.0 155.0 155.7 152.7 152.7 152.7 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.0 152.1 152.0 152.1 152.0 152.1 152.0 152.1 152.00 - 189.5 $\underbrace{\int}_{20.5}^{20.5}$

¹³C-NMR spectrum for **3am** (in CDCl₃)

¹H-NMR spectrum for **3an** (in CDCl₃)

¹³C-NMR spectrum for **3an** (in CDCl₃)

¹H-NMR spectrum for **3ao** (in CDCl₃)

¹³C-NMR spectrum for **3ao** (in CDCl₃)

¹H-NMR spectrum for **3ap** (in CDCl₃)

¹³C-NMR spectrum for **3ap** (in CDCl₃)

¹H-NMR spectrum for **3aq** (in CDCl₃)

¹³C-NMR spectrum for **3aq** (in CDCl₃)

¹H-NMR spectrum for **3ar** (in CDCl₃)

¹³C-NMR spectrum for **3ar** (in CDCl₃)

¹H-NMR spectrum for **3as** (in CDCl₃)

¹³C-NMR spectrum for **3as** (in CDCl₃)

¹H-NMR spectrum for **3at** (in CDCl₃)

¹³C-NMR spectrum for 3at (in CDCl₃)

¹H-NMR spectrum for **3au** (in CDCl₃)

¹³C-NMR spectrum for **3au** (in CDCl₃)

¹H-NMR spectrum for **3av** (in CDCl₃)

¹³C-NMR spectrum for **3av** (in CDCl₃)

44

¹H-NMR spectrum for **3aw** (in CDCl₃)

¹³C-NMR spectrum for **3aw** (in CDCl₃)

45

¹H-NMR spectrum for **3ax** (in CDCl₃)

¹H-NMR spectrum for **3ba** (in CDCl₃)

¹³C-NMR spectrum for **3ba** (in CDCl₃)

¹H-NMR spectrum for **3ca** (in CDCl₃)

¹³C-NMR spectrum for **3ca** (in CDCl₃)

¹H-NMR spectrum for **3da** (in CDCl₃)

¹H-NMR spectrum for **3ea** (in CDCl₃)

¹³C-NMR spectrum for **3ea** (in CDCl₃)

¹H-NMR spectrum for **3fa** (in CDCl₃)

¹H-NMR spectrum for **3ga** (in CDCl₃)

¹H-NMR spectrum for **3ha** (in CDCl₃)

¹³C-NMR spectrum for **3ha** (in CDCl₃)

210 200 190 150 140 fl (ppm) -10

¹³C-NMR spectrum for **3ia** (in CDCl₃)

HSQC NMR Spectrum for **3aa** (in CDCl₃)

HMBC NMR Spectrum for 3aa (in CDCl₃)

COSY NMR Spectrum for 3aa (in CDCl₃)

