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Supporting Notes

1 Computational methodology

1.1 Gaussian process models

To obtain a potential energy surface (PES) using sparse Gaussian process (SGP) regression,

the total energy E of the system is decomposed into M local energies ε(ρi),
1 so that

E =
M∑
i

ε(ρi) =
M∑
i

ns∑
s∈S

αsk(ds,di). (S1)

ρi describes the atom-centered local environment as a function of atomic species and in-

teratomic distances within a cutoff radius Rcut. We use the multielement atomic cluster

expansion2 to describe the local environments with descriptors d that are invariant under

permutations, translations, and rotations. To evaluate forces and stresses, the gradients of

the descriptor are calculated with respect to the Cartesian coordinates of each neighbour in

the local environment.1 Both the sparse weights αs, collected in the sparse vector αs, and

the kernel function k(ds,di) must be optimized to obtain a correct description of the PES.

The descriptors di are compared with the ns reference descriptors ds in the sparse data set

S, which is obtained from ab-initio calculations. The kernel function is used as a similarity

measure as

k(d,d′) = γ2

(
d · d′

|d||d′|

)ξ

. (S2)

Here, γ quantifies the noise in local energy and the integer ξ determines the sharpness or

correlation length of the kernel. We set ξ = 2. The sparse vector αs and the associated

variances V [ε∗] of the predictions are computed using Bayes’ theorem1 as

αS =
[
KSF (σ

2
nI)

−1KFS +KSS

]
KSFy, (S3)

V [ε] = k(d,d)− k(d)T (K + σ2
nI)

−1k(d). (S4)
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The sparse vector αs is determined from aggregated kernels KAB where A and B can denote

either the full data set F or the sparse data set S. A benefit is that for smaller sparse data

sets S, the loop in eqn. S1 is performed across fewer data points, making its evaluation less

demanding. σ2
nI is a diagonal matrix that quantifies the expected noise in the forces (σF),

energies (σE), and stresses (σS). y collects the data of the reference ab-initio calculations.

The variance is used as an estimate of the Bayesian error during the on-the-fly training.

Whenever the estimated error exceeds a threshold, a reference calculation is performed of

which the full structure is added to the full data set F , and only the local environments

with an uncertainty above a sparsification threshold are added to the sparse set S. The

SGP model is retrained by optimizing a log marginal likelihood function in the deterministic

training conditional (DTC) approximation1,3

L =− 1

2
yT

(
KSFK

−1
SSKFS + σ2

nI
)−1

y

− 1

2
log

∣∣KSFK
−1
SSKFS + σ2

nI
∣∣

− n

2
log 2π,

(S5)

where the first term rewards the quality of the fit, the second term punishes model complexity,

and the third term is a normalization constant with n the total number of labels in the

training set. As such, the log marginal likelihood results in a trade-off between model

accuracy and complexity to prevent model overfitting. Using the L-BFGS algorithm4,5 the

log marginal likelihood is optimized with the hyperparameters (γ, σF, σE, and σS), as a

result of which the SGP model is continuously improved until the on-the-fly training ends,

resulting in a machine-learned force field (MLFF). In line with earlier works in literature,1,6

we mapped the final MLFFs onto much faster polynomial models, that are quadratic in the

descriptor (ξmap=2), for use in large-scale dynamical simulations.”
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1.2 Density functional theory calculations

The ab-initio density functional theory (DFT) calculations used to train the MLFF were

performed with the projector augmented wave (PAW) method7 as implemented in the Vi-

enna Ab-Initio Simulation Package (VASP).8–10 The Perdew, Burke and Ernzerhof (PBE)

functional was used to model the exchange-correlation interaction between the electrons.11

The outermost electrons of Cs (5s25p66s1); Pb (6s26p2), I (5s25p5) and Br (4s24p5) were

treated as valence electrons and an energy cutoff of 300 eV was used for the plane wave basis

set. Long-range dispersive interactions were explicitly accounted for by the DFT-D3(BJ)

dispersion correction.12 In each ionic step the self-consistency cycle was repeated until a

convergence of 1 × 10−2meV was reached in the energy. The Brillouin zones of the struc-

tures were sampled using Γ-centered k-points meshes.13 For small perovskite structures (less

than 20 formula units), the reciprocal space was sampled using a 2× 2× 2 k-mesh. Larger

perovskite structures (more than 20 formula units), were sampled with only the Γ-point

(1× 1× 1 k-mesh).

1.3 Large-scale molecular dynamics simulations

Large-scale molecular dynamics (MD) simulations were run with the mapped models in

LAMMPS.14 Depending on the material property of interest, simulations were run in an

NV T -ensemble (e.g. defect migration) and NpT -ensemble (e.g. phase transition). In all

simulations, the temperature was maintained at the desired target temperature using a

Nosé-Hoover chains (NHC) thermostat.15,16 For the NpT -ensemble, lattice fluctuations were

accounted for by maintaining an atmospheric pressure (1 atm) using a Martyna-Tobias-Klein

(MTK) barostat.17 As a result of the relatively large mass (> 79.904 a.m.u) of all atomic

species involved, a simulation time step ∆t in the range of 1-3 fs was used. Details of specific

simulations can be found in the respective sections of the Supporting Information.
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2 Phase transition models

2.1 On-the-fly machine learning hyperparameters

The on-the-fly MLFF training routine requires a certain set of parameters to be defined prior

to the training cycles. These so-called hyperparameters used during the on-the-fly training

of the MLFF models in this work are shown in Table S1. We note that γ, σF, σE, and σS

are kernel hyperparameters are changed during the log marginal likelihood optimization in

the on-the-fly training.

Table S1: Hyperparameters of the on-the-fly MLFF training.

Hyperparameter Value
Nrad 8
lmax 3
ξ 2

Rcut 6.0 Å
γ 2.0 eV
σE 1.0meV/atom

σF 1.0 eV Å
−1

σS 1.0× 108 Pa

2.2 Phase transition model training

We trained the MLFF models for the different bulk phases of inorganic CsPbX3 perovskites.

For the cubic, tetragonal and orthorhombic phases we used 2 × 2 × 2,
√
2 ×

√
2 × 2 and

2× 2× 1 supercells for the on-the-fly MLFF training (Figure S1). All simulations were done

in an NpT -ensemble with a simulation time step of ∆t = 3 fs at atmospheric pressure. In

line with the training procedure used by Jinnouchi et al. 18 , we started the training from the

high-temperature cubic phase, so that during the initial training iteration a large portion

of the phase-space would be sampled as a result of the increased dynamics at elevated

temperatures. The MLFF was subsequently trained against the low-temperature phases

(tetragonal and orthorhombic) of the inorganic perovskites, for which the thresholds (σth

and σth,s) were decreased to allow for the incorporation of new data into the training set. A
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complete overview of the training cycles in the on-the-fly MLFF training is given in Table S2.

b) c)a) cubic
(2x2x2)

tetragonal
(√2x√2x2)

orthorhombic
(2x2x1)

Figure S1: Structural models used during the training of the phase transition models for
CsPbX3 perovskites. (a) 2 × 2 × 2 cubic CsPbI3. (b)

√
2 ×

√
2 × 2 tetragonal CsPbI3. (c)

2× 2× 1 orthorhombic CsPbI3. Unit cells are indicated in black.

Table S2: On-the-fly machine learning training cycles for inorganic halide perovskite
(CsPbX3) MLFFs for bulk phase transitions between the black phases.

Material Iteration Phase T (K) Nsteps (-) σth (eV/Å) σth,s (eV/Å)

CsPbI3

1 Cubic 600 2500 0.050 0.040

2
Tetragonal

470 2500
0.050 0.040

3 510 2500

4
Orthorhombic

200 1500
0.030 0.0255 275 1000

6 350 2500

CsPbBr3

1 Cubic 450 2500 0.050 0.035

2 Tetragonal 370 5000 0.030 0.025

3
Orthorhombic

200 5000
0.025 0.0154 250 5000

5 300 5000

The details of the resulting MLFF models are shown in Table S3. This overview includes

the number of training steps Ntrain, the number of local environments Nlocal and the number

of sparse local environments Nsparse per atomic species.
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Table S3: Details of the MLFF models trained against the different bulk phases of inorganic
CsPbX3 perovskites.

Perovskite Ntrain (-) Nlocal (-) Nsparse (-)

CsPbI3 87 4240
163 (Cs)
62 (Pb)
472 (I)

CsPbBr3 82 4200
173 (Cs)
74 (Pb)
509 (I)

2.3 Phase transition model validation

The MLFF trained against the various bulk phases of CsPbI3 was validated using large-scale

molecular dynamics simulations of a model system with 40 atoms (8 formula units). The

used model system is shown in Figure S1a. In the simulation, the perovskite system was

kept at 700K and atmospheric pressure (1 atm) in an NpT -ensemble. The simulation was

run with a time step ∆t = 2 fs for a total length of 1 ns. Since 50 equally spaced frames were

extracted from the simulation, this resulted in a spacing between the frames of 20 ps. The

resulting total energies and atomic force components of these frames were compared against

ab-initio calculations.

2.4 Bulk moduli of CsPbX3

The reference data for the equations of state was generated with the same settings in VASP

as detailed in SI Note 1.2. The reciprocal space of the cubic, tetragonal, and orthorhombic

phase of CsPbI3 was sampled with a 10 × 10 × 10, 7 × 7 × 10 and 7 × 7 × 5 k-mesh,

respectively. The unit cell volumes are changed with isotropic strain, during which ionic

positions are allowed to relax. The bulk moduli are obtained by fitting the Murnaghan

equation of state19 to the data for each of the CsPbI3 phases. We note that the bulk moduli

from the MLFF model (Table S4) show a good agreement with the bulk moduli obtained from

ab-initio DFT calculations and other predictions for CsPbI3 in literature,20–23 highlighting
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an overall accurate description of the PES of the perovskite.

Table S4: The bulk moduli of the different black phases of CsPbI3 as determined using from
ab-initio DFT calculations and the CsPbI3 MLFF model with the Murnaghan equation of
state.

Material Phase B0,MLFF (GPa) B0,DFT (GPa)

CsPbI3

Cubic 18.2 16.7
Tetragonal 18.3 14.2
Orthorhombic 16.0 13.7

2.5 Octahedral inversion barrier

The octahedral inversion barrier of the tetragonal phase of CsPbI3 is calculated with similar

VASP settings as detailed in SI Note 1.2 using a 7× 7× 10 k-mesh to sample the reciprocal

space. Five intermediate geometries were used to determine the inversion barrier of the

octahedra using the Climbing Image Nudged Elastic Band (CI-NEB) method24,25 using a

force convergence criterion of 3× 10−2 eV Å
−1
.
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3 Phase transition analysis

3.1 Phase transition simulations

We used large-scale molecular dynamics simulations with the MLFFs to simulate the phase

transitions of the two inorganic perovskites. A 3 × 3 × 3 orthorhombic supercell, with 540

atoms (108 formal units) was used as the model system. At each target temperature, the

simulations were carried out in an NpT -ensemble. Each simulation run made use of a time

step ∆t = 1 fs for a total duration of 400 ps, where the first 50 ps of each trajectory were

discarded as equilibration stage. A temperature spacing of 50K was used, a smaller spacing of

25K was used close to the experimentally reported phase transition temperatures.26,27 Lattice

vectors were obtained by a fitting of Gaussian distributions to the fluctuations in the lattice

vectors, the complete procedure of which was outlined in earlier works in literature.18,28

3.2 Thermal expansion of CsPbX3

To assess the macroscopic behaviour of the pure bulk perovskites, we compute their volu-

metric expansion coefficient αV, as

αV =
1

V0

∂V

∂T
(S6)

with V0 the reference volume at T= 300K. An overview of the volumetric expansion coef-

ficients for the CsPbX3 inorganic perovskites is shown in Table S5. We highlight the good

overall agreement between experiments and the MLFF models.

Table S5: The volumetric expansion coefficients αV of the black phases of CsPbI3 and
CsPbBr3 as determined with the MLFF models and through experiments.

Material αV,MLFF (·10−4 K−1) αV,exp (·10−4 K−1)

CsPbI3 1.35(0.02) 1.5326, 1.1829

CsPbBr3 1.28(0.04) 1.227
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3.3 Ionic motion of halide ions

To probe the typical motion of the halide ions and the effect that temperature has on this

motion, we analyze the trajectories used for the construction of the phase diagrams of the

perovskites. We employ the root mean squared displacement (RMSD) of the halide ions with

respect to their average position as a measure for their typical motion in the lattice. For a fair

comparison between CsPbI3 and CsPbBr3, we scale the root mean square displacements with

the cubic lattice vectors obtained from ab-initio calculations (aCsPbI3 = 6.29 Å and aCsPbBr3 =

5.92 Å). The extent of this halide movement along with its temperature dependence is shown

in Figure S2. We note that at elevated temperatures (> 500K) iodide ions exhibit more ionic

motion than bromide ions in as evidenced by the higher values of the plateaus in Figure S2

for CsPbI3 (0.185) than for CsPbBr3 (0.165).

200 400 600
T (K)

0.00

0.05

0.10

0.15

0.20

0.25

RM
SD

/a
 (Å

)

CsPbI3
CsPbBr3

Figure S2: Degree of ionic motion in inorganic perovskite lattices (CsPbI3 and CsPbBr3),
quantified by the root mean square displacement (RMSD) of the halide ions scaled by the
cubic lattice vectors.
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4 Model transferability

4.1 Defect model training

The MLFF model explicitly trained against the migration of a VI in CsPbI3 was trained

against a cubic supercell with one point defect. We made use of a 2× 2× 2 cubic supercell

with one VI defect (39 atoms; 8 formula units with one VI). During the on-the-fly training

in an NpT -ensemble, the temperature and pressure were maintained at 600K and 1 atm,

respectively, with a simulation time step of ∆t = 3 fs. The threshold and sparse threshold

hyperparameters were set to σth= 0.050 eV Å
−1

and σth,s= 0.035 eV Å
−1
. A total of 10000

on-the-fly training steps (30 ps) were needed to end up with a MLFF with mean absolute

errors (MAEs) in the force components below the error threshold of 0.050 eV Å
−1
. Notably,

the vacancy does not move during training.

4.2 Defect validation simulations

For the MLFF models, we validated their performance for the description of a bulk system

with an iodine vacancy (VI). In these simulations, we used a 4× 4× 4 cubic supercell with

319 atoms (64 formula units with one VI) as the model system. In the simulations in an

NpT -ensemble, the temperature was kept to 750K at an atmospheric pressure (1 atm). The

simulation was run with a time step of ∆t = 2 fs for a total duration of 2.5 ns. We extracted

a total of 100 frames from the simulate and only evaluate the frames in which we identify

the VI defect, this resulted in a total of 59 analyzed frames for which the force components

could be compared. An overview of the accuracy of the models is shown in Table S6.
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Table S6: R2 values of the force components for a CsPbI3 system with one VI defect for
different MLFF models. A spatial decomposition of the R2 values is performed into full
structure, local defect region and residual bulk region. A chemical decomposition of the R2

values is performed to the different chemical species: Cs, Pb and I.

System Model Environment All Cs Pb I

Iodine vacancy (VI)

Phase transition
Full 0.911 0.908 0.912 0.911
Bulk 0.914 0.930 0.912 0.913
Defect 0.843 0.895 0.822 0.857

Vacancy trained
Full 0.932 0.930 0.932 0.932
Bulk 0.933 0.951 0.927 0.934
Defect 0.904 0.941 0.888 0.915

4.3 Defect environment recognition

The identification of the iodine vacancy (VI) was done based on the local coordination of

Pb species. In the pristine bulk of CsPbI3 each Pb species is surrounded by six I atoms,

which in the presence of a vacancy reduces to five I atoms. We employ a spherical cutoff

distance of rPb−I
cut = 4.5 Å to determine the I-coordination for each Pb atom. Whenever we

identify two neighbouring five-coordinated Pb atoms in our system, we identify the position

between those two Pb particles as the VI defect. A spherical cutoff of rpaircut = 7.5 Å is used

to check if any undercoordinated Pb atoms are close to each other. A schematic overview of

the defect recognition in bulk CsPbI3 is shown in Figure S3a. Finally, we consider all atoms

that are within a radius of rdefcut = 4.5 Å from the identified defect, to be in the so-called

’defect environment’, all atoms further than this cutoff distance are considered in a ’bulk

environment’. The distinction between these two environments is illustrated in Figure S3b.
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b)a)

Figure S3: Schematic overview of the recognition of a VI defect in bulk CsPbI3. (a) Two
undercoordinated Pb atoms are highlighted by the yellow circles and the VI defect is indicated
with the purple circle. The red circle highlight the rPb−I

cut cutoff distance, used to check which
Pb atoms have fewer than six I atoms coordinating it. The blue circle illustrates the rpaircut

cutoff distance, which is to check if two undercoordinated Pb atoms are close to each other.
(b) Distinction between the region of atoms far away from (’bulk environment’) and close to
(’defect environment’) the point defect, with the purple shading highlighting the are close
to the defect.
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5 Defect migration models and analysis

5.1 Defect migration model training

The different MLFF models were trained in a similar way to that aimed at describing the

migration of VI in CsPbI3 (see SI Note 5). Pure 2 × 2 × 2 cubic supercells either with one

vacancy (39 atoms; 8 formula units with one VX) or one interstitial (41 atoms; 8 formula

units with one IX) point defect were used. For all systems, the on-the-fly training was done

in an NpT -ensemble with similar simulation conditions as in the previous run (T = 600K, p

= 1atm, ∆t = 3 fs), with identical hyperparameter thresholds (σth= 0.050 eV Å
−1

and σth,s=

0.035 eV Å
−1
). Since we observe that halide interstitials are considerably more mobile than

halide vacancies, we only require 5000 steps (15 ps) for the training of interstitials, opposed to

the 10000 steps (30 ps) used for vacancies to obtain MLFFs with MAEs below 0.050 eV Å
−1
.

Notably, interstitials move during the MLFF training, in contrast to vacancies that do not.

A complete overview of the obtained models is shown in Table S7.

Table S7: Obtained models from on-the-fly MLFF training on CsPbI3 defects with one VI

or II defect and CsPbBr3 with one VBr or IBr defect.

Perovskite Defect Ntrain (-) Nlocal (-) Nsparse (-)

CsPbI3

VI 101 3939
197 (Cs)
83 (Pb)
514 (I)

II 103 4223
165 (Cs)
70 (Pb)
699 (I)

CsPbBr3

VBr 106 4134
171 (Cs)
111 (Pb)
493 (I)

IBr 81 3321
158 (Cs)
91 (Pb)
674 (I)
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5.2 Defect migration simulations

The defect migration of point defects was studied through large-scale molecular dynamics

simulations with MLFFs for perovskite systems with point defects. A 4×4×4 orthorhombic

supercell with 1280 atoms (256 formula units) was used as the model system. Defect were cre-

ated by either removing (VX) or adding (IX) two halide ions from the perovskite. Each model

system contained two point defects, resulting in a defect concentration of 3.3×1019 cm−3 for

CsPbI3 and 3.9× 1019 cm−3 for CsPbBr3, respectively. To prevent a high local concentration

a spacing between the defects of at least 20 Å was used. The molecular dynamics simulations

were run with a time step of ∆t = 2 fs. The model systems were equilibrated to their target

temperature and atmospheric pressure (1 atm) in an NpT -ensemble. The length of the equi-

libration stage was set to tIXeq = 100 ps for the systems with IX defects and tVX
eq = 60 ps for

systems with VX defects. Longer equilibration times were used for interstitial point defects

as a result of their increased mobility in the perovskite lattice. After equilibration, we take

the volume, pressure and velocities of the final equilibration frame and use those as a starting

point for the 2.5 ns production runs in an NV T -ensemble at the desired target temperature.

5.3 Defect migration analysis

To analyze the migration behaviour of point defects in inorganic halide perovskites we use a

method that is similar to previous works.23,28 We employ the Einstein relation for diffusion30

to characterize the motion of atomic species with their self-diffusion coefficient D as

D =
1

2d
lim
t→∞

d

dt
MSD(t) (S7)

in which d is the dimensionality of the system (d = 3 for bulk perovskites) and MSD (mean

square displacement) is the average displacement of a species at time t. If we are interested

in the diffusion of point defects in inorganic perovskites, the MSD of these point defects is
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defined as

MSD (t) =

〈
1

Ndef

NX∑
i=1

|r⃗i (t)− r⃗i (0)|2
〉

t0

(S8)

where Ndef is the number of point defects, NX the number of halide ions, r⃗i (t) describes the

position of halide ion i after a time t, r⃗i (0) the starting position of halide ion i and ⟨· · · ⟩t0

showing the window-averaging over different time origins t0. To speed up the computation

of we employ a fast Fourier transform algorithm for the computation of the MSD.31

The self-diffusion coefficients obtained with equation S7 and S8 are inherently noisy for

shorter trajectories. As such, we repeated every simulation three times in total and averaged

the corresponding self-diffusion coefficients for each temperature. Furthermore, we deter-

mined the self-diffusion coefficients of systems with halide vacancies at more intermediate

temperatures, due to the lower mobility of such defects. Finally, we excluded the simulations

of VBr in CsPbBr3 at 550K, since we did not observe any defect migration in our simulations.

S17



References

(1) Vandermause, J.; Xie, Y.; Lim, J. S.; Owen, C. J.; Kozinsky, B. Active Learning of

Reactive Bayesian Force Fields Applied to Heterogeneous Catalysis Dynamics of H/Pt.

Nature Communications 2022, 13, 5183.

(2) Drautz, R. Atomic Cluster Expansion for Accurate and Transferable Interatomic Po-

tentials. Physical Review B 2019, 99, 014104.
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