Supplementary Information for

Local Density Changes and Carbonate Rotation Enable
 Ba Incorporation in Amorphous Calcium Carbonate

Sebastien N. Kerisit, * Micah P. Prange, and Sebastian T. Mergelsberg
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

[^0]
Computational Methods

Ab initio molecular dynamics (AIMD) simulations based on density functional theory (DFT) were performed with VASP (Vienna ab initio Simulation Package) ${ }^{1-4}$ using the projector augmented-wave (PAW) approach ${ }^{5,6}$ and the Perdew, Burke, Ernzerhof ${ }^{7,8}$ (PBE) approximate exchange-correlation functional augmented by the Grimme dispersion corrections (D3). ${ }^{9,10}$ The PBE PAW potentials from the VASP database for $\mathrm{H}, \mathrm{C}, \mathrm{O}, \mathrm{Ca}$, and Ba were used. These remove $0,2,2,12$, and 46 electrons from the DFT calculation for each element, respectively. AIMD simulations were performed in the $N V T$ (constant number of particles, constant volume, and constant temperature) and NPT (constant pressure) ensembles with an integration time step of 0.5 fs and at the Γ point ($1 \times 1 \times 1 k$-point mesh). The temperature was fixed by a Nosé-Hoover thermostat ${ }^{11,12}$ with the fictitious mass set to 3.0 for $N V T$ runs. In NPT calculations, a Langevin thermostat ${ }^{13}$ with damping coefficient of $10 \mathrm{ps}^{-1}$ was used for the atomic degrees of freedom and a Langevin barostat with damping coefficient of also $10 \mathrm{ps}^{-1}$ was used for the lattice degrees of freedom (Parrinello-Rahman dynamics ${ }^{14,15}$). The convergence criterion for the electronic selfconsistent calculation was $10^{-5} \mathrm{eV}$ throughout.

The calculations were performed in (initially) cubic boxes with 24 each of $\mathrm{CO}_{3}{ }^{2-}$ groups, M^{2+} cations ($\mathrm{M}=\mathrm{Ca}, \mathrm{Ba}$), and $\mathrm{H}_{2} \mathrm{O}$ molecules. Initial amorphous configurations were generated by randomly placing the molecular groups on a cubic grid followed by relaxation and equilibration for 1 ns at room temperature with classical molecular dynamics (CMD) using DL_POLY Classic. ${ }^{16}$ Simulation parameters for these calculations were the same as in our previous work. ${ }^{17}$ The potential parameters for water were those of the flexible SPC model. ${ }^{18}$ The parameters that described the intra-carbonate, inter-carbonate, carbonate-water, calcium-carbonate and calciumwater interactions were those in Kerisit and Parker ${ }^{19}$ and references therein. The parameters for
the barium-carbonate oxygen and barium-water oxygen interactions were from Raiteri et al. ${ }^{20}$ With the volume held constant, these initial CMD structures were melted in AIMD at $\mathrm{T}=1500$ K and configuration were drawn for the quench stage at regular intervals. The molten configurations, which were prepared using a lower 300 eV energy cutoff, were quenched to room temperature $(300 \mathrm{~K})$ at a rate of $300 \mathrm{~K} \mathrm{ps}^{-1}$ to generate models of the hydrated, amorphous solids. These quenched configurations were then run in the $N V T$ ensemble for 12 ps using a 600eV energy cutoff to accumulate 960 snapshots by sampling the structure every 12.5 fs . Subsequently, the final structures of the $N V T$ simulations were used as starting points for 12 ps $N P T$ simulations from which another set of 960 snapshots were collected. For $\mathrm{ACC}(\mathrm{Ba})$, a molten pure ACC configuration with one Ba atom substituted for one Ca atom was used as the initial configuration instead of following the CMD protocol. For $\mathrm{ACC}(\mathrm{Ba})$, the average simulation cell side length was $12.73 \AA$ from the $N P T$ simulations.

Definition of orientation order parameter

The distance-dependent orientation order parameter, $S(r)$, is defined as

$$
S(r)=\frac{\sum_{i=1}^{N C} 0.5 \times\left(3 \cos ^{2} \theta_{i}-1\right)}{N_{C}}
$$

where N_{C} is the number of carbonate ions and θ is the angle between the $\mathrm{Ca} / \mathrm{Ba}-\mathrm{C}$ vector and the normal to the carbonate plane defined by its three O atoms. S equals $-0.5,1$, and 0 for edge-on, face-on, and random orientations, respectively.

Radial Distribution Functions (RDFs) of Ca and Ba in ACC(Ba)

Figures S1 through S8 depict RDFs of Ca or Ba with carbonate oxygen (Oc), water oxygen (Ow), carbon (C), or calcium (Ca) atoms obtained from NPT AIMD simulations of Ba incorporated in $\mathrm{ACC}(\mathrm{ACC}(\mathrm{Ba}))$. In each graph, both the RDFs from individual simulations and the running averages in five-configuration intervals are shown. The running averages help establish convergence of the different RDFs as a function of the number of configurations pulled from the melt.

Figure S1. Ba-carbonate O (top) and $\mathrm{Ba}-$ water O (bottom) radial distribution functions calculated from the 30 individual NPT simulations (thin lines, denoted by the time at which a configuration was pulled from the melt) and running averages in five-configuration intervals (thick lines, with the number of configurations used in the average shown in parentheses).

Figure S2. $\mathrm{Ba}-\mathrm{C}$ (top) and $\mathrm{Ba}-\mathrm{Ca}$ (bottom) radial distribution functions calculated from the 30 individual NPT simulations (thin lines, denoted by the time at which a configuration was pulled from the melt) and running averages in five-configuration intervals (thick lines, with the number of configurations used in the average shown in parentheses).

Figure S3. Ca1-carbonate O (top) and Ca 1 -water O (bottom) radial distribution functions calculated from the 30 individual NPT simulations (thin lines, denoted by the time at which a configuration was pulled from the melt) and running averages in five-configuration intervals (thick lines, with the number of configurations used in the average shown in parentheses).

Figure S4. $\mathrm{Ca} 1-\mathrm{C}$ (top) and $\mathrm{Ca} 1-\mathrm{Ca}$ (bottom) radial distribution functions calculated from the 30 individual NPT simulations (thin lines, denoted by the time at which a configuration was pulled from the melt) and running averages in five-configuration intervals (thick lines, with the number of configurations used in the average shown in parentheses).

Figure S5. Ca2-carbonate O (top) and Ca 2 -water O (bottom) radial distribution functions calculated from the 30 individual NPT simulations (thin lines, denoted by the time at which a configuration was pulled from the melt) and running averages in five-configuration intervals (thick lines, with the number of configurations used in the average shown in parentheses).

Figure S6. $\mathrm{Ca} 2-\mathrm{C}$ (top) and $\mathrm{Ca} 2-\mathrm{Ca}$ (bottom) radial distribution functions calculated from the 30 individual NPT simulations (thin lines, denoted by the time at which a configuration was pulled from the melt) and running averages in five-configuration intervals (thick lines, with the number of configurations used in the average shown in parentheses).

Figure S7. Ca3-carbonate O (top) and Ca 3 -water O (bottom) radial distribution functions calculated from the 30 individual NPT simulations (thin lines, denoted by the time at which a configuration was pulled from the melt) and running averages in five-configuration intervals (thick lines, with the number of configurations used in the average shown in parentheses).

Figure S8. Ca3-C (top) and $\mathrm{Ca} 3-\mathrm{Ca}$ (bottom) radial distribution functions calculated from the 30 individual NPT simulations (thin lines, denoted by the time at which a configuration was pulled from the melt) and running averages in five-configuration intervals (thick lines, with the number of configurations used in the average shown in parentheses).

Incorporation Energetics

Figure S9. (left) Average internal energy of the $\mathrm{ACC}(\mathrm{Ba})$ supercell calculated for the 30 individual NPT simulations. Histogram of the 30 average internal energies together with fit to a normal distribution.

Molar volumes

Table 1. Molar volumes and associated statistics (mean (μ), standard deviation (σ), and standard error of the mean (SEM)) of $\mathrm{ACC}, \mathrm{ABC}$, and $\mathrm{ACC}(\mathrm{Ba})$.

ACC					
Config. \#	MV ($\mathrm{cm}^{3} / \mathrm{mol}$)	Config. \#	MV ($\mathrm{cm}^{\mathbf{3} / \mathrm{mol} \text {) }}$	Config. \#	MV ($\mathrm{cm}^{3} / \mathrm{mol}$)
1	51.98323	3	51.50403	5	51.62787
2	51.35452	4	51.61519	6	50.81179
μ	51.482	σ	0.391	SEM	0.159
ABC					
Config. \#	MV ($\mathrm{cm}^{3} / \mathrm{mol}$)	Config. \#	MV ($\mathrm{cm}^{3} / \mathrm{mol}$)	Config. \#	MV ($\mathrm{cm}^{3} / \mathrm{mol}$)
1	63.65344	3	62.67024	5	63.03618
2	63.47994	4	63.03084	6	63.53542
μ	63.234	σ	0.381	SEM	0.156
ACC(Ba)					
Config. \#	MV ($\mathrm{cm}^{3} / \mathrm{mol}$)	Config. \#	MV ($\mathrm{cm}^{3} / \mathrm{mol}$)	Config. \#	MV ($\mathrm{cm}^{3} / \mathrm{mol}$)
1	50.89573	11	51.47131	21	51.38604
2	51.05074	12	50.88955	22	51.96763
3	52.51443	13	51.70865	23	51.13519
4	52.28969	14	51.47419	24	51.09412
5	51.05253	15	51.88150	25	51.26768
6	52.32814	16	51.25584	26	52.30160
7	51.31973	17	50.80411	27	51.36907
8	51.02758	18	51.57681	28	52.05321
9	51.85050	19	52.50447	29	51.56917
10	51.75773	20	52.85779	30	51.55700
μ	51.607	σ	0.549	SEM	0.100

The predicted molar volume of $\mathrm{ACC}(\mathrm{Ba})$, assuming an ideal $\mathrm{Ba}_{x} \mathrm{Ca}_{1-x} \mathrm{CO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ solid solution with $x=0.04167$ (1 out 24 Ca atoms substituted by Ba), is $23 / 24 \times 51.482+63.234 / 24=51.972$ $\mathrm{cm}^{3} / \mathrm{mol}$ with a standard error of $\left((23 / 24 \times 0.159)^{2}+(0.156 / 24)^{2}\right)^{1 / 2}=0.153 \mathrm{~cm}^{3} / \mathrm{mol}$.

References

1. G. Kresse and J. Furthmuller, Phys. Rev. B, 1996, 54, 11169-11186.
2. G. Kresse and J. Furthmuller, Comp. Mat. Sci., 1996, 6, 15-50.
3. G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47, 558-561.
4. G. Kresse and J. Hafner, Phys. Rev. B, 1994, 49, 14251-14269.
5. P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953-17979.
6. G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
7. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
8. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1997, 78, 1396-1396.
9. S. Grimme, J. Comput. Chem., 2006, 27, 1787-1799.
10. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
11. S. Nosé, J. Chem. Phys., 1984, 81, 511-519.
12. W. G. Hoover, Phys. Rev. A, 1985, 31, 1695-1697.
13. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, UK, 1987.
14. M. Parrinello and A. Rahman, Phys. Rev. Lett., 1980, 45, 1196-1199.
15. M. Parrinello and A. Rahman, J. Appl. Phys., 1981, 52, 7182-7190.
16. W. Smith and T. R. Forester, J. Mol. Graphics, 1996, 14, 136-141.
17. M. P. Prange, S. T. Mergelsberg and S. N. Kerisit, Cryst. Growth Des., 2021, 21, 22122221.
18. O. Teleman, B. Jönsson and S. Engström, Mol. Phys., 1987, 60, 193-203.
19. S. Kerisit and S. C. Parker, J. Am. Chem. Soc., 2004, 126, 10152-10161.
20. P. Raiteri, R. Demichelis and J. D. Gale, J. Phys. Chem. C, 2015, 119, 24447-24458.

[^0]: *Email: sebastien.kerisit@pnnl.gov

