Supporting Information

NHC-catalyzed [12 + 2] reaction of polycyclic arylaldehydes for access to indole derivatives

Hong Ji,^{a†} Juan Zou,^{b†} Chengli Mou,^b Yonggui Liu,^a Shi-Chao Ren,^{*a} Yonggui Robin Chi^{*a,c}

^aNational Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.

^bSchool of Pharmacy, Guiyang College of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China.

^cSchool of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.

E-mail: scren@gzu.edu.cn; robinchi@ntu.edu.sg

[†]These authors contributed equally to this work

Content

1. General information	S1
2. Synthesis of substrates	S2
3. Condition optimization	S4
4 General procedures for the catalytic reactions	S5
5 Characterization of products	S7
6. Large scale reaction and synthetic transformation of 3a	S39
7. Anti-Xoo and anti-Xac activities of Products in Vitro	S42
8. References	S44
9. X-ray crystallography of compound 3k .	S45
10. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra	S52

1. General information

Commercially available materials purchased from Energy Chemical and J&K were used as received. Unless otherwise specified, all reactions were carried out in 4.0 mL vial. NMR spectra were measured either on a Bruker ASCEND 400 (400 MHz) Spectrometer. The chemical shift values were corrected to 7.26 ppm (¹H NMR), and 77.16 ppm (¹³C NMR) for CDCl₃. The chemical shift values were corrected to 5.32 ppm (¹H NMR), and 54.00 ppm (¹³C NMR) for CD₂Cl₂. ¹H NMR splitting patterns are designated as singlet (s), double (d), triplet (t), quartet (q), doublet of doublets (dd), multiplets (m), and etc. All first-order splitting patterns were assigned on the base of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). High resolution mass spectrometer analysis (HRMS) was performed on Waters Xevo G2-S QTof. Infrared spectra (IR) were obtained on a Thermo Fisher FT/IR-Nicolet iS50 spectrometer, and the absorptions have been reported in wavenumbers (cm⁻¹). Chiral HPLC analysis was performed on a Shimadzu LC-20AD instrument using Daicel Chiracelcolumns at 25°C and a mixture of HPLC-grade hexanes and isopropanol as eluent. Optical rotation w8measured using a JASCO P-1030 Polarimeter equipped with a sodium vapor lamp at 589 nm and theconcentration of samples was denoted as c. Chiralcel brand chiral columns from Daicel Chemical Industries were used with models IF, IA, IC, IE, AD-H, OD-H in 4.6×250 mm size. The racemic products used to determine the er values were synthesized using achiral catalyst. Optical rotations were measured on an Insmark IPdigi Polarimeter in a 1 dm cuvette. The concentration (c) is given in g/100 mL. Melting points (m.p.) were measured on a Beijing Tech Instrument X-4 digital display micro melting point apparatus and are uncorrected. Analytical thin-layer chromatography (TLC) was carried out on pre-coated silica gel plate (0.2 mm thickness). Visualization was performed using a UV lamp.

2. Synthesis of substrates

Procedure A:

5H-benzo[a]pyrrolizine-3-carbaldehydes(1a) were synthesized according to the reported method¹⁻².

Step 1. sodium hydride (60% dispersion in mineral oil, 1.32 g, 33 mmol) was added to anhydrous DMF (30 mL) in a nitrogen purged two-neck round-bottom flask. The solution was cooled to 0 °C and pyrrole **S1** (2.08 mL, 30 mmol) in anhydrous DMF (8 mL) was added dropwise. The solution was allowed to warm to room temperature and was stirred for 30 minutes before being cooled back to 0 °C when benzyl bromide **S2**(3.57 mL, 30 mmol) was added dropwise. The solution was again allowed to warm to room temperature and was stirred for one hour. The solution was then added to H₂O and extracted with EA. The combined organic layers were washed with H₂O before drying over MgSO₄, filtering, and concentrating under reduced pressure. The crude product was purified by flash column chromatography.

Step 2. The appropriate N-benzyl-2-carboxaldehyde **S3** was stirred with $Pd(OAc)_2$ (10 mol%) and AgOAc (3 equiv.) in PivOH (75 equiv.) under an argon atmosphere at 130 °C overnight. After cooling, sat. aq. Na₂CO₃ was carefully added until gas formation ceased. The reaction mixture was extracted with EA (3 times), dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by FC (silica gel) to afford the corresponding 5H-benzo[a]pyrrolizine-3-carbaldehydes **1a**.

Procedure B:

1-Benzylindoline-2,3-dione(2a) were synthesized according to the reported method.

Add DMF (20 ml, 0.25 M), isatin S4 (736 mg, 5.00 mmol), NaH (60% dispersion in mineral oil, 260 mg, 6.50 mmol) at 0 °C into a 250 ml round bottomed flask under N₂. Stir the reaction mixture at 0 °C for 0.5 hours. Add BnBr S5 (713 μ l, 6.00 mmol) to the reaction mixture. Stir the reaction mixture at room temperature for 2 hours. Add water (100 ml) and filter the resulting precipitate. Dissolve the precipitate in CH₂Cl₂.Wash the precipitate with brine. Dry the combined organic layers over MgSO₄ anhydrous. Filter and concentrate the combined organic layers in vacuo. Purification the combined organic layers by recrystallize from EA (evaporation or precipitation with hexane) to obtain N-benzylisatin³.

3. Condition optimization

Table 1. Condition optimization for the synthesis of 3a^a

The effects of NHCs, bases, solvents, additive and temperature.^a

Entry	NHC	Solvent	Base	additive	Yield ^b	er ^f	dr ^g
1	Α	CHCl ₃	DIEA		82%	66:34	10:1
2	В	CHCl ₃	DIEA		86%	65:35	8:1
3	С	CHCl ₃	DIEA		81%	65:35	8:1
4	Α	PhCF ₃	DIEA		56%	66:34	14:1
5	Α	THF	DIEA		62%	70:30	>20:1
6	Α	THF	NaHCO ₃	NaHCO ₃		67:32	13:1
7	Α	THF	DABCO		41%	74:26	2:1
8	Α	THF	(t-BuO) ₂ Mg		56%	85:15	16:1
9	Α	THF ^c	(t-BuO) ₂ Mg		55%	86:14	8:1
10	Α	THF ^c	$(t-BuO)_2Mg^d$		53%	89:11	6:1
11	Α	THF ^c	$(t-BuO)_2Mg^d$	DIEA	64%	84:16	15:1
12	Α	THF ^c	$(t-BuO)_2Mg^d$	Et ₃ N	75%	89:11	>20:1
13	Α	THF ^c	$(t-BuO)_2Mg^d$	TMEDA	78%	88:12	16:1
14^e	Α	THF ^c	$(t-BuO)_2Mg^d$	Et ₃ N	79%	91:9	>20:1

^{*a*}General conditions: **1a** (0.12 mmol), **2a** (0.10 mmol), NHC (0.02 mmol), base (0.12 mmol), DQ (0.20 mmol) and additive (0.01 mmol) in solvent (1.0 mL) at 30 °C for 24 h. Yields were determined by ¹H NMR. ^{*c*}THF (3 ml) was used. ^{*d*}MTB(0.20 mmol)was used, MTB = (t-BuO)₂Mg. ^{*e*}At -5 °C. ^{*f*}e.r. was determined by chiral HPLC analysis of the purified products. ^{*g*}d.r. was determined by ¹H NMR analysis of the crude products.

Ph-		+ C Bn ODQ, Base, Solv	NHC, 30 °C ent, 12 h	
		$A: \mathbb{R}^{1} = Br$ $A: \mathbb{R}^{1} = Br$ $B: \mathbb{R}^{1} = NO_{2}$ $\bigoplus_{\mathbb{C}^{4}} CI$ CI		reu ⊨⊂O tBu
Entry	NHC	Solvent	Base	Yield%
1	Α	THF	DMAP	N.R.
2	Α	THF	NaHCO ₃	N.R.
3	Α	THF	Na ₂ CO ₃	N.R.
4	Α	THF	Et₃N	N.R.
5	Α	1,4-Dioxane	DMAP	N.R.
6	В	THF	DMAP	N.R.
hGener:	al condit	ions: \$3 (0 12 mmol)	2a (0.10 mmol)	NHC (0.02

Table 2. Condition optimization for the synthesis of 5^{*h*}

^hGeneral conditions: **S3** (0.12 mmol), **2a** (0.10 mmol), NHC (0.02 mmol), base (0.12 mmol), DQ (0.20 mmol) in solvent (1.0 mL) at 30 °C for 12 h.

Table 3. Condition optimization for the synthesis of 7^i

Entry	NHC	Solvent	Base	Yield%
1	С	THF	Et ₃ N	N.R.
2	С	THF	K ₂ CO ₃	N.R.
3	С	THF	DBU	N.R.
4	D	THF	Et₃N	N.R.
5	D	THF	K ₂ CO ₃	N.R.
6	D	THF	DBU	N.R.
7	Е	THF	Et₃N	N.R.
8	Е	THF	K ₂ CO ₃	N.R.
9	Е	THF	DBU	N.R.

^{*i*}General conditions: **6** (0.12 mmol), **S3** (0.10 mmol), NHC (0.02 mmol), base (0.12 mmol), DQ (0.20 mmol) in THF (1.0 mL) at 30 °C for 12 h.

4 Genera procedures for the catalytic reactions

To a 4 mL vial equipped with a magnetic stir bar were added 1 (0.12 mmol), 2 (0.10 mmol), DQ (0.20 mmol), Et₃N (0.01 mmol), *pre*-NHC A (0.02 mmol) and (*t*-BuO)₂Mg (0.20 mmol) in dry THF (3.0 mL) and the reaction was stirred in ice bath at $-5 \,^{\circ}$ C for 24 h. Then the mixture was concentrated under reduced pressure. The resulting crude residue was purified by column chromatography on silica gel (petroleum ether/ ethyl acetate = 100 / 1 to 10 / 1) to afford the desired product **3**.

5 Characterization of products

(18,9bS)-1'-benzylspiro[benzo[a][1,4]oxazino[3,4,5-cd]pyrrolizine-1,3'-indoline]-2',3(9bH)-

dione (3a)

The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 100/1 to 10/1) giving the product **3a** as a white solid in 79% yield (32.6 mg), m.p. 216–218 °C; $[a]^{25}D = -140.590$ (c = 0.2, CHCl₃); > 20:1 dr; 91:9 er; determined by HPLC on a Chiralpak IF column at 254 nm

 $(n-hexane/2-propanol = 60/40, 0.7 \text{ mL/min}), t_R = 48.80 \text{ min (minor}), t_R = 33.72 \text{ min (major});$

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.50 (d, J = 7.7 Hz, 1H), 7.41 – 7.33 (m, 5H), 7.27 (s, 1H), 7.25 (d, J = 7.7 Hz, 1H), 7.20 (d, J = 3.9 Hz, 1H), 7.06 (td, J = 7.8, 1.1 Hz, 1H), 6.95 (td, J = 7.6, 0.9 Hz, 1H), 6.80 (d, J = 7.6 Hz, 1H), 6.71 (d, J = 7.9 Hz, 1H), 6.64 – 6.58 (m, 2H), 5.86 (s, 1H), 5.25 (d, J = 7.1 Hz, 1H), 5.01 (dd, J = 44.6, 15.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 157.0, 142.7, 142.7, 139.8, 134.9, 134.1, 131.1, 129.5, 129.0, 128.2, 127.8, 127.1, 124.2, 123.8, 123.5, 122.8, 121.0, 121.0, 115.4, 109.7, 105.0, 85.6, 59.6, 44.3.
 HRMS (ESI, m/z) Calcd. for C₂₇H₁₉N₂O₃⁺, [M+H] ⁺: 419.1390, found: 419.1387.

<Peak Table>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	24.352	29055	870	3.136
2	29.229	27974	721	3.020
3	33.851	437669	9563	47.243
4	49.033	431728	6550	46.601
Total		926426	17704	100.000

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	33.716	386967	8554	91.027
2	48.802	38147	618	8.973
Total		425115	9172	100.000

(18,9bS)-1'-benzyl-9-methylspiro[benzo[a][1,4]oxazino[3,4,5-cd]pyrrolizine-1,3'-indoline]-2',3(9bH)-dione (3b)

The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 100/1 to 10/1) giving the product **3b** as a yellow solid in 80% yield (34.6 mg), m.p. 202-204 °C; $[\alpha]^{25}D = -228.722$ (c = 0.25, CHCl₃); 10:1 dr; 98:2 er; determined by HPLC on a Chiralpak IF column at 254 nm (n-hexane/2-propanol = 60/40, 0.7 mL/min), t_R = 34.30 min (minor), t_R = 28.35 min (major) **HNMR** (400 MHz, CD₂Cl₂) δ 7.35 – 7.20 (m, 6H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.09 (d, *J* = 3.9 Hz, 1H), 7.04 (td, *J* = 7.8, 1.2 Hz, 1H), 6.82 (d, *J* = 7.6 Hz, 1H), 6.70 (d, *J* = 7.9 Hz, 1H), 6.60 – 6.52 (m, 2H), 5.82 (s, 1H), 5.15 – 5.07 (m, 2H), 4.61 (d, *J* = 15.4 Hz, 1H), 1.96 (s, 3H). **Barrener** (101 MHz, CD₂Cl₂) δ 169.7, 156.5, 143.1, 142.8, 138.9, 135.4, 134.5, 134.3, 131.2, 129.6, 129.3, 128.9, 128.1, 127.9 124.1, 123.7, 122.9, 120.6, 118.4, 115.3, 110.1, 104.4, 86.0, 59.7, 44.4,

19.1

<Chromatogram> mAU 10.0 PDA Multi 1 254nm,4nm 7.5 29.161 35.448 5.0 2.5 0.0 40 25 30 35 45 20 50 min

HRMS (ESI, m/z) Calcd. for C₂₈H₂₀N₂NaO₃⁺, [M+Na] ⁺: 455.1366, found: 455.1349

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	29.161	265777	6139	49.994
2	35.448	265846	5242	50.006
Total		531623	11381	100.000

	(15	OLC	11 h	onzyl	0 hromos	niral	bonzol	ត][1 /1	lovozino	12	15 ad	Inver	olizino 1	31	indolin	പ
1		,203	J-1 -D	CIIZy1-2	2-01011108	וט וונ	DCILZO	a	1,4	UNALINU	13,	+,3-cu	ibari	JULZINC-1	,J -I	muonn	C -

100.000

9473

2',3(9bH)-dione(3c)

Total

390771

3c

The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 100/1 to 10/1) giving the product **3c** as a yellow solid in 64% yield (32.0 mg), m.p. 215–217 °C; $[\alpha]^{25}$ **D** = - 154.412 (c = 0.25, CHCl₃); 10:1 dr; 98:2 er; determined by HPLC on a Chiralpak IF column at 254 nm (n-

hexane/2-propanol = 60/40, 0.7 mL/min), t_R = 48.10 min (minor), t_R = 35.96 min (major)

¹<u>H NMR</u> (400 MHz, CD₂Cl₂) δ 7.44 (dd, J = 6.9, 1.5 Hz, 1H), 7.35 – 7.17 (m, 6H), 7.15 – 7.08 (m, 3H), 7.06 – 7.00 (m, 1H), 6.67 (d, J = 7.9 Hz, 1H), 5.84 (s, 1H), 5.16 (dd, J = 15.6, 11.5 Hz, 2H), 4.51 (d, J = 15.6 Hz, 1H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 169.4, 156.2, 143.2, 141.7, 140.5, 136.4, 134.7, 131.4, 131.3, 131.2, 128.9, 128.0, 127.8, 123.8, 123.4, 122.5, 120.6, 119.7, 118.3, 115.9, 110.1, 105.3, 85.7, 60.8, 44.6.
 HRMS (ESI, m/z) Calcd. for C₂₇H₁₇BrN₂NaO₃⁺, [M+Na] ⁺: 519.0315, found: 519.0310.

<Chromatogram>

<Peak Table>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	30.854	10076	203	3.634
2	36.173	131773	2300	47.522
3	41.583	8079	149	2.914
4	48.366	127358	1742	45.930
Total		277287	4394	100.000

<Peak Table> 014 054

PDA C	n1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	35.962	213187	3793	97.767
2	48.098	4869	79	2.233
Total		218056	3872	100.000

(1S,9bS)-1'-benzyl-5-iodospiro[benzo[a][1,4]oxazino[3,4,5-cd]pyrrolizine-1,3'-indoline]-

2',3(9bH)-dione (3d)

The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 100/1 to 10/1) giving the product **3d** as a orange solid in 37% yield (20.1 mg), m.p. 217–219 °C; $[\alpha]^{25}D$ = -101.698 (c = 0.5, CHCl₃); 3:1 dr; 92:8 er; determined by HPLC on a Chiralpak IF column at 254 nm (n-hexane/2-propanol = 60/40, 0.7 mL/min), t_R = 36.92 min (minor), t_R = 54.86

min (major);

¹<u>H NMR</u> (400 MHz, CD₂Cl₂) δ 7.48 – 7.43 (m, 1H), 7.35 – 7.27 (m, 4H), 7.19 (t, *J* = 7.6 Hz, 1H), 7.09 (d, *J* = 3.9 Hz, 1H), 7.02 (ddd, *J* = 7.8, 6.6, 1.2 Hz, 1H), 6.89 (td, *J* = 7.6, 1.0 Hz, 1H), 6.74 – 6.65 (m, 2H), 6.59 – 6.52 (m, 2H), 5.76 (d, *J* = 8.1 Hz, 1H), 5.16 (m, *J* = 13.2, 6.6 Hz, 1H), 4.92 (dd, *J* = 37.5, 15.5 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 169.2 157.0, 142.8, 142.7, 139.8, 134.9, 134.1, 131.1, 129.5, 129.0, 128.2, 127.8, 127.2, 124.2, 123.8, 123.5, 122.7, 121.0, 121.0, 115.4, 109.8, 105.1, 85.6, 59.6, 44.3. HRMS (ESI, m/z) Calcd. for $C_{27}H_{17}N_2IO_3^+$, [M+Na] +: 567.0176, found: 567.0104.

PDAC	n i 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	37.235	206132	3801	50.144
2	55.321	204945	2563	49.856
Total		411078	6364	100.000

3e

The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 100/1 to 10/1) giving the product **3e** as a yellow solid in 89% yield (38.6 mg), m.p. 206-208 °C; $[\alpha]^{25}D = -94.234$ (c = 0.25, CHCl₃); 10:1 dr; 85:15 er; determined by HPLC on a Chiralpak IF column

at 254 nm (n-hexane/2-propanol = 60/40, 0.7 mL/min), $t_R = 53.44$ min (minor), $t_R = 39.04$ min (major)

¹<u>H NMR</u> (400 MHz, CD₂Cl₂) δ 7.47 – 7.36 (m, 6H), 7.21 (t, *J* = 6.7 Hz, 1H), 7.14 (td, *J* = 7.8, 0.9 Hz, 1H), 6.83 (t, *J* = 8.1 Hz, 2H), 6.75 – 6.63 (m, 3H), 5.83 (s, 1H), 5.29 (d, *J* = 7.5 Hz, 1H), 5.04 (dd, *J* = 49.8, 15.5 Hz, 2H), 2.33 (s, 3H).

<u>13C NMR</u> (101 MHz, CD₂Cl₂) δ 169.1, 156.8, 142.9, 142.8, 139.9, 136.9, 135.2 134.2 131.0, 129.0, 128.2, 127.9, 127.8, 124.1, 123.6, 123.1, 122.9, 121.7, 120.6, 115.3, 109.8, 104.9, 85.5, 59.4, 44.2, 21.2.

HRMS (ESI, m/z) Calcd. for C₂₈H₂₀N₂NaO₃⁺, [M+Na] ⁺: 455.1366, found: 455.1359.

<Peak Table>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	23.752	18916	516	2.682
2	32.471	18290	386	2.593
3	39.158	338363	6042	47.978
4	53.505	329676	4438	46.746
Total		705245	11382	100.000

	PDA Ch1 254nm					
	Peak#	Ret. Time	Area	Height	Area%	
	1	39.036	480395	8427	85.027	
l	2	53.437	84599	1202	14.973	
[Total		564994	9629	100.000	

(1S,9bS)-1'-benzyl-7-(tert-butyl)spiro[benzo[a][1,4]oxazino[3,4,5-cd]pyrrolizine-1,3'-

indoline]-2',3(9bH)-dione(3f)

The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 100/1 to 10/1) giving the product **3f** as a yellow solid in 49% yield (23.4 mg), m.p. 209-211 °C; $[\alpha]^{25}D = -70.810$ (c = 0.5,

3f CHCl₃); 14:1 dr; 83:17 er; determined by HPLC on a Chiralpak IF column at 254 nm (n-hexane/2-propanol = 70/30, 0.4 mL/min), $t_R = 91.69 \text{ min (minor)}$, $t_R = 72.48 \text{ min(major)}$ **1H NMR** (400 MHz, CD₂Cl₂) δ 7.50 (d, J = 1.5 Hz, 1H), 7.35 – 7.21 (m, 5H), 7.08 (d, J = 3.9 Hz, 1H), 7.06 – 7.00 (m, 1H), 6.99 – 6.94 (m, 1H), 6.70 (dd, J = 12.6, 8.0 Hz, 2H), 6.56 (dd, J = 12.8, 5.7 Hz, 2H), 5.72 (s, 1H), 5.20 (d, J = 7.5 Hz, 1H), 4.90 (dt, J = 17.7, 12.9 Hz, 2H), 1.21 – 1.15 (m, 9H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 169.2, 156.7, 153.2, 143.0, 142.9, 137.0, 135.2, 134.1, 131.0, 129.0, 128.1, 127.7, 124.3, 124.2, 123.7, 123.0, 123.0, 120.5, 118.3, 115.2, 109.8, 104.7, 85.5, 59.4, 44.2, 34.9, 31.0.

HRMS (ESI, m/z) Calcd. for C₃₁H₂₆N₂NaO₃⁺, [M+Na]⁺: 497.1836, found: 497.1832.

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	41.404	236883	4683	4.917
2	72.369	2181271	25275	45.279
3	76.971	230668	2577	4.788
4	90.634	2168552	16672	45.015
Total		4817373	49208	100.000

PDAC	n1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	72.481	1379417	15871	83.350
2	91.692	275557	2295	16.650
Total		1654974	18166	100.000

2',3(9bH)-dione(3g)

3g

The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 100/1 to 10/1) giving the product **3g** as a yellow solid in 35% yield (17.3 mg), m.p. 242-244 °C; $[\alpha]^{25}D = -27.724$ (c = 0.25,

CHCl₃); 10:1 dr; 96:4 er; determined by HPLC on a Chiralpak IF column

at 254 nm (n-hexane/2-propanol = 60/40, 0.7 mL/min), $t_R = 52.87 \text{ min (minor)}$, $t_R = 38.66 \text{ min(major)}$ ¹<u>H NMR</u> (400 MHz, CD₂Cl₂) δ 7.57 (d, J = 1.7 Hz, 1H), 7.35-7.29 (m, 5H), 7.09 (d, J = 3.9 Hz, 1H), 7.06 (td, J = 7.8, 1.2 Hz, 1H), 6.98 (dd, J = 8.1, 1.8 Hz, 1H), 6.73 (d, J = 7.9 Hz, 1H), 6.60 – 6.55 (m, 2H), 6.50 (d, J = 8.2 Hz, 1H), 5.70 (s, 1H), 5.17 – 5.13 (m, 1H), 4.97 (d, J = 15.4 Hz, 1H), 4.84 (d, J = 15.4 Hz, 1H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 168.9, 156.4, 142.6, 141.1, 138.6, 136.0, 135.2, 131.3, 129.8, 129.0, 128.3, 127.9, 124.7, 124.2, 124.0, 123.8, 123.6, 122.5, 120.7, 115.8, 109.9, 105.8, 85.2, 59.4, 44.3.
 HRMS (ESI, m/z) Calcd. for C₂₇H₁₇BrN₂NaO₃⁺, [M+Na]⁺: 519.0315, found: 519.0303.

<Chromatogram>

<Peak Table>

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area%	
1	38.396	152511	2761	49.124	
2	52.297	157951	2082	50.876	
Total		310462	4843	100.000	

<Chromatogram>

mAU

F	PDA Ch1 254nm					
F	Peak#	Ret. Time	Area	Height	Area%	
Γ	1	38.661	428427	7753	96.243	
Γ	2	52.873	16722	254	3.757	
Γ	Total		445149	8007	100.000	

(18,9bS)-1'-benzyl-5'-methylspiro[benzo[a][1,4]oxazino[3,4,5-cd]pyrrolizine-1,3'-indoline]-2',3(9bH)-dione(3h)

3h

The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 100/1 to 10/1) giving the product **3h** as a yellow solid in 93% yield (40.3 mg), m.p. 115-117 °C; $[\alpha]^{25}D = -140.217$ (c = 0.5, CHCl₃); >20:1 dr; 92:8 er; determined by HPLC on a Chiralpak IF column

at 254 nm (n-hexane/2-propanol = 60/40, 0.7 mL/min), $t_R = 49.43$ min (minor), $t_R = 32.33$ min(major) ¹H NMR (400 MHz, CD₂Cl₂) δ 7.58 (d, J = 7.7 Hz, 1H), 7.48 – 7.36 (m, 5H), 7.32 (t, J = 7.6 Hz, 1H), 7.22 (d, J = 3.9 Hz, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H), 6.84 (d, J = 7.6 Hz, 1H), 6.74 – 6.65 (m, 2H), 5.85 (s, 1H), 5.02 (dd, J = 45.2, 15.5 Hz, 3H), 1.94 (d, J = 19.8 Hz, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.1, 156.8, 142.7, 140.3, 139.9, 135.3, 134.2, 133.5, 131.2, 129.4, 128.9, 128.1, 127.8, 127.1, 124.9, 123.5, 122.8, 121.0, 120.6, 115.4, 109.5, 104.9, 85.7, 59.6, 44.2, 20.5.

<Chromatogram> mAU PDA Multi 1 254nm.4nm 7.5 24.173 32.884 5.0 29.963 50.302 2.5 0.0 25 35 45 30 40 50 55 2060 min

HRMS (ESI, m/z) Calcd. for C₂₈H₂₀N₂NaO₃⁺, [M+Na]⁺: 455.1366, found: 455.1362.

PDAC	2DA Ch 1 254nm					
Peak#	Ret. Time	Area	Height	Area%		
1	24.173	164001	4171	23.219		
2	29.963	162923	3593	23.067		
3	32.884	187659	4162	26.569		
4	50.302	191729	2742	27.145		
Total		706312	14668	100.000		

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	32.326	614278	13730	92.169
2	49.425	52194	838	7.831
Total		666472	14568	100.000

2',3(9bH)-dione(3i)

The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 100/1 to 10/1) giving the product **3i** as a white solid in 96% yield (43.4 mg), m.p. 128-130 °C; $[\alpha]^{25}D = -119.161$ (c = 0.25, CHCl₃); 4:1 dr; 88:12 er; determined by HPLC on a

Chiralpak IF column at 254 nm (n-hexane/2-propanol = 60/40, 0.7 mL/min), t_R = 54.03 min (minor), t_R = 44.11 min(major);

¹<u>H NMR</u> (400 MHz, CD₂Cl₂) δ 7.59 (d, J = 7.7 Hz, 1H), 7.48 – 7.38 (m, 5H), 7.34 (t, J = 7.6 Hz, 1H), 7.23 (d, J = 3.9 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 6.87 (d, J = 7.6 Hz, 1H), 6.73 – 6.61 (m, 3H), 5.87 (s, 1H), 5.14 – 4.92 (m, 2H), 4.84 (d, J = 2.4 Hz, 1H), 3.45 (s, 3H).

<u>13C NMR</u> (101 MHz, CDCl₃) δ 168.8, 156.9, 156.3, 143.0, 139.9, 135.8, 134.9, 134.1, 129.6, 129.0, 128.2, 127.7, 127.2, 123.7, 123.6, 121.0, 120.9, 115.8, 115.6, 110.9, 110.4, 104.9, 85.8, 59.6, 55.5, 44.4.

HRMS (ESI, m/z) Calcd. for C₂₈H₂₀N₂NaO₄⁺, [M+Na]⁺: 471.1315, found: 471.1303.

<Peak Table>

F	'DA C	h1 254nm			
F	Peak#	Ret. Time	Area	Height	Area%
Γ	1	34.283	56199	923	9.048
Γ	2	36.978	59452	1172	9.571
Γ	3	44.223	252745	3761	40.691
Γ	4	54.086	252741	3283	40.690
Ľ	Total		621137	9140	100.000

PDAC	n1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	44.113	286105	4267	87.735
2	54.028	39997	538	12.265
Total		326102	4805	100.000

(1S,9bS)-1'-benzyl-5'-chlorospiro[benzo[a][1,4]oxazino[3,4,5-cd]pyrrolizine-1,3'-indoline]-2',3(9bH)-dione(3j)

The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 100/1 to 10/1) giving the product **3j** as a yellow solid in 68% yield (34.0 mg), m.p. 225-227 °C; $[\alpha]^{25}D = -108.215$ (c = 0.2,

CHCl₃); 7:1 dr; 85:15 er; determined by HPLC on a Chiralpak IF column

3j at 254 nm (n-hexane/2-propanol = 70/30, 0.4 mL/min), t_R = 64.27 min(minor), t_R = 50.87min(major); <u>**1H NMR**</u> (400 MHz, CD₂Cl₂) δ 7.61 (d, J = 7.7 Hz, 1H), 7.47 – 7.38 (m, 5H), 7.36 (dd, J = 13.1, 5.5 Hz, 1H), 7.24 (d, J = 3.9 Hz, 1H), 7.11 (dd, J = 8.4, 2.1 Hz, 1H), 7.04 (td, J = 7.6, 0.8 Hz, 1H), 6.84 (d, J = 7.6 Hz, 1H), 6.73 (dd, J = 10.2, 6.2 Hz, 2H), 5.85 (s, 1H), 5.19 (d, J = 2.1 Hz, 1H), 5.03 (dd, *J* = 44.5, 15.5 Hz, 2H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 168.7, 156.2, 142.9, 141.4, 139.4, 134.7, 134.0, 130.9, 129.7, 129.0, 128.9, 128.3, 127.8, 127.3, 124.6, 124.4, 123.5, 121.2, 121.0, 115.1, 110.9, 105.2, 85.2, 59.5, 44.4. HRMS (ESI, m/z) Calcd. for C₂₇H₁₇ClN₂NaO₃⁺, [M+Na]⁺: 475.0820, found: 475.0817

	PDA C	n1 254nm			
	Peak#	Ret. Time	Area	Height	Area%
	1	37.809	257203	5910	8.538
[2	48.371	229942	4692	7.633
l	3	50.404	1246006	23070	41.360
[4	63.780	1279464	18815	42.470
	Total		3012615	52486	100.000

Peak#	Ret. Time	Area	Height	Area%
1	50.867	4070128	75210	84.764
2	64.271	731583	11175	15.236
Total		4801711	86385	100.000


```
2',3(9bH)-dione(3k)
```


The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 100/1 to 10/1) giving the product **3k** as a yellow solid in 71% yield (35.2 mg), m.p. 206-208 °C; $[\alpha]^{25}D = -32.239$ (c = 0.2, CHCl₃); 6:1 dr; 90:10 er; determined by HPLC on a Chiralpak IF column

at 254 nm(n-hexane/2-propanol = 60/40, 0.4 mL/min), $t_R = 66.01 \text{ min(minor)}$, $t_R = 49.45 \text{ min(major)}$; ¹<u>H NMR</u> (400 MHz, CD₂Cl₂) δ 7.61 (d, J = 7.7 Hz, 1H), 7.48 – 7.38 (m, 5H), 7.35 (t, J = 7.6 Hz, 1H), 7.29 – 7.22 (m, 2H), 7.04 (dd, J = 8.3, 7.6 Hz, 1H), 6.84 (d, J = 7.6 Hz, 1H), 6.74 – 6.67 (m, 2H), 5.84 (s, 1H), 5.31 (d, J = 1.9 Hz, 1H), 5.03 (dd, J = 45.6, 15.5 Hz, 2H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 168.6, 156.2, 143.0, 141.8, 139.4, 134.7, 134.0, 133.9, 129.7, 129.0,

128.3, 127.8, 127.4, 127.3, 124.8, 123.5, 121.2, 121.0, 116.2, 115.1, 111.4, 105.1, 85.2, 59.5, 44.4. **HRMS** (ESI, m/z) Calcd. for C₂₇H₁₇BrN₂NaO₃⁺, [M+Na]⁺: 519.0315; found: 519.0308.

<Chromatogram>

<Peak Table>

PDA	Ch1 254nm			
Peak	# Ret. Time	Area	Height	Area%
	1 36.922	10164	228	3.293
	2 48.531	142732	2452	46.247
	3 51.595	9767	177	3.165
	4 64.434	145966	1887	47.295
Tot	al	308630	4744	100.000

<Chromatogram>

h	'DA C	h1 254nm			
F	Peak#	Ret. Time	Area	Height	Area%
Γ	1	49.450	576568	9668	90.104
Γ	2	66.007	63325	873	9.896
Γ	Total		639893	10541	100.000

(18,9bS)-1'-benzyl-5'-fluorospiro[benzo[a][1,4]oxazino[3,4,5-cd]pyrrolizine-1,3'-indoline]-2',3(9bH)-dione(3l)

(minor), $t_R = 36.05 \text{ min(major)};$

¹<u>H NMR</u> (400 MHz, CD₂Cl₂) δ 7.59 (t, *J* = 6.5 Hz, 1H), 7.47 – 7.38 (m, 5H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.23 (d, *J* = 3.9 Hz, 1H), 7.04 (td, *J* = 7.6, 1.0 Hz, 1H), 6.90 – 6.80 (m, 2H), 6.77 – 6.69 (m, 2H), 5.87 (s, 1H), 5.12 – 4.94 (m, 3H).

 $\frac{^{13}\mathbf{C} \text{ NMR}}{^{13}\mathbf{C} \text{ NMR}} (101 \text{ MHz, CD}_2\text{Cl}_2) \delta 169.4, 164.3 (d, J = 250.5 \text{ Hz}), 156.4, 144.7 (d, J = 12.1 \text{ Hz}), 142.8, 139.7, 134.7, 134.1, 129.1, 128.4 (d, J = 240.4 \text{ Hz}), 127.8, 127.2, 125.8 (d, J = 10.1 \text{ Hz}), 123.5, 121.0, 120.8, 118.5 (d, J = 3.0 \text{ Hz}), 115.24, 109.8 (d, J = 22.2 \text{ Hz}), 105.1, 99.0, 98.7, 85.0, 59.6, 44.5.$

¹⁹**F** NMR (377 MHz, CD₂Cl₂) δ -107.14.

HRMS (ESI, m/z) Calcd. for C₂₇H₁₇FN₂NaO₃⁺, [M+Na] ⁺: 459.1115, found: 459.1108.

<Peak Table>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	24.830	18270	399	8.251
2	31.074	18565	336	8.384
3	37.263	92469	1583	41.761
4	50.538	92119	1234	41.603
Total		221423	3552	100.000

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	36.052	119733	2011	84.057
2	49.441	22709	314	15.943
Total		142442	2325	100.000

(1S,9bS)-1'-benzyl-5'-iodospiro[benzo[a][1,4]oxazino[3,4,5-cd]pyrrolizine-1,3'-indoline]-

2',3(9bH)-dione(3m)

3m

The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 100/1 to 10/1) giving the product **3m** as a white solid in 58% yield (31.6 mg), m.p. 180–182 °C; $[\alpha]^{25}D = -175.209$ (c = 0.25, CHCl₃); 5:1 dr; 82:18 er; determined by HPLC on a Chiralpak IF column at 254 nm

(n-hexane/2-propanol = 60/40, 0.7 mL/min), $t_R = 40.15 \text{ min} (\text{minor})$, $t_R = 29.07 \text{ min} (\text{major})$; ¹<u>H NMR</u> (400 MHz, CD₂Cl₂) δ 7.48 (d, J = 7.7 Hz, 1H), 7.39 – 7.25 (m, 6H), 7.22 (t, J = 7.6 Hz, 1H), 7.11 (d, J = 3.9 Hz, 1H), 6.91 (t, J = 7.6 Hz, 1H), 6.70 (d, J = 7.6 Hz, 1H), 6.60 (d, J = 3.9 Hz, 1H), 6.48 (dd, J = 11.7, 6.1 Hz, 1H), 5.69 (s, 1H), 5.31 (t, J = 8.7 Hz, 1H), 5.01 – 4.77 (m, 2H). ¹³<u>C NMR</u> (101 MHz, CD₂Cl₂) δ 168.5, 156.4, 143.1, 142.4, 139.8, 139.4, 134.6, 134.1, 133.1, 129.8, 129.1, 128.3, 127.8, 127.3, 125.0, 123.5, 121.2, 121.1, 115.2, 111.8, 105.1, 86.2, 85.3, 59.5, 44.4. **HRMS** (ESI, m/z) Calcd. for C₂₇H₁₇IN₂NaO₃⁺, [M+Na] ⁺: 567.0176, found: 567.0162.

<Chromatogram>

<Peak Table>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	22.843	18278	470	13.534
2	29.049	48472	1187	35.890
3	33.419	19289	381	14.282
4	40.080	49019	866	36.295
Total		135058	2904	100.000

<Chromatogram>

mAU

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area%	
1	29.071	244170	5893	82.115	
2	40.149	53180	1037	17.885	
Total		297350	6930	100.000	

(18,9bS)-1'-benzyl-6'-chlorospiro[benzo[a][1,4]oxazino[3,4,5-cd]pyrrolizine-1,3'-indoline]-2',3(9bH)-dione (3n)

(minor), $t_R = 31.14 \text{ min(major)}$

¹<u>H NMR</u> (400 MHz, CD₂Cl₂) δ 7.44 (d, J = 7.7 Hz, 1H), 7.35 – 7.28 (m, 4H), 7.21 (t, J = 7.6 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H), 6.91 (t, J = 7.6 Hz, 1H), 6.69 (dd, J = 7.9, 4.7 Hz, 2H), 6.57 – 6.48 (m, 2H), 5.72 (s, 1H), 5.05 (d, J = 8.1 Hz, 1H), 4.89 (dd, J = 47.0, 15.5 Hz, 2H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 169.1, 156.4, 144.1, 142.9, 139.5, 137.0, 134.7, 134.0, 129.7, 129.1,
 128.4, 127.8, 127.3, 125.3, 123.6, 123.5, 121.3, 121.1, 120.9, 115.2, 110.5, 105.2, 84.9, 59.5, 44.4.
 HRMS (ESI, m/z) Calcd. for C₂₇H₁₇ClN₂NaO₃⁺, [M+Na] ⁺: 475.0820, found: 475.0820.

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	20.373	63547	2135	10.752
2	25.803	60662	1651	10.264
3	31.494	234854	5516	39.736
4	45.751	231976	3884	39.249
Total		591039	13186	100.000

(1S,9bS)-1'-benzyl-6'-bromospiro[benzo[a][1,4]oxazino[3,4,5-cd]pyrrolizine-1,3'-indoline]-2',3(9bH)-dione(3o)

The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 100/1 to 10/1) giving the product **30** as a yellow solid in 65% yield (32.1 mg), m.p. 204–206 °C; $[\alpha]^{25}D$ = -120.960 (c = 0.5, CHCl₃); 16:1 dr; 87:13 er; determined by HPLC on a Chiralpak IF column at 254 nm (n-hexane/2-propanol = 60/40, 0.7 mL/min), t_R = 47.03 min

(minor), $t_R = 32.84 \text{ min(major)}$;

¹<u>H NMR</u> (400 MHz, CD₂Cl₂) δ 7.45 (d, J = 7.7 Hz, 1H), 7.37 – 7.27 (m, 5H), 7.25 – 7.19 (m, 1H), 7.09 (t, J = 5.9 Hz, 1H), 6.95 – 6.89 (m, 1H), 6.84 (d, J = 1.6 Hz, 1H), 6.74 – 6.66 (m, 2H), 6.54 (d, J = 3.9 Hz, 1H), 5.72 (s, 1H), 4.99 (d, J = 8.1 Hz, 1H), 4.89 (dd, J = 46.7, 15.5 Hz, 2H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.0, 156.3, 144.1, 142.9, 139.5, 134.7, 134.1, 129.7, 129.1, 128.3,

127.7, 127.3, 126.6, 125.5, 125.0, 123.5, 121.8, 121.1, 120.9, 115.2, 113.3, 105.2, 85.0, 59.4, 44.4.
 HRMS (ESI, m/z) Calcd. for C₂₇H₁₇BrN₂NaO₃+, [M+Na] +: 519.0315, found: 519.0313.

<Chromatogram>

<Peak Table>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	21.508	43255	1323	11.028
2	27.545	43224	1040	11.020
3	33.090	150836	3360	38.455
4	47.483	154925	2426	39.497
Total		392241	8149	100.000

mAU

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area%	
1	32.842	79816	1719	86.824	
2	47.034	12112	198	13.176	
Total		91928	1917	100.000	

(18,9bS)-1'-benzyl-6'-fluorospiro[benzo[a][1,4]oxazino[3,4,5-cd]pyrrolizine-1,3'-indoline]-2',3(9bH)-dione(3p)

The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 100/1 to 10/1) giving the product **3p** as a yellow solid in 48% yield (20.9 mg), m.p. 208-210 °C; $[\alpha]^{25}$ **D** = 18.325 (c = 0.2, CHCl₃); 3:1 dr; 92:8 er; determined by HPLC on a Chiralpak IF column at 254 nm

 $(n-hexane/2-propanol = 60/40, 0.7 \text{ mL/min}), t_R = 43.55 \text{ min (minor}), t_R = 28.90 \text{ min(major)};$

¹<u>H NMR</u> (400 MHz, CD₂Cl₂) δ 7.45 (d, J = 7.7 Hz, 1H), 7.34 – 7.27 (m, 5H), 7.24 – 7.18 (m, 1H), 7.09 (d, J = 3.9 Hz, 1H), 6.94 – 6.88 (m, 1H), 6.72 (dd, J = 7.7, 0.8 Hz, 1H), 6.54 (t, J = 4.0 Hz, 1H), 6.42 (dd, J = 8.8, 2.3 Hz, 1H), 6.26 – 6.19 (m, 1H), 5.73 (s, 1H), 5.10 (dd, J = 8.4, 5.3 Hz, 1H), 4.98 – 4.79 (m, 2H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 168.9, 159.1 (d, J = 243.4 Hz), 156.2, 142.9, 139.5, 138.8, 134.9, 134.1, 129.0, 128.5(d, J = 246.4 Hz), 128.3, 127.8, 124.2 (d, J = 9.1 Hz), 123.5, 121.2, 120.9, 117.4 (d, J = 23.2 Hz), 115.1, 112.5, 112.2, 110.7 (d, J = 8.1 Hz), 105.2, 85.3 (d, J = 1.2 Hz), 59.5, 44.4. ¹⁹F NMR (377 MHz, CDCl₃) δ -117.82.

HRMS (ESI, m/z) Calcd. for C₂₇H₁₇FN₂NaO₃⁺, [M+Na] ⁺: 459.1115, found: 459.1106.

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	19.269	19448	668	6.128
2	24.695	18955	511	5.973
3	28.920	139235	3444	43.874
4	43.511	139716	2325	44.025
Total		317354	6948	100.000

The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 100/1 to 10/1) giving the product **3q** as a yellow solid in 88% yield (39.7 mg), m.p. 210-212 °C; $[\alpha]^{25}D = -113.063$ (c = 0.5, CHCl₃); 6:1 dr; 86:14 er; determined by HPLC on a Chiralpak IF column at 254 nm (n-hexane/2-propanol = 60/40, 0.5

mL/min), $t_R = 93.18 \text{ min(minor)}$, $t_R = 61.40 \text{ min(major)}$;

¹<u>H NMR</u> (400 MHz, CD₂Cl₂) δ 7.43 (d, J = 7.7 Hz, 1H), 7.35 – 7.23 (m, 5H), 7.19 (t, J = 7.6 Hz, 1H), 7.06 (t, J = 5.0 Hz, 1H), 6.89 (dd, J = 11.0, 4.2 Hz, 1H), 6.70 (t, J = 10.4 Hz, 1H), 6.52 (d, J = 3.9 Hz, 1H), 6.21 (t, J = 7.8 Hz, 1H), 5.98 (dt, J = 24.8, 12.4 Hz, 1H), 5.71 (s, 1H), 5.07 (d, J = 8.4 Hz, 1H), 4.89 (dt, J = 34.4, 14.7 Hz, 2H), 3.47 (s, 3H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 169.7, 162.1, 157.0, 144.4, 142.7, 140.1, 135.2, 134.2, 129.5, 129.0, 128.2, 127.8, 127.2, 125.3, 123.6, 121.0, 120.6, 115.5, 114.5, 107.0, 105.0, 98.0, 85.6, 59.8, 55.4, 44.3.

HRMS (ESI, m/z) Calcd. for C₂₈H₂₀N₂NaO₄⁺, [M+Na] ⁺: 471.1315, found: 471.1310.

<Peak Table>

PDA C	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area%	
1	62.619	970314	11361	49.668	
2	94.483	983294	7600	50.332	
Total		1953608	18960	100.000	

<Chromatogram>

mAU

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	61.402	3240730	37692	86.045
2	93.183	525605	4399	13.955
Total		3766335	42091	100.000

(1S,9bS)-1'-benzyl-7'-methylspiro[benzo[a][1,4]oxazino[3,4,5-cd]pyrrolizine-1,3'-indoline]-2',3(9bH)-dione(3r)

The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 100/1 to 10/1) giving the product **3r** as a yellow solid in 76% yield (33.2 mg), m.p. 242-244 °C; $[\alpha]^{25}D = -113.696$ (c = 0.25, CHCl₃); 16:1 dr; 89:11 er; determined by HPLC on a Chiralpak IF column at 254 nm (n-hexane/2-propanol = 60/40, 0.7 mL/min), t_R = 67.43 min (minor), t_R =

52.88 min(major);

¹<u>H NMR</u> (400 MHz, CD₂Cl₂) δ 7.49 (d, J = 7.7 Hz, 1H), 7.36 – 7.22 (m, 4H), 7.18 (d, J = 7.1 Hz, 2H), 7.09 (d, J = 3.9 Hz, 1H), 7.03 (m, 1H), 6.91 (dd, J = 7.6, 0.7 Hz, 1H), 6.79 (d, J = 7.6 Hz, 1H), 6.57 (d, J = 3.9 Hz, 1H), 6.48 (t, J = 7.7 Hz, 1H), 5.78 (s, 1H), 5.28 (d, J = 16.8 Hz, 1H), 5.14 (d, J = 16.8 Hz, 1H), 4.96 (d, J = 7.1 Hz, 1H), 2.13 (s, 3H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 170.3, 156.7, 142.6, 141.0, 140.0, 136.8, 135.2, 134.2, 129.5, 129.0, 127.7, 127.1, 125.9, 123.8, 123.8, 123.4, 121.9, 121.0, 121.0, 120.6, 115.4, 105.1, 84.9, 59.5, 45.6, 18.6.

HRMS (ESI, m/z) Calcd. for C₂₈H₂N₂NaO₃⁺, [M+Na] ⁺: 455.1366, found: 455.1361.

<Peak Table>

PDA C	h1 254nm			
Peak# Ret. Time		Area	Height	Area%
1	27.168	118345	2588	38.053
2	33.758	115210	2026	37.045
3	52.942	38494	545	12.378
4	67.055	38951	414	12.524
Total		310999	5573	100.000

<Chromatogram>

<Peak Table>

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area%			
1	52.877	350185	4957	88.785			
2	67.431	44233	518	11.215			
Total		394418	5475	100.000			

(18,9b8)-1'-benzyl-4',6'-dimethylspiro[benzo[a][1,4]oxazino[3,4,5-cd]pyrrolizine-1,3'-

indoline]-2',3(9bH)-dione(3s)

(minor), $t_R = 44.61 \text{ min(major)};$

¹<u>H NMR</u> (400 MHz, CD₂Cl₂) δ 7.48 (d, J = 7.7 Hz, 1H), 7.32 – 7.21 (m, 4H), 7.16 (d, J = 7.1 Hz, 2H), 7.09 (d, J = 3.9 Hz, 1H), 7.02 (td, J = 7.6, 0.8 Hz, 1H), 6.89 (d, J = 7.6 Hz, 1H), 6.61 – 6.55 (m, 2H), 5.76 (s, 1H), 5.23 (dd, J = 9.3, 5.4 Hz, 1H), 5.11 (d, J = 16.8 Hz, 1H), 4.76 (s, 1H), 2.07 (s, 3H), 1.80 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.3, 157.2, 142.6, 140.0, 138.4, 136.6, 135.6, 134.2, 133.4, 129.5, 129.0, 127.7, 127.2, 126.0, 123.9, 123.4, 122.8, 121.0, 120.9, 120.2, 115.6, 104.8, 85.3, 59.5, 45.5, 20.5, 18.6.

HRMS (ESI, m/z) Calcd. for C₂₉H₂₂N₂NaO₃⁺, [M+Na] ⁺: 469.1523, found: 469.1517.

<Peak Table>

۲	DAC				
Peak# Ret. Time		Ret. Time	Area	Height	Area%
	1	24.709	101775	2376	33.470
Γ	2	30.623	100528	2005	33.060
Γ	3	44.685	50825	827	16.714
Γ	4	62.803	50952	530	16.756
	Total		304080	5738	100.000

(18,9bS)-1'-methylspiro[benzo[a][1,4]oxazino[3,4,5-cd]pyrrolizine-1,3'-indoline]-2',3(9bH)-

dione (3t)

3t

The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 100/1 to 10/1) giving the product **3t** as a yellow solid in 72% yield (26.5 mg), m.p. 185-187 °C; $[\alpha]^{25}D$ = -123.126 (c = 0.2,

CHCl₃); >20:1 dr; 82:18 er; determined by HPLC on a Chiralpak IF column

at 254 nm (n-hexane/2-propanol = 60/40, 0.7 mL/min), $t_R = 28.15$ min (minor), $t_R = 29.76$ min(major);

¹<u>H NMR</u> (400 MHz, CD₂Cl₂) δ 7.58 (t, *J* = 6.1 Hz, 1H), 7.35 (t, *J* = 7.7 Hz, 1H), 7.25 – 7.19 (m, 2H), 7.17 – 7.11 (m, 1H), 7.07 (d, *J* = 7.4 Hz, 1H), 6.83 (d, *J* = 7.9 Hz, 1H), 6.69 (dd, *J* = 8.0, 5.8 Hz, 2H), 5.85 (s, 1H), 5.30 (d, *J* = 7.5 Hz, 1H), 3.36 (s, 3H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 168.9, 157.5, 156.7, 143.6, 142.7, 140.0, 134.2, 131.1, 129.5, 127.2, 123.9, 123.5, 123.3, 122.7, 121.0, 120.6, 115.4, 109.0, 105.1, 85.5, 59.5, 26.6.

HRMS (ESI, m/z) Calcd. for C₂₁H₁₄N₂NaO₃⁺, [M+Na] ⁺: 365.0897, found: 365.0888.

<Chromatogram>

<Peak Table>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	20.107	121247	3645	22.292
2	26.173	115768	3022	21.285
3	28.091	152231	4170	27.989
4	29.725	154656	3906	28.435
Total		543902	14742	100.000

<Peak Table>

PDA C	h1 254nm				
Peak# Ret. Time		Area Height		Area%	
1	28.151	59902	1671	18.228	
2	29.763	268732	6818	81.772	
Total		328634	8488	100.000	

6. Large scale reaction and synthetic transformation of 3a

To a 50 mL vial equipped with a magnetic stir bar were added 1a (1.2 mmol 237.3 mg), 2a (1.0 mmol 219 mg), DQ (2.0 mmol 490.4 mg), Et₃N (0.1 mmol 15 µL), pre-NHC A (0.2 mmol 112 mg) and (t-BuO)₂Mg (2.0 mmol 336 mg) in dry THF (30.0 mL) and the reaction was stirred in ice bath at -5 °C for 24 h. Then the mixture was concentrated under reduced pressure. The resulting crude residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1 to 10/1) to afford the desired product **3a**. (White solid, 359 mg, 86 % yield, 91:9 er, >20:1 dr)

synthetic transformation of 3a⁴

To a 10 mL flame-dry Schlenk reaction flask equipped with a magnetic stir bar was added **3a** (41.84 mg, 0.10 mmol), K₂CO₃ (41.46 mg, 0.15 mmol). The flask was then sealed, evacuated, and backfilled with nitrogen three times using standard Schlenk techniques, and anhydrous CH₃OH (2.0 mL) was added as solvent, the reaction mixture was stirred at room temperature for 2 hours and evaporated. The resulting crude residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1 to 10/1) to afford the desired product 4. (yellow solid, 396 mg, 86% yield, 9:91 er, >20:1 dr)

methyl (S)-5-((R)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)-5H-pyrrolo[2,1-a]isoindole-3-

carboxylate (4)

The residue was purified by a silica gel flash chromatography (petroleum ether/ethyl acetate = 10/1) giving the product **4** as a yellow solid in 88% yield (39.6 mg), m.p. 166-168 °C; $[\alpha]^{25}D = -387.793$ (c = 0.2, CHCl₃); >20:1 dr; 9:91 er; determined by HPLC on a Chiralpak IF column at 254 nm (n-hexane/2-propanol = 60/40, 0.7 mL/min), t_R = 16.16 min (minor), t_R = 14.48

min(major);

¹<u>H NMR</u> (400 MHz, CD₂Cl₂) δ 7.30 – 7.16 (m, 7H), 7.08 – 6.94 (m, 2H), 6.86 (td, *J* = 7.8, 1.3 Hz, 1H), 6.76 (td, *J* = 7.6, 1.1 Hz, 1H), 6.55 (td, *J* = 7.6, 0.9 Hz, 1H), 6.36 (dd, *J* = 10.7, 5.9 Hz, 2H), 6.20 (s, 1H), 6.01 (s, 1H), 5.77 (dd, *J* = 7.5, 0.8 Hz, 1H), 4.87 (d, *J* = 15.6 Hz, 1H), 4.63 (d, *J* = 15.5 Hz, 1H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 175.7, 164.5, 145.4, 142.5, 139.6, 135.5, 132.0, 129.5, 128.7, 128.7, 127.8, 127.8, 126.4, 126.3, 124.1, 123.3, 123.2, 122.7, 121.8, 119.3, 108.6, 100.9, 80.1, 67.1, 52.1, 43.9.

HRMS (ESI, m/z) Calcd. for C₂₈H₂₃N₂O₄⁺, [M+H] ⁺: 451.1652, found: 451.1652.

<Peak Table>

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area%			
1	14.478	706143	36241	8.561			
2	16.155	7542065	345261	91.439			
Total		8248208	381503	100.000			

7. Anti-Xoo and anti-Xac activities of Products in Vitro

Antibacterial activities of the target compounds **3** against Xac(Xanthomonas axonopodis pv. Citri) and Xoo(Xanthomonas oryzae pv.oryzae) in vitro were evaluated by using the turbidimeter test, commercial agricultural antibacterial thiodiazole-copper and Bismerthiazol were used as control. The compoundsto be measured were dissolved in 150 μ L of dimethylformamide and diluted with 0.1% (V/V) Tween-20 to prepare two concentrations of 100 μ g/mL. 1 mL of the liquid sample was added to the non-toxic nutrient broth (NB: 1.5 g of beef extract, 2.5 g of peptone, 0.5 g of yeast powder, 5.0 g of glucose and 500 mL of distilled water, pH = 7.0 -7.2) liquid medium in 4 mL tubes. Then, 40 μ L of NB containing Xac and Xoo was added separately to 5 mL of solvent NB containing the test compounds, thiodiazole-copper. The inoculated test tubes were incubated at (30 ± 1) °C under continuous shaking at 180 rpm for 38 h. The culture growth was monitored spectrophotometric ally by measuring the optical density at 595 nm (OD595) and expressed as corrected turbidity. The relative inhibitory rate (I %) compared with a blank assay was calculated as follows:

Relative inhibitory rate I (%) = (Ctur-Ttur)/Ctur × 100

Ctur: the corrected turbidity value of bacterial growth on untreated NB; Ttur: the corrected turbidity value of bacterial growth on treated NB; I: The relative inhibitory rate.

Each experiment was repeated thrice

	Inhibition rate(%) of 100 µg/mL					
compound	Xac	Xoo				
3b	41.17±4.25	81.76±1.65				
3c	75.26±1.84	79.05±1.54				
3d	77.84±5.25	78.65 ± 12.69				
3e	80.06 ± 8.27	38.42±2.3				
3f	77.49±2 22	76.67±5.85				
3g	30.82 ± 5.97	77.57±5.7				
3h	68.71 ± 8.19	52.97±5.15				
3i	70.53 ± 3.54	80.05±2.91				
3ј	44.39 ± 2.98	77.75±1.72				
3k	35.26±4.67	74.46±5.79				
31	78.95±1.11	77.84±5.55				
3m	56.14 ± 2.46	82.25±1.89				
3n	31.87±2.72	65.23 ± 0.96				
30	56.37±5.4	79.14±1.91				
3р	42.51 ± 3.48	54.77±2.56				
3q	27.95 ± 2.4	79.86±2.46				
3r	27.37±3.75	63.74 ± 3.06				
3s	72.11±7.42	67.57±5.03				
3t	47.13±6.02	71.13±4.78				
\mathbf{BT}^b	45.73±4.92	53.69 ± 2.8				
TC ^c	54.33±3.29	59.73±1.9				
^{<i>a</i>} All date were average data of three replicates $^{b}BT = Bismerthiazol ^{c}TC = Thiodiazole Copper$						

Table 2. Antibacterial activities^a of the target compounds **3** against Xac and Xoo.

8. References

1. J. E. Taylor, M. D. Jones, J. M. J. Williams, and S. D. Bull, Org. Lett, 2010, 12, 5740-5743.

2. G. Bertuzzi, V. Corti, J. A. Izzo, S. Ricko, N. I. Jessen, and K. A. Jørgensen, *J. Am. Chem. Soc.* 2022, **144**, 1056-1065.

3. Y. Abdelhamid, K. Kasten, J. Dunne, W. C. Hartley, C. M. Young, D. B. Cordes, A. M. Z. Slawin,

S. Ng, A. D. Smith, Org. Lett. 2022, 24, 5444-5449.

4. X. Q. Yang, J. Sun, X. Huang, and Zh. Ch. Jin. Org. Lett. 2022, 24, 5474-5479.

9. X-ray crystallography of compound 3k.

Good quality crystal of **3k** (colourless needle crystal) was obtained by vaporization of a petroleum ether / dichloromethane solution of cycloaddition compound **3k** (~60 mg). A suitable crystal with dimensions $0.1 \times 0.16 \times 0.2$ mm³ was selected and mounted on a Bruker APEX-II CCD diffractometer. CCDC:2244403 contains the supplementary crystallographic data for this paper. The crystal was kept at a steady T = 273.15 K during data collection. These data can be obtained free of charge from The Cambridge Crystallographic

Data Centre via https://www.ccdc.cam.ac.uk/.

Supplementary Table 5. X-ray analysis data of compounds 3k.

Crystal Data. C₂₈H₂₀BrCl₂N₂O₃, (M = 583.27 g/mol): orthorhombic, space group $P2_12_12_1$ (no. 19), a = 9.824(5) Å, b = 14.724(9) Å, c = 17.133(10) Å, $a = \beta = \gamma = 90^\circ$, V = 2478(2) Å3 , Z = 4, Z' = 1, T = 298 K, μ (CuK α) = 4.530 mm⁻¹ , Dcalc = 1.563 g/cm³, 16610 reflections measured, 4705 unique ($R_{int} = 0.0675$, $R_{sigma} = 0.0664$) which were used in all calculations. The final R_1 was 0.0911 (I > 2 σ (I)) and wR_2 was 0.2399 (all data).

Cartesian coordinat	tes of all the	optimized structures
----------------------------	----------------	----------------------

Cartesian coordinates of an the optimized structures	
Table 6 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic	
Displacement Parameters (Å ² ×10 ³) for 20221228JH_0m_a. Ueq is defined as 1	1/3
of the trace of the orthogonalised U _{IJ} tensor.	
	τ.

Atom	x	У	z	U(eq)
Br01	8802.8(13)	1724.6(12)	3282.2(8)	52.6(6)
C101	8824(6)	4087(6)	4611(4)	110(2)
O004	4890(7)	3236(7)	951(3)	32.6(18)
O005	2528(7)	4173(7)	1631(5)	43(2)
N006	6827(8)	4432(8)	1290(5)	31(2)
O007	6096(10)	2649(8)	-24(5)	53(3)
N008	3234(8)	3256(8)	2637(4)	29.1(19)
C00B	5511(9)	4591(8)	1648(6)	28(2)
C00F	7042(5)	2157(6)	3095(4)	35(3)
C00E	6773(5)	2703(6)	2451(3)	31(3)
C009	5475(6)	3053(5)	2337(3)	26(2)
C00A	4444(5)	2858(6)	2867(4)	29(2)
C00K	4713(6)	2313(6)	3511(3)	35(3)
C00I	6011(7)	1962(5)	3625(3)	33(2)
C00G	7354(6)	5298(6)	2323(4)	32(2)
C00C	5958(6)	5147(5)	2344(3)	29(2)
C00D	5174(5)	5534(6)	2932(4)	37(3)
C00T	5787(7)	6071(6)	3499(4)	45(3)
COOR	7183(8)	6222(6)	3478(4)	45(3)
C00V	7967(6)	5836(6)	2890(4)	44(3)
C00H	1999(9)	3308(10)	3116(6)	34(3)
C00J	8600(11)	3740(10)	779(6)	36(3)
C00L	7924(10)	4783(9)	1666(6)	32(2)
C00M	4893(9)	3657(9)	1720(6)	31(2)
C00O	9066(11)	4384(11)	1331(7)	45(3)
C00Q	7163(10)	3769(10)	769(6)	35(3)
C00S	3381(10)	3734(8)	1963(5)	27(2)
C00U	6088(11)	3189(10)	515(6)	39(3)
C00X	2711(10)	4836(7)	4863(4)	65(5)
C00N	2641(9)	4073(6)	4387(4)	48(4)
C00P	2033(8)	4132(5)	3656(4)	35(3)
C00W	1495(9)	4953(7)	3402(4)	53(4)
C00Y	1565(11)	5716(5)	3879(5)	56(4)
C00Z	2173(11)	5657(6)	4609(5)	57(4)
C010	7034(19)	4125(14)	4570(9)	66(5)
Cl1	6281(5)	3391(3)	5232(2)	69.0(12)

Table 7 Anisotropic Displacement Parameters (Å2×103) for 20221228JH_0m_a.The Anisotropic displacement factor exponent takes the form: - $2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...].$

Atom	U11	U ₂₂	U33	U23	U13	U12
Br01	25.0(6)	83.5(12)	49.5(8)	8.8(7)	-11.2(5)	14.2(7)
Cl01	66(3)	165(6)	99(4)	3(4)	32(3)	-6(4)
O004	19(3)	69(6)	9(3)	0(3)	3(2)	1(4)
O005	15(3)	85(7)	30(4)	12(4)	-2(3)	9(4)
N006	9(3)	61(7)	22(4)	5(4)	4(3)	-1(4)
O007	45(5)	86(8)	29(4)	-18(4)	8(4)	-9(5)
N008	17(3)	51(5)	19(3)	0(3)	4(3)	-2(4)
C00B	12(4)	55(7)	17(4)	3(5)	4(3)	1(4)
C00F	24(5)	59(8)	22(5)	0(5)	-4(4)	-4(5)
C00E	12(4)	60(8)	22(4)	4(5)	1(3)	7(5)
C009	17(4)	42(5)	18(3)	2(3)	5(3)	2(4)
C00A	10(4)	57(7)	20(4)	-1(4)	3(3)	-1(4)
C00K	22(5)	60(8)	23(5)	12(5)	4(4)	2(5)
C00I	38(6)	42(7)	19(4)	7(4)	-2(4)	-2(5)
C00G	18(5)	49(7)	29(5)	0(5)	-2(4)	-1(5)
C00C	15(5)	50(7)	23(4)	2(4)	2(3)	3(4)
C00D	24(5)	60(8)	25(5)	-3(5)	0(4)	10(5)
C00T	42(7)	62(9)	30(6)	-7(6)	3(5)	3(6)
C00R	53(8)	51(8)	31(6)	-5(5)	-10(5)	-6(7)
C00V	28(6)	70(10)	34(6)	-4(6)	-10(5)	-14(6)
C00H	12(4)	66(8)	26(5)	4(5)	6(3)	-5(5)
C00J	18(5)	60(8)	31(5)	10(5)	8(4)	2(5)
C00L	12(4)	56(7)	29(5)	0(5)	0(4)	-5(4)
C00M	9(4)	70(8)	14(4)	0(5)	0(3)	0(4)
C00O	14(5)	83(10)	37(6)	6(6)	8(4)	-1(6)
C00Q	17(5)	70(9)	19(4)	2(5)	7(4)	2(5)
C00S	14(4)	43(5)	22(4)	-3(4)	0(3)	-2(4)
C00U	23(5)	74(9)	19(4)	1(5)	11(4)	2(6)
C00X	58(9)	108(15)	30(6)	-4(8)	-1(6)	-8(10)
C00N	43(7)	77(11)	26(6)	-2(6)	-3(5)	5(7)
C00P	15(5)	65(9)	25(5)	-1(5)	7(4)	-3(5)
C00W	38(7)	89(11)	31(6)	-3(7)	3(5)	17(7)
C00Y	57(9)	64(10)	49(8)	7(7)	6(6)	14(8)
C00Z	50(8)	78(11)	43(7)	-12(7)	11(6)	1(8)
C010	72(11)	83(13)	43(8)	12(8)	-3(7)	-2(10)
Cl1	65(2)	99(3)	43.0(16)	2.8(19)	3.6(16)	-10(3)

Table 8 Bond Lengths for20221228JH_0m_a.

Atom	Length/Å	Atom Atom	Length/Å
C00F	1.871(5)	C00G C00C	1.3900
C010	1.76(2)	C00G C00V	1.3900
C00M	1.456(12)	COOG COOL	1.469(13)
C00U	1.396(11)	C00C C00D	1.3900
COOS	1.202(14)	C00D C00T	1.3900
C00B	1.450(11)	COOT COOR	1.3900
COOL	1.357(13)	COOR COOV	1.3900
C00Q	1.363(17)	COOH COOP	1.526(15)
C00U	1.218(15)	C00J C00O	1.42(2)
C00A	1.384(10)	COOJ COOQ	1.412(14)
C00H	1.466(11)	C00L C00O	1.390(16)
COOS	1.360(14)	COOM COOS	1.547(12)
C00C	1.512(12)	C00Q C00U	1.426(18)
C00M	1.508(17)	COOX COON	1.3900
C00E	1.3900	C00X C00Z	1.3900
C00I	1.3900	COON COOP	1.3900
C009	1.3900	COOP COOW	1.3900
C00A	1.3900	C00WC00Y	1.3900
C00M	1.495(12)	C00Y C00Z	1.3900
C00K	1.3900	C010 Cl1	1.733(17)
C00I	1.3900		
	Atom C00F C010 C00M C00U C00S C00B C00L C00Q C00U C00Q C00U C00A C00H C00S C00C C00M C00E C00I C00P C00A C00A C00M C00A C00M	AtomLength/ÅC00F1.871(5)C0101.76(2)C00M1.456(12)C00U1.396(11)C00S1.202(14)C00B1.450(11)C00L1.357(13)C00Q1.363(17)C00U1.218(15)C00A1.384(10)C00H1.466(11)C00C1.512(12)C00H1.508(17)C00E1.3900C00I1.3900C00A1.3900	AtomLength/ÅAtom AtomC00F1.871(5)C00G C00CC0101.76(2)C00G C00VC00M1.456(12)C00G C00LC00U1.396(11)C00C C00DC00S1.202(14)C00D C00TC00B1.450(11)C00T C00RC00L1.357(13)C00R C00VC00Q1.363(17)C00H C00PC00U1.218(15)C00J C00QC00A1.384(10)C00J C00QC00F1.360(14)C00M C00SC00C1.512(12)C00Q C00UC00E1.3900C00X C00ZC00I1.3900C00W C00YC00A1.3900C00W C00YC00A1.3900C00Y C00ZC00I1.3900C00Y C00ZC00A1.3900C00Y C00ZC00A1.3900C00Y C00ZC00A1.3900C00Y C00ZC00A1.3900C00Y C00ZC00A1.3900C00Y C00ZC00A1.3900C010 C11C00I1.3900C010 C11C00I1.3900C010 C11

Table 8 Bond Angles for 20221228JH_0m_a.

Atom Atom Atom	Angle/°	Atom Atom Atom	Angle/°
C00U O004 C00M	120.2(8)	COOR COOV COOG	120.0
C00L N006 C00B	116.5(9)	N008 C00H C00P	111.3(9)
C00L N006 C00Q	113.0(9)	C00Q C00J C00O	108.1(11)
C00Q N006 C00B	127.5(9)	N006 C00L C00G	105.0(8)
C00A N008 C00H	125.0(8)	N006 C00L C000	106.5(10)
C00S N008 C00A	111.7(7)	C000 C00L C00G	147.3(10)
C00S N008 C00H	122.5(9)	O004 C00M C00B	108.3(8)
N006 C00B C00C	99.3(7)	O004 C00M C009	112.8(10)
N006 C00B C00M	104.2(9)	O004 C00M C00S	105.8(7)
C00M C00B C00C	123.1(8)	COOB COOM COOS	110.0(10)
COOE COOF Br01	120.5(4)	C009 C00M C00B	116.5(8)
C00E C00F C00I	120.0	C009 C00M C00S	102.7(7)
C00I C00F Br01	119.4(4)	C00L C00O C00J	107.3(10)
C009 C00E C00F	120.0	N006 C00Q C00J	104.8(11)
C00E C009 C00A	120.0	N006 C00Q C00U	116.7(9)
C00E C009 C00M	132.1(5)	COOJ COOQ COOU	136.5(13)

Table 8 Bond Angles for 20221228JH_0m_a.

Atom Atom Atom	Angle/°	Atom Atom Atom	Angle/°
C00A C009 C00M	107.9(5)	O005 C00S N008	127.3(9)
N008 C00A C009	110.6(5)	O005 C008 C00M	125.6(10)
N008 C00A C00K	129.4(5)	N008 C00S C00M	107.0(8)
C009 C00A C00K	120.0	O004 C00U C00Q	115.5(10)
COOI COOK COOA	120.0	O007 C00U O004	116.3(11)
COOK COOI COOF	120.0	O007 C00U C00Q	128.2(10)
COOC COOG COOV	120.0	COON COOX COOZ	120.0
COOC COOG COOL	108.2(6)	COOP COON COOX	120.0
C00V C00G C00L	131.7(6)	COON COOP COOH	120.4(7)
COOG COOC COOB	110.6(5)	COON COOP COOW	120.0
C00D C00C C00B	129.3(5)	COOW COOP COOH	119.5(7)
C00D C00C C00G	120.0	C00Y C00W C00P	120.0
COOT COOD COOC	120.0	COOW COOY COOZ	120.0
COOR COOT COOD	120.0	COOY COOZ COOX	120.0
COOV COOR COOT	120.0	Cl1 C010 Cl01	112.3(10)

Table 9 Torsion Angles for 20221228JH_0m_a.

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
Br01	C00F	C00E	C009	-177.1(6)	C00C	C00G	C00L	C000	-158.2(19)
Br01	C00F	C00I	C00K	177.1(6)	C00C	C00D	C00T	C00R	0.0
O004	C00M	C00S	O005	-62.7(16)	C00D	C00T	C00R	C00V	0.0
O004	C00M	C00S	N008	120.6(10)	C00T	C00R	C00V	C00G	0.0
N006	C00B	C00C	C00G	2.9(9)	C00V	C00G	C00C	C00B	176.7(8)
N006	C00B	C00C	C00D	179.2(7)	C00V	C00G	C00C	C00D	0.0
N006	C00B	C00M	O004	-55.1(9)	C00V	C00G	C00L	N006	-176.7(7)
N006	C00B	C00M	C009	73.4(10)	C00V	C00G	C00L	C000	19(3)
N006	C00B	C00M	COOS	-170.3(7)	C00H	N008	C00A	C009	-170.1(10)
N006	C00L	C000	COOJ	-3.8(14)	C00H	N008	C00A	C00K	11.3(15)
N006	C00Q	C00U	O004	-13.5(16)	C00H	N008	C00S	O005	-7.8(19)
N006	C00Q	C00U	O007	168.1(13)	C00H	N008	C00S	C00M	168.8(10)
N008	C00A	C00K	C00I	178.5(10)	C00H	C00P	C00W	C00Y	-177.7(8)
N008	C00H	C00P	C00N	-87.3(10)	C00J	C00Q	C00U	O004	147.8(13)
N008	C00H	C00P	C00W	90.4(9)	C00J	C00Q	C00U	O007	-31(2)
C00B	N006	C00L	C00G	-4.3(14)	C00L	N006	C00B	C00C	1.1(13)
C00B	N006	C00L	C000	166.8(11)	C00L	N006	C00B	C00M	-126.7(11)
C00B	N006	C00Q	COOJ	-163.4(10)	C00L	N006	C00Q	COOJ	-4.1(14)
C00B	N006	C00Q	C00U	3.3(17)	C00L	N006	C00Q	C00U	162.7(11)
C00B	C00C	C00D	C00T	-176.0(9)	C00L	C00G	C00C	C00B	-5.5(9)
C00B	C00M	C00S	O005	54.1(14)	C00L	C00G	C00C	C00D	177.8(8)

Table 9 Torsion Angles for 20221228JH_0m_a.

A l	B	С	D	Angle/°	Α	B	С	D	Angle/°
C00B C0	0M	[C00S	N008	-122.6(10)	C00L	C00G	C00V	C00R	-177.1(10)
C00F C0	0E	C009	C00A	0.0	C00M	O004	C00U	O007	162.8(12)
C00F C0	0E	C009	C00M	179.0(10)	C00M	O004	C00U	C00Q	-15.8(17)
C00E C0	0F	C00I	C00K	0.0	C00M	C00B	C00C	C00G	116.7(8)
C00E C0	09	C00A	N008	-178.8(8)	C00M	C00B	C00C	C00D	-66.9(12)
C00E C0	09	C00A	C00K	0.0	C00M	C009	C00A	N008	2.0(8)
C00E C0	09	C00M	0004	65.0(11)	C00M	C009	C00A	C00K	-179.2(7)
C00E C0	09	C00M	COOB	-61.3(12)	C000	C00J	C00Q	N006	1.5(14)
C00E C0	09	C00M	COOS	178.4(7)	C000	C00J	C00Q	C00U	-161.2(13)
C009 C0	0A	C00K	C00I	0.0	C00Q	N006	C00B	C00C	159.8(10)
C009 C0	0M	[C00S	O005	178.8(11)	C00Q	N006	C00B	C00M	32.1(13)
C009 C0	0M	[C00S	N008	2.2(12)	C00Q	N006	C00L	C00G	-166.1(9)
C00AN0	08	C00H	C00P	85.3(14)	C00Q	N006	C00L	C000	5.0(14)
C00AN0	08	COOS	O005	-177.7(11)	C00Q	C00J	C000	C00L	1.4(15)
C00AN0	08	C00S	C00M	-1.1(13)	C00S	N008	C00A	C009	-0.5(11)
C00AC0	09	C00M	0004	-115.9(7)	C00S	N008	C00A	C00K	-179.2(7)
C00AC0	09	C00M	COOB	117.9(7)	C00S	N008	C00H	C00P	-83.2(12)
C00AC0	09	C00M	COOS	-2.5(9)	C00U	O004	C00M	C00B	52.8(13)
C00AC0	0K	C00I	C00F	0.0	C00U	O004	C00M	C009	-77.8(13)
C00I C0	0F	C00E	C009	0.0	C00U	O004	C00M	COOS	170.7(11)
C00GC0	0C	C00D	C00T	0.0	C00X	C00N	C00P	C00H	177.7(8)
C00GC0	0L	C000	COOJ	160.2(18)	C00X	C00N	C00P	C00W	0.0
C00C C0	0B	C00M	0004	-166.5(8)	C00N	C00X	C00Z	C00Y	0.0
C00C C0	0B	C00M	C009	-38.0(12)	C00N	C00P	C00W	C00Y	0.0
C00C C0	0B	C00M	COOS	78.3(10)	C00P	C00W	C00Y	C00Z	0.0
C00C C0	0G	C00V	C00R	0.0	C00W	C00Y	C00Z	C00X	0.0
C00C C0	0G	C00L	N006	5.9(11)	C00Z	C00X	C00N	C00P	0.0

Table 10 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 20221228JH_0m_a.

Atom	x	У	z	U(eq)
H00B	4950.08	4965.98	1301.4	33
HOOE	7462.7	2832.96	2096.03	38
H00K	4023.4	2182.46	3866.05	42
H00I	6190.99	1597.36	4056.02	39
H00D	4240.25	5432.79	2946.49	44
H00T	5262.46	6330.14	3892.73	54
HOOR	7592.86	6582.21	3857.43	54
H00V	8901.06	5936.93	2875.89	53
H00A	1916.89	2759.59	3425.56	41

Table 10 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displaceme	ent
Parameters (Å ² ×10 ³) for 20221228JH_0m_a.	

Atom	x	у	z	U(eq)
H00C	1208.46	3347.54	2778.36	41
H00F	8956.41	3883.44	265.63	44
H00G	8909.11	3136.7	922.14	44
H00O	9969.07	4515.72	1448.33	54
H00X	3118.35	4796.23	5352.31	78
H00N	3001.72	3523.46	4556.86	58
H00W	1087.67	4992.65	2913.04	63
H00Y	1204.29	6265.43	3708.48	68
H00Z	2219.63	6167.24	4928.11	68
H01A	6731.77	4739.96	4677.57	79
H01B	6738.63	3967.87	4047.15	79

10. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra.

¹H NMR spectrum **3a** in CDCl₃ (400 MHz)

¹H NMR spectrum **3b** in CD₂Cl₂ (400 MHz)

S53

¹H NMR spectrum **3c** in CD₂Cl₂ (400 MHz)

¹H NMR spectrum **3d** in CD₂Cl₂ (400 MHz)

¹H NMR spectrum 3e in CD₂Cl₂ (400 MHz)

S56

¹H NMR spectrum **3f** in CD₂Cl₂ (400 MHz)

¹H NMR spectrum **3g** in CD₂Cl₂ (400 MHz)

¹H NMR spectrum 3h in CD₂Cl₂ (400 MHz)

¹H NMR spectrum 3i in CD₂Cl₂ (400 MHz)

¹H NMR spectrum 3j in CD₂Cl₂ (400 MHz)

¹H NMR spectrum 3k in CD₂Cl₂ (400 MHz)

¹H NMR spectrum **31** in CD_2Cl_2 (400 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

^{19}F NMR spectrum 31 in CD₂Cl₂ (377 MHz)

35 -70 -75 -80 -85 -90 -95 -100 -110 -120 -130 -140 -150 -160 -170 -180 f1 (ppm)

¹H NMR spectrum 3m in CD₂Cl₂ (400 MHz)

S65

¹H NMR spectrum **3n** in CD₂Cl₂ (400 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR spectrum **30** in CD₂Cl₂ (400 MHz)

¹H NMR spectrum **3p** in CD₂Cl₂ (400 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum 3p in CDCl₃ (377 MHz)

---107.14

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

¹H NMR spectrum **3q** in CD₂Cl₂ (400 MHz)

¹H NMR spectrum **3r** in CD₂Cl₂ (400 MHz)

¹H NMR spectrum **3s** in CD₂Cl₂ (400 MHz)

S72

¹H NMR spectrum **3t** in CD₂Cl₂ (400 MHz)

S73

¹H NMR spectrum 4 in CD₂Cl₂ (400 MHz)

