Supporting Information

Synthesis of a Versatile 1*H*-indene-3-carboxylate Scaffold Enabled by Visible-Light Promoted Wolff Rearrangement of 1-Diazonaphthalen-2(1*H*)-ones

Xin Yue^{a‡}, Ying Zhou^{a‡}, Yan Zhang^a, Tengfei Meng^a, Yupei Zhao^{*a} and Wengang Guo^{*a}

^aAdvanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, 21364, China. Email: wgguo@cczu.edu.cn; zhaoyupei@cczu.edu.cn *These authors contributed equally to this work

Table of Contents

I.	General Information	2
II.	Synthesis of 1-Diazonaphthalen-2(1H)-ones	3
III.	Visible-Light-Promoted Sequential Reaction of 1-Diazonaphthalen-2(1H)-ones	3
IV.	Unsuccessful Nucleophiles	17
V.	The Procedure for Synthetic Transformation	17

NMR Spectra-----22

I. General Information

Flash column chromatography was performed over silica gel (200-300 mesh) purchased from Qindao Puke Co., China. All air or moisture sensitive reactions were conducted in oven-dried glassware under nitrogen atmosphere using anhydrous solvents. Anhydrous acetonitrile was purified by the Innovative® solvent purification system or purchased from Energy Chemical. Analytical grade dichloromethane (DCM), 1,2-dichloroethane (DCE), tetrahydrofuran (THF), toluene, ethyl acetate, and cyclohexane were purchased from Energy Chemical. These solvents were directly used as received. β-naphthols, and 15-crown-5 were purchased from Energy Chemical and Leyan. Blue LED reactor was purchased from Shenzhen synled Tech. Co. Ltd. ¹H, and ¹³C spectra were collected on a Bruker AV 300 and 400 MHz NMR spectrometer using residue solvent peaks as an internal standard ⁽¹H NMR: CDCl₃ at 7.26 ppm; ¹³C NMR: CDCl₃ at 77.0 ppm). Mass spectra were collected on an Agilent GC/MS 5975C system, a MALDI Micro MX mass spectrometer, or an API QSTAR XL System.

II. Synthesis of 1-Diazonaphthalen-2(1H)-ones

All the phthalazine 1-Diazonaphthalen-2(1H)-ones used this work are known compounds and were synthesized according to the literature procedure.¹

III. Visible-Light-Promoted Sequential Reaction of 1-Diazonaphthalen-2(1H)-ones

General Procedure A.

An oven-dried 4-mL vial equipped with a magnetic stirring bar was charged with the 1-diazonaphthalen-2(1*H*)-one **1** (0.1 mmol, 1.0 equiv), the alcohol **2** or aniline, and toluene (1.0 mL). The mixture was stirred at RT under the irradiation of 24 W blue LED for 12 h, and the reaction progress was monitored by TLC. Upon completion (12 h), the mixture was directly subjected to flash column chromatography on silica gel (eluent: hexanes/EtOAc = 10:1) to give the desired product **3**.

Note: For **3a**–**3e**, 20 equiv of alcohol was used; For **3f**–**3h** and **3j**–**3k**, 5 equiv of alcohol was used; For **3i**, 10 equiv of alcohol was used; For **3y**, 3.0 equiv of aniline was used; For **3z**, 3.0 equiv of phenol was used in anhydrous toluene.

¹ A. Biswas, S. Pan and R. Samanta, Org. Lett., 2022, 24, 1631–1636.

The images of the photo-reactor in current study:

a: An additional fan was adopted to help cool the reaction mixture.

b: The photo reactor with a built-in fan (24 W output power with a peak power at 467.5 nm; beam angle: 45°; lumen: 130–140).

Ethyl 1H-indene-3-carboxylate (3a) was prepared as a light-yellow oil according to the General Procedure (eluent: hexanes/EtOAc = 10:1, 15.2 mg, 81% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.97 (d, *J* = 7.6 Hz, 1H), 7.42 – 7.40 (m, 2H), 7.29 (t, *J* = 7.6 Hz, 1H), 7.22 – 7.17 (m, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 3.45 (d, *J* = 1.7 Hz, 2H), 1.34 (t, *J* = 7.1 Hz, 3H) ppm.

¹³**C NMR** (75 MHz, CDCl₃) δ 164.2, 144.4, 143.4, 140.8, 136.5, 126.7, 125.5, 123.8, 122.5, 60.5, 38.4, 14.4 ppm.

It's a known compound.²

² V. V. Kozhukhova, S. A. Kalyuzhnaya, Y. G. Yatluk and A. L. Suvorov, *Russ. J. Org. Chem.*, 2004, **40**, 773–774.

Methyl 1H-indene-3-carboxylate (3b) was prepared as a light-yellow oil according to the General Procedure (eluent: hexanes/EtOAc = 10:1, 12.2 mg, 70% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.97 (d, *J* = 7.6 Hz, 1H), 7.42 – 7.39 (m, 2H), 7.31 – 7.17 (m, 2H), 3.84 (s, 3H), 3.46 (d, *J* = 1.9 Hz, 2H) ppm.

¹³**C NMR** (75 MHz, CDCl₃) δ 164.6, 144.6, 143.4, 140.7, 136.1, 126.7, 125.6, 123.8, 122.4, 51.6, 38.5 ppm.

It's a known compound.³

Isopropyl 1H-indene-3-carboxylate (3c) was prepared as a light-yellow oil according to the General Procedure 1 (eluent: hexanes/EtOAc = 10:1, 12.7 mg, 63% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.97 (d, *J* = 7.6 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.28 (t, *J* = 7.6 Hz, 1H), 7.21 – 7.16 (m, 1H), 5.23 – 5.15 (m, 1H), 3.443 – 3.437 (m, 2H), 1.32 (d, *J* = 6.2 Hz, 6H) ppm.

¹³**C NMR** (75 MHz, CDCl₃) δ 163.8, 144.2, 143.5, 140.9, 136.9, 126.6, 125.5, 123.8, 122.5, 67.9, 38.3, 22.0 ppm.

HRMS (ESI+) Calcd for C13H15O2 [M+H]+: 203.1072, found: 203.1076.

³ I. Honzíčková, J. Vinklárek, C. C. Romão, Z. Růžičková and Jan Honzíček, *New J. Chem.*, 2016, **40**, 245–256.

Cyclohexyl 1H-indene-3-carboxylate (3d) was prepared as a red oil according to the General Procedure (eluent: hexanes/EtOAc = 10:1, 17.4 mg, 72% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.97 (d, *J* = 7.6 Hz, 1H), 7.40 – 7.18 (m, 4H), 4.98 – 4.95 (m, 1H), 3.443 – 3.438 (m, 2H), 1.92 – 1.35 (m, 10H) ppm.

¹³**C NMR** (75 MHz, CDCl₃) δ 163.7, 144.2, 143.5, 140.9, 137.0, 126.6, 125.5, 123.8, 122.5, 72.8, 38.3, 31.7, 25.5, 23.8 ppm.

HRMS (ESI+) Calcd for C₁₆H₁₉O₂ [M+H]⁺: 243.1385, found: 243.1393.

Tert-butyl 1*H*-indene-3-carboxylate (3e) was prepared as a light-yellow oil according to the General Procedure (eluent: hexanes/EtOAc = 10:1, 9.5 mg, 44% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.94 (d, *J* = 7.6 Hz, 1H), 7.39 (d, *J* = 7.4 Hz, 1H), 7.33 – 7.25 (m, 2H), 7.20 – 7.15 (m, 1H), 3.42 (d, *J* = 1.8 Hz, 2H), 1.55 (s, 9H) ppm.

¹³**C NMR** (75 MHz, CDCl₃) δ 163.6, 143.8, 143.6, 141.0, 137.9, 126.6, 125.4, 123.8, 122.5, 81.0, 38.1, 28.3 ppm.

HRMS (ESI+) Calcd for C14H17O2 [M+H]+: 217.1229, found: 217.1230.

Cinnamyl 1*H***-indene-3-carboxylate (3f)** was prepared as a light-yellow oil according to the General Procedure (eluent: hexanes/EtOAc = 10:1, 17.8 mg, 65% yield). **¹H NMR** (300 MHz, CDCl₃) δ 8.08 (d, *J* = 7.6 Hz, 1H), 7.51 – 7.46 (m, 2H), 7.43 – 7.38 (m, 2H), 7.36 – 7.22 (m, 5H), 6.74 (d, *J* = 16 Hz, 1H), 6.46 – 6.36 (m, 1H), 4.98 – 4.96 (m, 2H), 3.52 (s, 2H) ppm.

¹³**C NMR** (75 MHz, CDCl₃) δ 163.9, 144.9, 143.4, 140.7, 136.3, 136.2, 134.3, 128.7, 128.2, 126.74, 126.72, 125.7, 123.9, 123.3, 122.5, 65.2, 38.5 ppm.

HRMS (ESI+) Calcd for C19H17O2 [M+H]+: 277.1229, found: 277.1226.

4-Methoxybenzyl 1*H***-indene-3-carboxylate (3g)** was prepared as a pink solid according to the General Procedure (eluent: hexanes/EtOAc = 10:1, 17.3 mg, 62% yield). **¹H NMR** (300 MHz, CDCl₃) δ 7.96 (d, *J* = 7.6 Hz, 1H), 7.42 – 7.18 (m, 6H), 6.86 – 6.83 (m, 2H), 5.22 (s, 2H), 3.74 (s, 3H), 3.43 (d, *J* = 1.7 Hz, 2H) ppm.

¹³**C NMR** (75 MHz, CDCl₃) δ 164.0, 159.6, 144.8, 143.4, 140.7, 136.2, 130.1, 128.2, 126.7, 125.6, 123.8, 122.5, 114.0, 66.0, 55.3, 38.4 ppm.

HRMS (ESI+) Calcd for C₁₈H₁₇O₃ [M+H]⁺: 281.1178, found: 281.1183.

(*S*)-1-Phenylethyl 1*H*-indene-3-carboxylate (3h) was prepared as a light-yellow oil according to the General Procedure (eluent: hexanes/EtOAc = 10:1, 14.6 mg, 55% yield). ¹H NMR (300 MHz, CDCl₃) δ 8.06 (d, *J* = 7.6 Hz, 1H), 7.51 – 7.44 (m, 4H), 7.39 – 7.23 (m, 5H), 6.14 (q, *J* = 6.5 Hz, 1H), 3.51 (s, 2H), 1.69 (d, *J* = 6.6 Hz, 3H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ 163.4, 144.8, 143.5, 141.8, 140.8, 136.5, 128.6, 127.9, 126.7, 126.1, 125.6, 123.8, 122.5, 72.5, 38.4, 22.5 ppm.

HRMS (ESI+) Calcd for C18H17O2 [M+H]+: 265.1229, found: 265.1223.

(1*R*,2*S*,5*R*)-2-*iso*-propyl-5-methylcyclohexyl 1*H*-indene-3-carboxylate (3i) was prepared as a light-yellow oil according to the General Procedure (eluent: hexanes/EtOAc = 10:1, 18.1 mg, 62% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.97 (d, *J* = 7.3 Hz, 1H), 7.39 (s, 2H), 7.28 – 7.26 (m, 1H), 7.20 – 7.16 (m, 1H), 4.91 – 4.84 (m, 1H), 3.44 (s, 2H), 2.07 (d, *J* = 9.9 Hz, 1H), 1.93 – 1.92 (m, 1H), 1.68 – 1.64 (m, 2H), 1.52 – 1.49 (m, 3H), 1.11 – 1.04 (m, 2H), 0.87 – 0.85 (m, 6H), 0.75 – 0.71 (m, 3H) ppm.

¹³**C NMR** (75 MHz, CDCl₃) δ 158.6, 139.0, 138.3, 135.8, 131.6, 121.4, 120.3, 118.6, 117.3, 69.1, 42.1, 35.9, 33.2, 29.1, 26.3, 21.3, 18.4, 16.9, 15.6, 11.3 ppm.

HRMS (ESI+) Calcd for C20H27O2 [M+H]+: 299.2011, found: 299.2016.

(35,85,95,10R,13R,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-

2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[a]phenanthren-3-yl 1*H*-indene-3-carboxylate (3j) was prepared as a white solid according to the General Procedure (eluent: hexanes/EtOAc = 10:1, 30.6 mg, 58% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.97 (d , *J* = 7.5 Hz, 1H), 7.41 – 7.39 (m, 2H), 7.31 –7.26 (t, *J* = 7.17 Hz, 1H), 7.21 – 7.16 (m, 1H), 5.36 (d, *J* = 4.3 Hz, 1H), 4.85 – 4.74 (m, 1H), 3.44 (d, *J* = 1.4 Hz, 2H), 2.42 (d, *J* = 7.8 Hz, 2H), 1.97 – 1.93 (m, 2H), 1.90 – 1.86 (m, 1H), 1.80 – 1.73 (m, 1H), 1.71 – 1.66 (m, 1H), 1.52 – 1.43 (m, 7H), 1.29 – 1.26 (m, 3H), 1.21 – 1.18 (m, 3H), 1.16 – 1.05 (m, 5H), 1.01 (s, 4H), 0.85 (d, *J* = 6.5 Hz, 3H), 0.81 – 0.76 (m, 8H), 0.62

(s, 3H) ppm.

¹³**C NMR** (75 MHz, CDCl₃) δ 158.5, 139.1, 138.3, 135.7, 134.5, 131.6, 121.4, 120.3, 118.6, 117.6, 117.3, 69.0, 51.5, 50.9, 44.9, 37.1, 34.6, 34.3, 33.2, 33.1, 31.9, 31.5, 31.0, 30.6, 26.8, 26.7, 23.1, 22.8, 22.78, 19.1, 18.7, 17.7, 17.4, 15.9, 14.2, 13.5, 6.7 ppm.

HRMS (ESI+) Calcd for C₃₇H₅₆NO₂ [M+NH₄]⁺: 546.4311, found: 546.4304.

(*S*)-3,7-dimethyloct-6-en-1-yl 1*H*-indene-3-carboxylate (3k) was prepared as a lightyellow solid according to the General Procedure (eluent: hexanes/EtOAc = 10:1, 21.2 mg, 71% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.97 (d , *J* = 7.6 Hz, 1H), 7.42 – 7.38 (m, 2H), 7.28 (t, *J* = 7.6 Hz, 1H), 7.21 – 7.16 (m, 1H), 5.05 – 5.01 (m, 1H), 4.35 – 4.22 (m, 2H), 3.45 – 3.44 (m, 2H), 1.99 – 1.89 (m, 2H), 1.80 – 1.71 (m, 1H), 1.62 – 1.53 (m, 8H), 0.90 (d, *J* = 6.4 Hz, 3H), 0.80 – 0.76 (m, 2H) ppm.

¹³**C NMR** (75 MHz, CDCl₃) δ 159.1, 139.2, 138.2, 135.6, 131.3, 126.2, 121.5, 120.3, 119.4, 118.6, 117.3, 57.9, 33.2, 31.8, 30.4, 24.4, 20.5, 20.2, 14.3, 12.5 ppm.

HRMS (ESI+) Calcd for C₂₀H₂₇O₂ [M+H]⁺: 299.2011, found: 299.2006.

Ethyl 5-bromo-1*H***-indene-3-carboxylate (31)** was prepared as a light-yellow oil according to the General Procedure (eluent: hexanes/EtOAc = 10:1, 16.6 mg, 62% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.19 (d, *J* = 1.8 Hz, 1H), 7.47 (t, *J* = 1.8 Hz, 1H), 7.38 – 7.36 (m, 1H), 7.32 – 7.30 (m, 1H), 4.37 (q, *J* = 7.1 Hz, 2H), 3.47 (d, *J* = 1.4 Hz, 2H), 1.42 (t, *J* = 7.1 Hz, 3H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ 163.7, 145.6, 142.8, 142.1, 135.7, 128.4, 125.7, 125.1, 120.6, 60.7, 38.2, 14.4 ppm.

HRMS (ESI+) Calcd for C12H12BrO2 [M+H]+: 267.0021, found: 267.0026.

Methyl **5-fluoro-1***H***-indene-3-carboxylate (3m)** was prepared as a yellow solid according to the General Procedure A (eluent: hexanes/EtOAc = 10:1, 12.5 mg, 65% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.68 – 7.64 (m, 1H), 7.45 (s, 1H), 7.32 – 7.28 (m, 1H), 6.91 – 6.85 (m, 1H), 3.83 (s, 3H), 3.42 (s, 2H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ 163.1, 161.3 (d, ¹*J*_{C-F} = 240 Hz), 145.5, 141.4 (d, ³*J*_{C-F} = 10 Hz), 137.5 (d, ⁴*J*_{C-F} = 3 Hz), 134.6 (d, ⁴*J*_{C-F} = 3 Hz), 123.4 (d, ³*J*_{C-F} = 9 Hz), 111.5 (d, ²*J*_{C-F} = 23

Hz), 108.7 (d, ${}^{2}J_{C-F}$ = 25 Hz), 50.7, 36.9 ppm.

¹⁹F NMR (375 MHz, CDCl₃) δ –116.4 ppm.

HRMS (ESI+) Calcd for C₁₁H₁₀FO₂ [M+H]⁺: 193.0665, found: 193.0659.

Ethyl 5-cyano-1*H***-indene-3-carboxylate (3n)** was prepared as a yellow solid according to the General Procedure A (eluent: hexanes/EtOAc = 10:1, 11 mg, 49% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (s, 1H), 7.58 – 7.56 (m, 3H), 4.40 (q, *J* = 7.2 Hz, 2H), 3.62 (d, *J* = 1.4 Hz, 2H), 1.43 (t, *J* = 7.2 Hz, 3H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ 163.3, 148.2, 146.0, 141.6, 135.5, 129.5, 126.2, 124.5, 119.5, 110.7, 60.9, 38.9, 14.3 ppm.

HRMS (ESI+) Calcd for C13H12NO2 [M+H]+: 214.0868, found: 214.0859.

3-Ethyl 5-methyl 1*H***-indene-3,5-dicarboxylate (30)** was prepared as a white solid according to the General Procedure A (eluent: hexanes/EtOAc = 10:1, 13 mg, 53% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 8.68 (s, 1H), 7.98 (d, *J* = 7.8 Hz, 1H), 7.53 – 7.50 (m, 2H), 4.40 (q, *J* = 7.1 Hz, 2H), 3.94 (s, 3H), 3.57 (s, 2H), 1.43 (t, *J* = 7.1 Hz, 3H) ppm.

¹³**C NMR** (75 MHz, CDCl₃) δ 167.5, 163.8, 148.4, 145.0, 141.1, 136.1, 128.9, 127.2, 123.7, 123.6, 60.7, 52.1, 38.5, 14.3 ppm.

HRMS (ESI+) Calcd for C14H15O4 [M+H]+: 247.0970, found: 247.0963.

Ethyl 5-methoxy-1H-indene-3-carboxylate (3p) was prepared as a light-yellow solid according to the General Procedure (eluent: hexanes/EtOAc = 10:1, 18.2 mg, 83% yield). ¹**H NMR** (300 MHz, CDCl₃) δ 7.65 – 7.64 (m, 1H), 7.48 (s, 1H), 7.34 (d, *J* = 8.2 Hz, 1H), 6.84 – 6.81 (m, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 3.86 (s, 3H), 3.45 (s, 2H), 1.41 (t, *J* = 7.1 Hz, 3H) ppm.

¹³**C NMR** (75 MHz, CDCl₃) δ 164.2, 159.0, 145.8, 142.2, 136.1, 135.5, 124.2, 112.4, 107.4, 60.5, 55.5, 37.8, 14.4 ppm.

HRMS (ESI+) Calcd for C13H15O3 [M+H]+: 219.1021, found: 219.1012.

Ethyl 5-phenyl-1H-indene-3-carboxylate (3q) was prepared as a colorless oil according to the General Procedure (eluent: hexanes/EtOAc = 10:1, 23.5 mg, 87% yield). **¹H NMR** (300 MHz, CDCl₃) δ 8.31 (s, 1H), 7.68 – 7.65 (m, 2H), 7.55 – 7.50 (m, 3H), 7.49 – 7.42 (m, 2H), 7.37 – 7.32 (m, 1H), 4.39 (q, *J* = 7.1 Hz, 2H), 3.56 (d, *J* = 1.8 Hz, 2H), 1.42 (t, *J* = 7.1 Hz, 3H) ppm.

¹³**C NMR** (75 MHz, CDCl₃) δ 164.2, 144.9, 142.5, 141.7, 141.5, 140.0, 136.4, 128.7, 127.4, 127.1, 124.8, 124.0, 121.3, 60.6, 38.2, 14.4 ppm.

HRMS (ESI+) Calcd for C₁₈H₁₇O₂ [M+H]⁺: 265.1229, found: 265.1221.

Ethyl 6-bromo-1*H***-indene-3-carboxylate (3r)** was prepared as a light-yellow oil according to the General Procedure (eluent: hexanes/EtOAc = 10:1, 21 mg, 79% yield). ¹**H NMR** (300 MHz, CDCl₃) δ 7.90 (d, *J* = 8.2 Hz, 1H), 7.60 (s, 1H), 7.49 – 7.43 (m, 2H), 4.37 (q, *J* = 7.1 Hz, 2H), 3.50 (s, 2H), 1.40 (t, *J* = 7.1 Hz, 3H) ppm.

¹³**C NMR** (75 MHz, CDCl₃) δ 163.8, 145.4, 144.4, 139.8, 135.9, 129.8, 127.1, 123.8, 119.9, 60.7, 38.2, 14.4 ppm.

HRMS (ESI+) Calcd for C12H12BrO2 [M+H]⁺: 267.0021, found: 269.0007.

Ethyl 6-acetyl-1H-indene-3-carboxylate (3s) was prepared as a white solid according to the General Procedure A (eluent: hexanes/EtOAc = 10:1, 21 mg, 69% yield). **¹H NMR** (300 MHz, CDCl₃) δ 8.12 – 8.07 (m, 2H), 7.97 (d, *J* = 8.1 Hz, 1H), 7.63 (s, 1H), 4.39 (q, *J* = 7.1 Hz, 2H), 3.59 (s, 2H), 2.64 (s, 3H), 1.42 (t, *J* = 7.1 Hz, 3H) ppm. **¹³C NMR** (75 MHz, CDCl₃) δ 198.2, 163.7, 147.8, 145.5, 143.5, 136.2, 134.6, 127.7, 123.4, 122.3, 60.7, 38.6, 26.8, 14.3 ppm.

HRMS (ESI+) Calcd for C14H15O3 [M+H]+: 231.1021, found: 231.1014.

Ethyl 6-methoxy-1*H***-indene-3-carboxylate (3t)** was prepared as a white solid according to the General Procedure (eluent: hexanes/EtOAc = 10:1, 16.5 mg, 75% yield). ¹**H NMR** (300 MHz, CDCl₃) δ 7.92 (d, *J* = 8.5 Hz, 1H), 7.32 (t, *J* = 2.0 Hz, 1H), 7.05 (s, 1H), 6.93 – 6.89 (m, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.84 (s, 3H), 3.48 (d, *J* = 1.3 Hz, 2H), 1.40 (t, *J* = 7.1 Hz, 3H) ppm.

¹³**C NMR** (75 MHz, CDCl₃) δ 164.3, 158.4, 145.3, 142.1, 136.1, 133.9, 122.9, 112.3, 110.1, 60.4, 55.5, 38.3, 14.4 ppm.

HRMS (ESI+) Calcd for C13H15O3 [M+H]+: 219.1021, found: 219.1014.

3u

Ethyl 2-bromo-1*H*-indene-3-carboxylate (3u) was prepared as a white solid according to the General Procedure A (eluent: hexanes/EtOAc = 10:1, 15 mg, 56% yield).

¹H NMR (300 MHz, CD₂Cl₂) δ 7.77 (d, J = 7.4 Hz, 1H), 7.31 (d, J = 7.3 Hz, 1H), 7.25 – 7.13 (m, 2H), 4.32 (q, J = 7.1 Hz, 2H), 3.70 (s, 2H), 1.35 (t, J = 7.1 Hz, 3H) ppm.
¹³C NMR (75 MHz, CD₂Cl₂) δ 163.0, 141.5, 140.9, 133.8, 133.5, 126.9, 125.6, 123.2, 121.8, 60.9, 47.3, 14.1 ppm.

It's a known compound and not very stable.⁴

General Procedure B.

Note: In initial synthesis, 3v'-3x' were obtained as a mixture of isomers, thus the ester groups in the corresponding products was reduced by DIBAL-H to get cleaner NMR spectra.

To a solution of 3v'-3x' (0.2 mmoL) in anhydrous DCM (2.0 mL), DIBAL-H (for 3v'-3x': 2.0 equiv, for 3x': 4.0 equiv, 1.0 M in *n*-hexane) was added dropwise under a nitrogen atmosphere at -20 °C and then the resulting reaction mixture was slowly warmed to room temperature and stirred for additional 2 h at the same temperature. After completion, the reaction was quenched with HCl (1M) solution at 0°C and the mixture was extracted with DCM (3×30 mL). The combined organic phases were washed with brine, dried over Na₂SO₄, and concentrated in vacuo, the mixture was directly subjected to flash column chromatography on silica gel (eluent: hexanes/ethyl acetate = 5:1) to give the desired product 3v-3x.

⁴ C. Yu, X. Ma, B. Chen, B. Tang, R. S. Paton and G. Zhang, *Eur. J. Org. Chem.*, 2017, **11**, 1561–1565.

3v

(1-Methyl-1*H***-inden-3-yl) methanol (3v)** was prepared as a light-yellow oil according to the General Procedure B (eluent: hexanes/EtOAc = 5:1, 17.6 mg, 46% yield).

For the major isomer:

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 (d, *J* = 7.3 Hz, 1H), 7.24 – 7.21 (m, 2H), 7.15 – 7.12 (m, 1H), 6.11 (s, 1H), 3.81 – 3.77 (m, 1H), 3.72 – 3.68 (m, 1H), 3.53 – 3.50 (m, 1H), 2.08 – 2.07 (s, 3H), 1.71 (s, 1H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ 146.2, 145.0, 141.1, 130.7, 127.0, 125.0, 123.2, 119.2, 63.9, 51.9, 13.1, ppm.

HRMS (ESI+) Calcd for C11H13O [M+H]⁺: 161.0966, found: 161.0965.

(1-(4-Methoxyphenyl)-1*H*-inden-3-yl) methanol (3w) was prepared as a yellow solid according to the General Procedure B (eluent: hexanes/EtOAc = 5:1, 45 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.53 (m, 4H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.25 (t, *J* = 7.4 Hz, 1H), 6.98 (d, *J* = 8.7 Hz, 2H), 6.51 (d, *J* = 1.96 Hz, 1H), 3.98 – 3.97 (m, 1H), 3.89 – 3.86 (m, 1H), 3.84 (s, 3H), 3.77 – 3.74 (m, 1H), 1.75 (s, 1H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ 159.4, 145.5, 145.3, 144.2, 131.6, 128.9, 128.2, 127.1, 125.3, 123.7, 120.7, 114.1, 64.1, 55.4, 52.2 ppm.

HRMS (ESI+) Calcd for C17H17O2 [M+H]+: 253.1229, found: 253.1227.

(**1***H***-Indene-2,3-diyl**) **dimethanol (3x)** was prepared as a yellow solid according to the General Procedure B (eluent: hexanes/EtOAc = 5:1, 11.1 mg, 32% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.13 (m, 4H), 7.08 – 7.04 (m, 1H), 6.58 (s, 1H), 4.43

- 4.33 (m, 3H), 4.05 - 4.01 (m, 1H), 3.50 - 3.46 (m, 1H), 3.39 - 3.34 (m, 1H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ 150.0, 143.9, 143.7, 130.2, 127.3, 125.2, 123.2, 121.3, 63.7, 60.7, 53.9 ppm.

HRMS (ESI+) Calcd for C11H12NaO2 [M+Na]+: 199.0735, found: 199.0732.

N-**phenyl-1***H*-**indene-3-carboxamide (3y)** was prepared as a white solid according to the General Procedure A (eluent: hexanes/EtOAc = 10:1, 39 mg, 83% yield).

¹**H NMR** (400 MHz, DMSO) δ 10.21 (s, 1H), 7.95 (d, *J* = 8.72 Hz, 1H), 7.79 (d, *J* = 7.64 Hz, 2H), 7.54 (d, *J* = 7.32 Hz, 1H), 7.42 – 7.41 (m, 1H), 7.38 – 7.32 (m, 3H), 7.28 – 7.24 (m, 1H), 7.10 (t, *J* = 7.36 Hz, 1H), 3.63 (d, *J* = 1.16 Hz, 2H) ppm.

¹³**C NMR** (100 MHz, DMSO) δ 163.4, 143.9, 142.1, 139.5, 139.4, 139.0, 129.1, 126.7, 125.7, 124.4, 124.0, 122.4, 120.6, 38.6 ppm.

It's a known compound.³

Phenyl 1H-indene-3-carboxylate (3z) was prepared as a white solid according to the General Procedure A (eluent: hexanes/EtOAc = 10:1, 13 mg, 55% yield).

¹H NMR (300 MHz, CDCl₃) δ 8.11 (d, J = 7.6 Hz 1H), 7.69 (s, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.46 – 7.35 (m, 3H), 7.32 – 7.21 (m, 4H), 3.61 (s, 2H) ppm.
¹³C NMR (75 MHz, CDCl₃) δ 162.3, 150.6, 146.3, 143.3, 140.5, 135.7, 129.6, 126.9, 126.0, 125.9, 123.9, 122.5, 121.8, 38.8 ppm.

HRMS (ESI+) Calcd for C₁₆H₁₃O₂ [M+H]⁺: 237.0916, found: 237.0907.

toluene HNu Blue LED, rt. 12 h with or without TEA (20 mol %) no desired product 2 3 SH Ph. SH SH Ph OMe PhO^P `OMe `Ph `OPh MeO

IV. Unsuccessful Nucleophiles

V. The Procedure for Synthetic Transformation

An oven-dried test tube equipped with a magnetic stirring bar was charged with the **1e** (4.42 mmol, 1.1 g), **2a** (20 equiv, 5.2 mL), and toluene (5 mL). The mixture was stirred at 25 °C under the irradiation of Blue LED for 12 h, and the reaction progress was monitored by TLC. Upon completion (12 h), the mixture was directly subjected to flash column chromatography on silica gel (eluent: hexanes/ethyl acetate = 10:1) to give the desired product **3o**.

General Procedure C.

In a nitrogen atmosphere of glovebox, an oven-dried test tube equipped with a magnetic stirring bar was charged with **30** (0.2 mmol, 54 mg), Pd/C (5%, 10 mg, 10 % on carbon), and anhydrous MeOH (2.0 mL). Then, the reaction mixture was removed from glovebox and then attached with a H₂ balloon. The resulting suspension was stirred at room temperature for 4 h. Upon completion (monitored by TLC), the reaction mixture was filtered through a short plug of celite, and the filter cake was washed with DMC (10 mL). The combined filtrates were concentrated under reduced pressure to get the crude product. The desired product **4a** was obtained after purification on silica gel flash column chromatography (eluent: hexanes/ethyl acetate = 10:1).

Ethyl 2,3-dihydro-1*H*-indene-1-carboxylate **(4a, racemic)** was prepared as a colorless oil according to the General Procedure C (eluent: hexanes/EtOAc = 10:1, 34 mg, 89% yield). **¹H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.37 (m, 1H), 7.25 – 7.15 (m, 3H), 4.22 – 4.16 (m, 2H), 4.04 (t, *J* = 7.2 Hz, 1H), 3.14 – 3.06 (m, 1H), 2.95 – 2.87 (m, 1H), 2.49 – 2.28 (m, 2H), 1.28 (t, *J* = 7.1 Hz, 3H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ 173.9, 144.1, 140.9, 127.5, 126.4, 124.7, 124.69, 60.8, 50.2, 31.8, 28.7, 14.3 ppm.

HRMS (ESI+) Calcd for C12H15O2 [M+H]+: 191.1072, found: 191.1068.

General Procedure D

The aldehyde (1.1 equiv) was added to a solution of **3o** (0.2 mmol, 54 mg, 1.0 equiv) in MeOH (2.0 mL). Under vigorously stirring, KOH (0.01 mmol, 0.6 mg, 5 mol %) was added to the resulted solution. The reaction was smoothly proceeded, and the yellow product **4b** was precipitated immediately under the bottom of the vial. Upon completion (10 min, monitored by TLC), the mixture was directly subjected to flash column chromatography on silica gel (eluent: hexanes/ethyl acetate = 10:1) to give the desired product **4b**.

Ethyl (E)-1-benzylidene-6-bromo-1*H***-indene-3-carboxylate (4b)** was prepared as a yellow solid according to the General Procedure D (eluent: hexanes/EtOAc = 10:1, 47.6 mg, 65% yield, *E*/*Z* >100:1 by crude ¹H NMR).

¹H NMR (300 MHz, CDCl₃) δ 7.84 – 7.89 (m, 2H), 7.73 (s, 1H), 7.67 (s, 1H), 7.62 (d, *J* = 7.2 Hz, 2H), 7.49 – 7.42(m, 4H), 4.38 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H) ppm.
¹³C NMR (75 MHz, CDCl₃) δ 164.5, 139.3, 137.2, 136.9, 135.9, 135.8, 135.6, 133.6, 130.7, 130.6, 129.9, 129.1, 123.7, 122.5, 120.1, 60.8, 14.4 ppm.

HRMS (ESI+) Calcd for C11H13O2 [M+H]+: 355.0334, found: 355.0325.

(6-Bromo-1*H***-inden-3-yl) methanol (4c)** was prepared as a yellow solid according to the General Procedure B (eluent: hexanes/EtOAc = 5:1, 55 mg, 49% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.42 – 7.39 (m, 1H), 7.26 (d, *J* = 8.0 Hz, 1H), 6.42 (s, 1H), 4.65 (d, *J* = 1.4 Hz, 2H), 3.33 (d, *J* = 1.3 Hz, 2H), 1.93 (s, 1H) ppm.
¹³C NMR (100 MHz, CDCl₃) δ 146.6, 143.5, 142.3, 129.9, 129.3, 127.2, 120.7, 119.2, 59.6, 37.7 ppm.

HRMS (ESI+) Calcd for C₁₀H₁₀BrO [M+H]⁺: 224.9915, found:226.9897.

Ethyl (*E*)-6-bromo-1-(2-methylpropylidene)-1*H*-indene-3-carboxylate (9) was prepared as a yellow oil according to the General Procedure D (eluent: hexanes/EtOAc = 10:1, 45 mg, 70% yield, E/Z = 5:1 based on the crude ¹H NMR).

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.2 Hz, 1H), 7.71 (d, *J* = 1.7 Hz, 1H), 7.58 (s, 1H), 7.43 – 7.41 (m, 1H), 6.73 (d, *J* = 10.2 Hz, 1H), 4.40 – 4.35 (m, 2H), 3.16 – 3.11 (m, 1H), 1.41 (t, *J* = 7.12 Hz, 3H), 1.19 (d, *J* = 6.64 Hz, 6H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ 164.5, 147.5, 138.5, 137.7, 135.8, 133.5, 132.8, 130.2, 123.5, 122.4, 119.9, 60.7, 30.3, 23.0, 14.4 ppm.

HRMS (ESI+) Calcd for C16H18BrO2 [M+H]+: 321.0490, found: 321.0485.

(*E*)-(6-bromo-1-(2-methylpropylidene)-1*H*-inden-3-yl)methanol (10) was prepared as a yellow oil according to the General Procedure B (eluent: hexanes/EtOAc = 10:1, 130 mg, 81% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.68 (d, *J* = 1.7 Hz, 1H), 7.36 – 7.33 (m, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 6.73 (s, 1H), 6.41 (d, *J* = 10.0 Hz, 1H), 4.72 (s, 2H), 3.06 – 2.97 (m, 1H), 1.91 (s, 1H), 1.15 (d, *J* = 6.6 Hz, 6H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ 146.7, 143.7, 140.6, 139.6, 136.2, 129.5, 122.5, 121.5, 120.3, 119.4, 59.7, 29.8, 23.2 ppm. It's a known compound.⁵

⁵ J. Jo, M. Jeong, J.-S. Ahn, J. Akter, H.-S. Kim, Y.-G. Suh and H. Yun, *J. Org. Chem.*, 2019, **84**, 10953–10961.

S30

S32

7.971 7.945 7.945 7.945 7.409 7.381 7.381 7.338 6.857 6.857 6.828 5.222			BRUKER
OOOMe			Current Data Parameters NAME HNMR-YX-1-p40(B5) EXPNO 202 PROCNO 1 F2 - Acquisition Parameters Date_ 20220630 Time 9.04 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG zg30 TD 65536
3g			SOLVENT CDC13 NS 16 DS 2 SWH 6009.615 Hz FIDRES 0.091699 Hz AQ 5.4525952 sec RG 181 DW 83.200 usec DE 6.50 usec TE -59.1 K D1 1.0000000 sec TD0 1
			====== CHANNEL f1 ====== SFO1 300.1318534 MHz NUC1 1H P1 10.00 usec PLW1 14.00000000 W F2 - Processing parameters SI 65536 SF 300.1300316 MHz WDW EM SSB 0
			LB 0.30 Hz GB 0 PC 1.00
	4 3	2 1 0 p	pm

164.01 159.64 143.38 143.38 143.38 143.38 143.38 143.38 128.19 128.19 126.69 125.57 125.57 125.48 114.00		BRUKER
		NAME CNMR-YX-1-p40(B5) EXPNO 203 PROCNO 1
Generation of the second seco		F2 - Acquisition Parameters Date_ 20220630 Time 9.25 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 300 DS 4 SWH 18028.846 Hz FIDRES 0.275098 Hz AQ 1.8175317 sec RG 203 DW 27.733 usec DE 6.50 usec TE -59.1 K D1 2.0000000 sec D11 0.03000000 sec TD0 1
200 180 160 140 120 100	80 60 40 20 0 ppm	GB 0 PC 1.40

163.66	145.67 142.81 142.81 135.70 135.70 128.42 125.68 125.68 125.68 125.08	60.71	38.16		BRUKER
0	OEt				Current Data Parameters NAME CNMR-YX-3-p84 EXPNO 2 PROCNO 1
Br					F2Acquisition Parameter:Date_20230329Time3.28 hINSTRUMAvancePROBHDZ116098_0833 (PULPROGzgpg30TD65536SOLVENTCDC13NS400DS4
31					DS 4 SWH 23809.523 Hz FIDRES 0.726609 Hz AQ 1.3762560 set RG 50.1934 DW 21.000 us DE 6.50 us TE 293.7 K D1 2.0000000 set D11 0.0300000 set
		1			1D0 1 SF01 100.6228298 MH: NUC1 13C P0 3.33 use P1 10.00 us PLW1 87.89900208 W SF02 400.1316005 MH NUC2 1H CPDPRG[2 waltz65 PCPD2 90.00 us
					PLW2 20.73200035 W PLW12 0.25595000 W PLW13 0.12874000 W F2 - Processing parameters SI 32768 SF 100.6127685 MH WDW EM SSB 0 LB 1.00 Hz
200 180 160	140 120 10)0 80 60	40	20 0 pp	GB 0 PC 1.40 — m

Cui NAI EXI PRO	rrent ME PNO OCNO	Data Paramete FNMR-YX-3-p	rs 79 2 1	
F2 Dat Tir INS PRO PUI	- Acc me STRUM OBHD LPROG	quisition Para 202303 22. Avan Z116098_0833 zq	met 24 03 ce (ig	ers h
TD SOI NS DS	LVENT	1310 CDC.	72 13 16 4	Чя
FII AQ RG	n DRES	1.3871 0.72089	94 63 60 01	HZ HZ SEC
DW DE TE D1		5.5 6. 293 1.000000	50 .1	usec usec K sec
D11 TD0 SF0 NU0	1 0 01 C1	0.030000 376.46071 1	00 1 64 9F	sec MHz
P1 PLN SFC NUC	W1 02 02	18. 16.731000 400.13160	00 90 05 1H	usec W MHz
CPI PCI PLN PLN	DPRG[2 PD2 W2 W12	2 waltz 90. 20.732000 0.255950	16 00 35 00	usec W W
F2 SI SF	- Pro	cessing param 655 376.49836	ete 36 62	ers MHz
WDV SSI LB GB PC	W B	0	EM 0 30 0 00	Hz

163.33 148.15 148.15 146.00 141.65 141.65 111.65 122.45 122.53 119.52			14.35	BRUKER
0				Current Data Parameters NAME CNMR-YX-3-p95 EXPNO 2 PROCNO 1
Subscription of the second sec				F2 - Acquisition Parameters Date_ 20230401 Time 8.21 h INSTRUM Avance PROBHD 2116098_0833 (PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 400 DS 4 SWH 23809.523 Hz FIDRES 0.726609 Hz AQ 1.3762560 sec RG 51.55 DW 21.000 usec DE 6.50 usec TE 294.0 K D1 2.0000000 sec D1 2.0000000 sec D1 2.0000000 sec D1 0.0300000 sec D1 100.6228298 MHz NUC1 13C P0 3.33 usec P1 10.00 usec PLW1 87.89900208 W SFO2 400.1316005 MHz NUC2 1H CPDPRG[2 waltz65 PCPD2 90.00 usec PLW2 0.25595000 W PLW13 0.12874000 W </td
200 180 160 140 120	100 80	60 40	20 0 ppm	

	167.49 163.77		123.61				38.54			BR	UKER
	0									Current D NAME EXPNO PROCNO	ata Parameters CNMR-YX-4-p5 81 1
MeO	30	OEt								F2 - Acqu Date Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D1 D11	isition Parameters 20230404 13.22 spect 5 mm PABBO BB- zgpg30 65536 CDC13 200 4 18028.846 Hz 0.275098 Hz 1.8175317 sec 203 27.733 usec 6.50 usec 292.1 K 2.0000000 sec 0.03000000 sec
										======= SFO1 NUC1 P1 PLW1	CHANNEL f1 ====== 75.4752949 MHz 13C 9.50 usec 34.20000076 W
										SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12 PLW13 F2 - Proc	CHANNEL f2 ===== 300.1312005 MHz 1H waltz16 90.00 usec 14.0000000 W 0.17284000 W 0.14000000 W
**************************************				**********				,	inappii in birlainnian a	SI SF WDW SSB	32768 75.4677485 MHz EM 0
200	180 160	140	120	100	80	60	40	20	0 ppm	LB GB PC	1.00 Hz 0 1.40

INSTRUM Spectropy 3p 3p 3p 3p 3p 3p 3p 3p 3p 10028.946 Hz 3p 110028.946 Hz 3p 110028.946 Hz 3p 110028.946 Hz 3p 110028.947	MeO			- JE1 135.53	124.19	107.36	60.49	37.76	14.37	Current I NAME EXPNO PROCNO F2 - Acq Date_ Time	Data Parameters CNMR-YX-3-p85 55 1 uisition Parameters 20230331 17.06
		3	С) Бр							INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D1 D11 TD0	spect 5 mm PABBO BB- zgpg30 65536 CDC13 250 4 18028.846 Hz 0.275098 Hz 1.8175317 sec 203 27.733 use 6.50 use 290.5 K 2.0000000 sec 0.0300000 sec 1
										 SF01 NUC1 P1 PLW1 SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12 PLW13 F2 - Pro- SI SF WDW SSB LB GB	CHANNEL f1 ====== 75.4752949 MHz 13C 9.50 use 34.20000076 W CHANNEL f2 ===== 300.1312005 MHz 1H waltz16 90.00 use 14.0000000 W 0.17284000 W 0.14000000 W cessing parameters 32768 75.4677485 MHz EM 0 1.00 Hz 0

7.1233 7.233 7.190 7.1146 7.11	BR	UKER
	Current NAME EXPNO PROCNO	Data Parameters HNMR-YX-3-p35(A) 1 1
3x	F2 - Acc Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 TD0 SF01 NUC1 P0 P1 PLW1	<pre>Juisition Parameters 20230207 18.26 h Avance 2116098_0833 (2g30 65536 CDC13 16 2 8196.722 Hz 0.250144 Hz 3.9976959 sec 42.5532 61.000 usec 13.54 usec 294.3 K 1.00000000 sec 1 400.1324708 MHz H 3.33 usec 10.00 usec 20.73200035 W</pre>
	F2 - Pro SI SF WDW SSB LB GB PC	cessing parameters 65536 400.1300547 MHz EM 0 0.30 Hz 0 1.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

-

149.98 143.87 143.69	$\bigvee_{121.27}^{130.20}$			BR	JKER
ОН				Current D NAME EXPNO PROCNO F2 - Acqu Date_	ata Parameters CNMR-YX-3-p35(A) 1 1 isition Parameters 20230209
3x				Time INSTRUM PROBHD PULPROG TD SOLVENT NS	0.02 h Avance Z116098_0833 (zgpg30 65536 CDC13 300
				DS SWH FIDRES AQ RG DW DE	4 23809.523 Hz 0.726609 Hz 1.3762560 sec 50.1934 21.000 usec 6.50 usec
				TE D1 D11 TD0 SF01 NUC1 P0	295.3 K 2.0000000 sec 0.0300000 sec 1 100.6228298 MHz 13C 3.33 usec
				P1 PLW1 SFO2 NUC2 CPDPRG[2 PCPD2 PLW2 PLW2	10.00 usec 87.89900208 W 400.1316005 MHz 1H waltz65 90.00 usec 20.73200035 W 0.25595000 W
				PLW13 F2 - Proc SI SF WDW SSB	0.12874000 W essing parameters 32768 100.6127685 MHz EM 0
 		80 60 40	20 0 ppm	LB GB PC	1.00 Hz 0 1.40

162.35 150.60 146.36 143.30 129.56 125.87 125.87 121.83 121.83	BRUKER
OPh J 3z	Current Data Parameters NAME CNMR-YX-3-p83 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ 20230329 Time 4.24 h INSTRUM Avance PROBHD Z116098_0833 (PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 400 DS 4 SWH 23809.523 Hz FIDRES 0.726609 Hz AQ 1.3762560 sec
	RG 46.0295 DW 21.000 usec DE 6.50 usec TE 293.5 K D1 2.0000000 sec D11 0.0300000 sec TD0 1 SF01 100.6228298 MHz NUC1 13C P0 3.33 usec P1 10.00 usec P1 10.00 usec PLW1 87.89900208 W SFO2 400.1316005 MHz NUC2 1H CPDPRG[2 waltz65 PCPD2 90.00 usec PLW2 20.73200035 W PLW2 20.73200035 W PLW12 0.25595000 W PLW12 0.25595000 W PLW13 0.12874000 W M M M
	F2 - Processing parameters SI 32768 SF 100.6127685 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40

146.55 143.45 142.32	129.25 127.25 127.20 119.20			BRUKER
Br 4c				$\begin{array}{c} \text{Current Data Parameters}\\ \text{NAME} & \text{CNMR-YX-3-p34}\\ \text{EXPNO} & 2\\ \text{PROCNO} & 1\\ \hline F2 - \text{Acquisition Parameters}\\ \text{Date_} & 20230208\\ \text{Time} & 0.36 \text{ h}\\ \text{INSTRUM} & \text{Avance}\\ \text{PROBHD} & \text{Z116098_0833} (\\ \text{PULPROG} & \text{zgpg30}\\ \text{TD} & 65536\\ \text{SOLVENT} & \text{CDC13}\\ \text{NS} & 400\\ \text{DS} & 4\\ \text{SWH} & 23809.523 \text{ Hz}\\ \text{FIDRES} & 0.726609 \text{ Hz}\\ \text{AQ} & 1.3762560 \text{ sec}\\ \text{RG} & 50.1934\\ \text{DW} & 21.000 \text{ usec}\\ \text{DE} & 6.50 \text{ usec}\\ \end{array}$
				TE 296.1 K D1 2.0000000 sec D1 0.0300000 sec TD0 1 SF01 100.6228298 MHz NUC1 13C P0 3.33 usec P1 10.00 usec PLW1 87.89900208 W SF02 400.1316005 MHz NUC2 1H CPDPRG[2 waltz65 PCPD2 90.00 usec PLW12 0.25595000 W PLW13 0.12874000 W F2 - Processing parameters SI 32768 SF 100.6127685 MHz WDW EM SSB 0 LB 1.00 Hz
200 180 160 140) 120 100 80	60	40 20 0 ppm	GB 0 PC 1.40

