Supporting Information

Molybdenum (V)-mediated switching of the C(sp ${ }^{2}$)-Se bond of phenylselenyl-functionalized arenes or heterocycles under mild conditions

Ming Zhang, ${ }^{+}$Beifang Nian, ${ }^{+}$Zhibang Wu, Jianhua Guo, Zhuo Chen, Caifeng Yuan, Xuankun Huang, Yiwen Shen, Hongbin Zhang,* E Tang*

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research \& Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.

Table of Contents

1. General information S1
2. Optimization of the reaction conditions. S1
2.1 Optimization of the reaction conditions for the synthesis of compounds \mathbf{c}.... S1
2.2 Optimization of the reaction conditions for the synthesis of compounds e... S3
3. Synthesis of compounds \mathbf{c} S4
4. Synthesis of compounds e. S4
5. Control experiments. S5
6. Mechanistic investigations. S11
6.1 Mass spectrometry for intermediate $\mathbf{1 b}$. S11
6.2 Mass spectrometry for 1,1-dimethyl ethoxybenzene. S12
6.3 Mass spectrometry for the chlorobenzene yielded from $\mathbf{1 b}$ S12
6.4 Mass spectrometry for the chlorobenzene yielded from 1d. S13
6.5 Proposed mechanism for the formation of compound 29 c S14
7. X-ray structure of compounds $\mathbf{1 b}$ and $\mathbf{8 e}$.. S15
7.1 X-ray structure of compound 1b S15
7.2 X-ray structure of compound $\mathbf{8 e}$. S22
8. Characterization of products. S26
9. References S37
10. Copies of NMR spectra S39

1. General information

Unless otherwise noted, all other reagents and starting materials were purchased from commercial source and used without further purification. Thin layer chromatography was carried out on GF_{254} plates (0.25 mm layer thickness). Flash chromatography was performed with 200-300 mesh silica gels. Reactions were monitored by TLC and visualized by a dual short wave/long wave UV lamp. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on Bruker Avance 400, 500, or 600 MHz spectrophotometers. Chemical shifts in ${ }^{1} \mathrm{H}$ NMR spectra were reported in parts per million (ppm) on the δ scale. Data for ${ }^{1} \mathrm{H}$ NMR were reported as follows: chemical shift, multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, t $=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet or unresolved, br. $\mathrm{s}=$ broad singlet), coupling constant in Herts (Hz) and integration. Data for ${ }^{13} \mathrm{C}$ NMR spectra were reported in terms of chemical shift in ppm. ESI-MS was taken on Agilent 1100 HPLC-TOF spectrometer. GC-MS was taken on FINNIgAN TRACEDSQ spectrometer.

Substrates (1a-36a, 1d-12d) were prepared according to literature procedures. ${ }^{[1-8]}$

2. Optimization of the reaction conditions

2.1 Optimization of the reaction conditions for the synthesis of compounds \mathbf{c}

We selected 2-phenylseleno-1,1'-biphenyl (1a) as a test substrate with MoCl_{5} as an oxidant and trimethylamine (TEA) as a base for this dephenylization and ringclosing reaction. To our delight, the desired dibenzoselenophene compound $\mathbf{1 c}$ was obtained at room temperature with a yield of 12% (Table 1, entry 1). The reaction conditions were then optimized, and the results were summarized in Table 1. The yield of $\mathbf{1 c}$ increased with the increase in the amount of MoCl_{5} (entries 2-4). 47% was the best yield when 5.0 equiv. of MoCl_{5} was used (entry 3). Solvent and base screening revealed that the reaction can proceed smoothly in the presence of ethylenediamine (EDA), NaH, and EtONa to obtain 1c in 32-76\% yields (entries 5-7), and the desired product was obtained when the reaction was carried out in DMSO, DMF, THF, EtOH,
$\mathrm{CH}_{3} \mathrm{CN}$, toluene, ethyl acetate (EA), and diethyl ether (9-42\%, entries 8-15), although the reaction yields were unsatisfactory. A significant improvement in the yield was observed when DCM and t-BuOK were employed as the reaction solvent and base, respectively, and $\mathbf{1 c}$ was obtained in 92% yield (entry 16). The low solubility of MoCl_{5} and t-BuOK in petroleum ether (PE) leads to a trace amount of the product (entry 17). The yield decreased significantly when the reaction time was shortened from 6 h to 3 h or less amount of t-BuOK was used (entries 18 and 22); the yield remained unchanged when the reaction time was extended or more base was employed (entries 19 and 24). Product $\mathbf{1 c}$ was not observed in the absence of MoCl_{5} or the base (entries 20 and 21). Only a 26% yield of $\mathbf{1 c}$ was obtained when a mixture of 2.5 equiv. of MoCl_{5} and 2.5 equiv. of TiCl_{4} was used (entry 22).

Table 1 Optimization of the dephenylization and ring-closing reaction condition of 2-phenylseleno-1,1'-biphenyl (1a)

16	5.0	DCM	t-BuOK	92
17	5.0	PE	t-BuOK	trace
18^{c}	5.0	DCM	t-BuOK	67
19^{d}	5.0	DCM	t-BuOK	92
20	-	DCM	t-BuOK	nr
21	5.0	DCM	-	0
22^{e}	2.5	DCM	t-BuOK	26
23^{f}	5.0	DCM	t-BuOK	69
24^{g}	5.0	DCM	t-BuOK	92

${ }^{a}$ Reaction conditions: 1a (0.2 mmol), MoCl_{5}, base (5.0 equiv.), solvent (3 mL) in the air at room temperature for $6 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c, d}$ The reaction was performed for $3.0 \mathrm{~h}^{c}$ and $7.5 \mathrm{~h}^{d}$ respectively. ${ }^{e} 2.5$ Equiv. of MoCl_{5} and 2.5 equiv. of TiCl_{4} were added. $f, g 4.0^{f}$ And 6.0^{g} equiv. of t-BuOK were added. ${ }^{h}$ EA, PE, TEA, and EDA are ethyl acetate, petroleum ether, triethylamine, and ethylenediamine, respectively.

2.2 Optimization of the reaction conditions for the synthesis of compounds e

We selected 3-phenylselanyl flavone (1d) as a test substrate with MoCl_{5} (5.0 equiv.) and t-BuOK (5.0 equiv.) for this dephenylization and ring-closing reaction. The desired product 5a,10a-dihydro-11 H -benzo[4,5]selenopheno[3,2-b]chromen-11-one (1e) was obtained at room temperature with a yield of 20% (Table 2, entry 1). A better yield of 57% was obtained when the amounts of MoCl_{5} and t-BuOK were increased to 10.0 equiv. Then, we screened the following bases, including NaH, EtONa, EDA, and TEA, to obtain $\mathbf{1 e}$ in $32-71 \%$ yields (Table 2, entries 3-6). TEA is a better base than t BuOK for the reaction of $\mathbf{1 d}$ (Table 2, entry 3). Neither increasing nor decreasing the amounts of TEA and MoCl_{5} resulted in a higher yield of $\mathbf{1 e}$ (entries 7-11).

Table 2 Optimization of the dephenylization and ring-closing reaction conditions of 3phenylselanyl flavone (1d)

Entry	MoCl_{5} (equiv)	Base	Yield of $1 \mathbf{e}^{\mathrm{b}}$ (\%)
1	5.0	t-BuOK	20
2	10	t -BuOK	57
3	10	TEA	71
4	10	NaH	32
5	10	EtONa	45
6	10	EDA	62
7	1.0	TEA	6
8	2.0	TEA	18
9	5.0	TEA	48
10	7.5	TEA	65
11	12	TEA	70

${ }^{a}$ Reaction conditions: 1d (0.2 mmol), DCM (3 mL) in the air at room temperature for 13 h , using the same equivalent of base and MoCl_{5}. ${ }^{b}$ Isolated yield.

3. Synthesis of compounds c

To a reaction tube containing a $(0.2 \mathrm{mmol})$ of $\mathrm{DCM}(3.0 \mathrm{~mL})$ was added MoCl_{5} $(1.0 \mathrm{mmol}, 27.3 \mathrm{mg})$. Stir at room temperature for 5 hours. Monitor the progress of the reaction by TLC. After the reaction is complete, add t-BuOK ($1.0 \mathrm{mmol}, 112 \mathrm{mg}$) and continue stirring for 1 h . Filter the reaction solution through a short pad of silica gel quickly. Dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/ethyl acetate $=500 / 1$, V / V) to afford compounds \mathbf{c}.

4. Synthesis of compounds e

To a reaction tube containing $\mathbf{d}(0.2 \mathrm{mmol})$ in $\mathrm{DCM}(3.0 \mathrm{~mL})$ was added MoCl_{5} $(2.0 \mathrm{mmol}, 54.6 \mathrm{mg})$. Stir at room temperature for 5 hours. Monitor the progress of the reaction by TLC. After the reaction is complete, add TEA ($2.0 \mathrm{mmol}, 0.28 \mathrm{~mL}$) and continue stirring for 1 h . Quickly filter the reaction solution through a short pad of silica gel. Dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/ethyl acetate $=10 / 1, \mathrm{~V} / \mathrm{V}$) to afford the compound \mathbf{e}.

5. Control experiments

In order to clarify the mechanism of Mo-mediated dephenylization and intramolecular oxidative $\mathrm{C}\left(\mathrm{sp}^{2}\right)$-Se coupling reaction of phenyl selenides, we performed some control experiments (Scheme 1). In the absence of the base, substrate 1a reacted with 5.0 equiv. of MoCl_{5} at room temperature in the air for 5 h . A selenonium cation (1b) was observed by HRMS and isolated quantitatively by HPLC, and the major product $\mathbf{1 b}$ was the $\left[\mathrm{MoOCl}_{4}\right]^{-}$anion with an associated selenonium cation [Scheme 1, (1)], whose structure was confirmed as $\left[\mathrm{PhSeAr}_{2}\right]^{+}\left[\mathrm{MoOCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}$by the X-ray crystallographic analysis of pale green crystals grown from 1b (Manuscript, Scheme 4), and no doubt the result of ingress of adventitious water during crystallization. The water O is trans to $\mathrm{Mo}=\mathrm{O}$. A similar structure of this anion has been reported previously. ${ }^{14}$ If $\mathbf{1 b}$ was treated with 5 equiv. of t-BuOK, product $\mathbf{1 c}$ would yield a 94% yield. Phenyl tert-butyl ether and chlorobenzene, as key by-products, were observed by HRMS analysis and isolated by HPLC in 74\% and 6\% yields, respectively [Scheme 1, (2)]. Chlorobenzene was also obtained by HPLC with a yield of 16% in the reaction of $\mathbf{1 d}$ [Scheme 1, (3)]. The three experiments indicated that the product-forming step of this reaction lies in a Mo-mediated oxidative coupling of selenide and a subsequent SN

Scheme 1. Control experiments ${ }^{a, b}$

$\mathbf{1 b}^{c}$, quantitative ${ }^{d}$
nr
(1a was recovered quantitatively)

29c, 62\%
${ }^{a}$ Reaction conditions: a (0.2 mmol), MoCl_{5} (5.0 equiv.), t-BuOK (5.0 equiv.), $\mathrm{DCM}(3 \mathrm{~mL})$, and at
 $(\mathrm{vol} . / \mathrm{vol})=90: 10,1.5 \mathrm{~mL} / \mathrm{min}$, monitoring at 254 nm by UV spectroscopy].
substitution reaction. This process can also be verified from the reaction in which the by-product 19 f was obtained with a yield of 6%. This is the result of a chlorine anion attacking intermediate $\mathbf{1 9 b}$ as a nucleophile to lead to the cleavage of the $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{Se}$ bond [Scheme 1, (4)]. When using a substrate bearing multiple strong electron-donating
groups on the benzene ring, the chloro-functionalized dibenzo[b,d]selenonene $\mathbf{2 9 c}$ was obtained in 62% yield by two attacks of Cl^{-}ions to the selenonium intermediate [Scheme 1, (5)]. Furthermore, 1.0 equiv. of 2,2,6,6-tetramethylpipe-ridinooxy (TEMPO) shut down the reaction of $\mathbf{1 a}$ but not of $\mathbf{1 b}$, implying that only the formation of $\mathbf{1 b}$ from 1a proceeds via the radical pathway [Scheme 1, (1) and (2)].

5.1 Reaction of 1a with MoCl_{5} [Scheme 1, (1)]

To a reaction tube containing $\mathbf{1 a}(0.2 \mathrm{mmol}, 61.9 \mathrm{mg})$ in $\mathrm{DCM}(3.0 \mathrm{~mL})$ was added $\mathrm{MoCl}_{5}(1.0 \mathrm{mmol}, 27.3 \mathrm{mg})$. Stir at room temperature for 5 hours. Monitor the progress of the reaction by TLC. After substrate 1a is completely transformed, filter the mixture. Compound 1b was obtained quantitatively, and it can be further purified by recrystallization of petroleum ether and dichloromethane.

5.2 Reaction of 1b with t-BuOK [Scheme 1, (2)]

Dissolve 1b (1.0 mmol, 580.0 mg in DCM (5.0 mL), add t-BuOK ($5.0 \mathrm{mmol}, 560$ mg) and stirring at room temperature for 1 h . Filter the reaction solution through a short pad of silica gel quickly. Dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The mixture was purified on an Agilent HPLC 1260 system using acetonitrile: $\mathrm{H}_{2} \mathrm{O}(90: 10 \mathrm{vol} . / \mathrm{vol}$.) as mobile phase and flow rate of $1.5 \mathrm{~mL} / \mathrm{min}$ with monitoring at 254 nm to give chlorobenzene and 1,1-dimethylethoxybenzene in 6% and 74% yields, respectively.

5.3 Reaction of 1d with MoCl_{5} [Scheme 1, (3)]

To a reaction tube containing $\mathbf{1 d}(0.5 \mathrm{mmol}, 188.6 \mathrm{mg})$ in $\mathrm{DCM}(3.0 \mathrm{~mL})$ was added $\mathrm{MoCl}_{5}(5.0 \mathrm{mmol}, 54.6 \mathrm{mg}$). Stir at room temperature for 5 h . Monitor the progress of the reaction by TLC. After the reaction is complete, add TEA (5.0 mmol , 0.28 mL) and continue stirring for 1 h . Filter the reaction solution through a short pad of silica gel quickly. Dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The mixture was purified on an Agilent HPLC 1260 system using acetonitrile: $\mathrm{H}_{2} \mathrm{O}$ (90:10 vol./vol.) as mobile phase and flow rate of $1.5 \mathrm{~mL} / \mathrm{min}$ with monitoring at 254 nm to give chlorobenzene in 16% yield.

5.4 Reaction of 19a with MoCl_{5} [Scheme 1, (4)]

To a reaction tube containing 19a ($0.2 \mathrm{mmol}, 67.5 \mathrm{mg}$) in DCM (3.0 mL) was added $\mathrm{MoCl}_{5}(1.0 \mathrm{mmol}, 27.3 \mathrm{mg})$. Stir at room temperature for 5 h . Monitor the progress of the reaction by TLC. After the reaction is complete, add t-BuOK $(1.0 \mathrm{mmol}$, 112 mg) and continue stirring for 1 h . Filter the reaction solution through a short pad of silica gel quickly. Dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/ethyl acetate $=$ $600 / 1, \mathrm{~V} / \mathrm{V}$) to afford compound $\mathbf{1 9 c}$ and 19 f in 92% and 6% yields, respectively.
5.5 Reaction of 29a with MoCl_{5} [Scheme 1, (5)]

To a reaction tube containing 29a ($0.2 \mathrm{mmol}, 79.9 \mathrm{mg}$) in DCM (3.0 mL) was added $\mathrm{MoCl}_{5}(1.0 \mathrm{mmol}, 27.3 \mathrm{mg})$. Stir at room temperature for 5 h . Monitor the progress of the reaction by TLC. After the reaction is complete, add t-BuOK (1.0 mmol , 112 mg) and continue stirring for 1 h . Filter the reaction solution through a short pad of silica gel quickly. Dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/ethyl acetate $=$ $300 / 1, \mathrm{~V} / \mathrm{V}$) to afford compound 29c in 62% yield.

5.6 Reaction of 1a with MoCl_{5} and TEMPO [Scheme 1, (6)]

To a reaction tube containing $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 61.9 \mathrm{mg})$ in $\mathrm{DCM}(3.0 \mathrm{~mL})$ was added $\mathrm{MoCl}_{5}(1.0 \mathrm{mmol}, 27.3 \mathrm{mg})$ and TEMPO $(0.2 \mathrm{mmol}, 31.3 \mathrm{mg})$. Stir at room temperature for 5 h . Monitor the progress of the reaction by TLC. The substrate 1a has not been consumed, and no new products have appeared. Quickly filter the reaction solution through a short pad of silica gel. Dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/ethyl acetate $=500 / 1, \mathrm{~V} / \mathrm{V}$) to afford 1a quantitatively.

5.7 Reaction of 1b with MoCl_{5} and TEMPO [Scheme 1, (7)]

Dissolve 1b ($0.2 \mathrm{mmol}, 116.0 \mathrm{mg}$) in DCM (2.0 mL), add TEMPO (0.2 mmol , 31.3 mg) and t-BuOK ($1.0 \mathrm{mmol}, 112 \mathrm{mg}$) and stirring at room temperature for 1 h .

Monitor the progress of the reaction by TLC. After the reaction is complete, quickly filter the reaction solution through a short pad of silica gel. Dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/ethyl acetate $=500 / 1, \mathrm{~V} / \mathrm{V}$) to afford compound $\mathbf{1 c}$ in 94% yield.

5.8 Reaction of 1a under an argon atmosphere

1a $(0.2 \mathrm{mmol}, 61.9 \mathrm{mg})$ and $\mathrm{MoCl}_{5}(1.0 \mathrm{mmol}, 27.3 \mathrm{mg})$ were added to a twonecked flask under an argon atmosphere. Then DCM (3 mL) was injected into the bottle. Stir at room temperature for 5 h . Monitor the progress of the reaction by TLC. After the reaction is complete, add dissolved t-BuOK ($1.0 \mathrm{mmol}, 112 \mathrm{mg}$) and continue stirring for 1 h . Quickly filter the reaction solution through a short pad of silica gel. Dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/ethyl acetate $=500 / 1, \mathrm{~V} / \mathrm{V}$) to afford compound $1 \mathbf{c}$.

5.8 Reaction of 1a under an oxygen atmosphere

1a ($0.2 \mathrm{mmol}, 61.9 \mathrm{mg}$) and $\mathrm{MoCl}_{5}(1.0 \mathrm{mmol}, 27.3 \mathrm{mg})$ were added to a twonecked flask under an oxygen atmosphere. Then DCM (3 mL) was injected into the bottle. Stir at room temperature for 5 h . Monitor the progress of the reaction by TLC. After the reaction is complete, add dissolved t - $\mathrm{BuOK}(1.0 \mathrm{mmol}, 112 \mathrm{mg})$ and continue stirring for 1 h . Quickly filter the reaction solution through a short pad of silica gel.

Dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/ethyl acetate $=500 / 1, \mathrm{~V} / \mathrm{V}$) to afford compound $\mathbf{1 c}$.

6. Mechanistic investigations

6.1 Mass spectrometry for intermediate 1b

To a reaction tube containing $\mathbf{1 a}(0.2 \mathrm{mmol}, 61.9 \mathrm{mg})$ in $\mathrm{DCM}(3.0 \mathrm{~mL})$ was added $\mathrm{MoCl}_{5}(1.0 \mathrm{mmol}, 27.3 \mathrm{mg})$. Stir at room temperature for 5 h . Monitor the progress of the reaction by TLC. After the reaction is complete, product $\mathbf{1 b}$ can be detected by ESI. HR-ESI-MS (m/z): calcd. for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}$309.0177, found 309.0171.

Figure S1. Mass spectrum of 1b.

6.2 Mass spectrometry for 1,1-dimethylethoxybenzene.

To a reaction tube containing $\mathbf{1 a}(0.2 \mathrm{mmol})$ in $\mathrm{DCM}(3.0 \mathrm{~mL})$ was added MoCl_{5} $(1.0 \mathrm{mmol}, 27.3 \mathrm{mg})$. Stir at room temperature for 5 h . Monitor the progress of the
reaction by TLC. After the reaction is complete, add t-BuOK ($1.0 \mathrm{mmol}, 112 \mathrm{mg}$) and continue stirring for 1 h . After the reaction is complete, quickly filter the reaction solution through a short pad of silica gel. Dried over MgSO_{4}, filtered, and concentrated under reduced pressure. 1,1-Dimethylethoxybenzene can be detected by ESI. HR-ESIMS (m/z): calcd. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$151.1117, found 151.1114.

Figure S2. Mass spectrum of 1,1-dimethylethoxybenzene.

6.3 Mass spectrometry for the chlorobenzene yielded from 1b

To a reaction tube containing $\mathbf{1 b}(0.2 \mathrm{mmol}, 116 \mathrm{mg})$ in $\mathrm{DCM}(2.0 \mathrm{~mL})$ was added t-BuOK ($1.0 \mathrm{mmol}, 112 \mathrm{mg}$) and stirring for 1 h . After the reaction is complete, quickly filter the reaction solution through a short pad of silica gel. Dried over MgSO_{4}, filtered, and concentrated under reduced pressure. Chlorobenzene can be detected by EI. GCMS (EI): calcd. for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}\left[\mathrm{M}^{+}\right]$112; found 112.

Figure S3. Mass spectrum of chlorobenzene yielded from 1b

6.4 Mass spectrometry for the chlorobenzene yielded from 1d

To a reaction tube containing $\mathbf{1 d}(0.2 \mathrm{mmol}, 75.4 \mathrm{mg})$ in $\mathrm{DCM}(3.0 \mathrm{~mL})$ was added $\mathrm{MoCl}_{5}(2.0 \mathrm{mmol}, 54.6 \mathrm{mg})$. Stir at room temperature for 5 h . Monitor the progress of the reaction by TLC. After the reaction is complete, add TEA $(2.0 \mathrm{mmol}, 0.28 \mathrm{~mL})$ and continue stirring for 1 h . Quickly filter the reaction solution through a short pad of silica gel. Dried over MgSO_{4}, filtered, and concentrated under reduced pressure. Chlorobenzene can be detected by EI. GC-MS (EI): calcd. for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}\left[\mathrm{M}^{+}\right]$112; found 112.

Figure S4. Mass spectrum of chlorobenzene from yielded from 1d

6.5 Proposed mechanism for the formation of compound 29c.

Compound 29a was initially catalyzed by MoCl_{5} to form intermediate 29b-1. 29b$\mathbf{1}$ was attacked by the chloride anion to form compound $\mathbf{2 9 h}$. After the rotation of the C-C bond, the conformer formed by $\mathbf{2 9 h}$ favors the formation of intermediate $\mathbf{2 9 b} \mathbf{- 2}$. The addition of t - BuOK leads to the selective cleavage of $\mathrm{C}\left(\mathrm{sp}^{2}\right)$-Se bond, compound 29c was finally formed via dephenylation reaction.

7. X-ray structure of compounds 1 b and 8 e .

7.1 X-ray structure of compound 1b.

Table 1. Crystal Data and Structure Refinement for 1b.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Limiting indices
Reflections collected / unique
Completeness to theta $=25.000$
Absorption correction
Max. and min. transmission
Refinement method

1b
$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{DC}_{17} \mathrm{MoO}_{2} \mathrm{Se}$
700.37
150.00 K
$0.71073 \AA$
Triclinic, $\mathrm{P}-1$
$\mathrm{a}=8.2075(12) \AA \quad \alpha=103.403(5)^{\circ}$.
$b=12.1341(16) \AA \quad \beta=90.813(6)^{\circ}$.
$\mathrm{c}=13.2766(19) \AA \quad \gamma=98.443(5)^{\circ}$.
1270.7(3) \AA^{3}
$2,1.831 \mathrm{Mg} / \mathrm{m}^{3}$
$2.699 \mathrm{~mm}^{-1}$
682
$0.18 \times 0.15 \times 0.1 \mathrm{~mm}$
2.059 to 25.000°.
$-9<=\mathrm{h}<=9,-14<=\mathrm{k}<=14,-15<=\mathrm{l}<=15$
$15684 / 4475[\mathrm{R}(\mathrm{int})=0.0607]$
99.9 \%

Semi-empirical from equivalents
0.7457 and 0.5719

Full-matrix least-squares on F^{2}

Data/restraints/parameters	$4475 / 48 / 272$
Goodness-of-fit on F^{2}	0.984
Final R indices $[\mathrm{I}>2 \alpha(\mathrm{I})]$	$\mathrm{R} 1=0.0572, \mathrm{wR} 2=0.1433$
R indices (all data)	$\mathrm{R} 1=0.0792, \mathrm{wR} 2=0.1569$
Extinction coefficient	n / a
Largest diff. peak and hole	1.715 and $-1.560 \mathrm{e} . \AA^{-3}$

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{1 b}$.
$\mathrm{U}(\mathrm{eq})$ is defined as one-third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Mo}(1)$	$8312(1)$	$11590(1)$	$1528(1)$	$38(1)$
$\mathrm{Cl}(1)$	$7599(3)$	$10891(2)$	$2945(2)$	$60(1)$
$\mathrm{O}(2)$	$7856(6)$	$9633(4)$	$672(4)$	$35(1)$
$\mathrm{Cl}(3)$	$5483(2)$	$11387(2)$	$1030(2)$	$49(1)$
$\mathrm{Cl}(4)$	$8957(2)$	$11768(2)$	$-198(2)$	$45(1)$
$\mathrm{Cl}(5)$	$11013(2)$	$11180(2)$	$1737(1)$	$42(1)$
$\mathrm{O}(1)$	$8657(7)$	$12974(4)$	$2087(5)$	$58(2)$
$\mathrm{Se}(1)$	$5099(1)$	$7730(1)$	$1454(1)$	$32(1)$
$\mathrm{C}(1)$	$4197(8)$	$8414(5)$	$2738(5)$	$30(1)$
$\mathrm{C}(2)$	$4165(8)$	$7914(6)$	$3569(6)$	$40(2)$
$\mathrm{C}(3)$	$3469(10)$	$8437(7)$	$4467(6)$	$51(2)$
$\mathrm{C}(4)$	$2863(11)$	$9465(7)$	$4508(6)$	$55(2)$
$\mathrm{C}(5)$	$2906(11)$	$9932(7)$	$3676(7)$	$56(2)$
$\mathrm{C}(6)$	$3573(9)$	$9423(6)$	$2761(6)$	$45(2)$
$\mathrm{C}(7)$	$4021(8)$	$6165(5)$	$1223(5)$	$34(2)$
$\mathrm{C}(8)$	$2444(9)$	$5769(6)$	$840(6)$	$42(2)$
$\mathrm{C}(9)$	$1892(11)$	$4592(7)$	$696(7)$	$54(2)$
$\mathrm{C}(10)$	$2936(11)$	$3885(7)$	$924(6)$	$52(2)$
$\mathrm{C}(11)$	$4516(11)$	$4298(6)$	$1311(6)$	$46(2)$
$\mathrm{C}(12)$	$5094(9)$	$5465(5)$	$1477(5)$	$34(2)$
$\mathrm{C}(13)$	$6729(9)$	$6065(6)$	$1896(5)$	$36(2)$
$\mathrm{C}(14)$	$8016(10)$	$5580(7)$	$2239(6)$	$51(2)$
$\mathrm{C}(15)$	$9462(10)$	$6292(9)$	$2640(7)$	$62(2)$
$\mathrm{C}(16)$	$9703(9)$	$7458(8)$	$2702(7)$	$56(2)$
$\mathrm{C}(17)$	$8437(9)$	$7947(7)$	$2346(6)$	$45(2)$
$\mathrm{C}(18)$	$6976(8)$	$7237(6)$	$1976(5)$	$34(2)$
$\mathrm{Cl}(6)$	$8102(7)$	$6955(4)$	$5106(3)$	$142(2)$
$\mathrm{Cl}(7)$	$5389(6)$	$6834(4)$	$6342(3)$	$126(1)$
$\mathrm{Cl}(8)$	$7274(6)$	$5011(3)$	$6027(3)$	$137(2)$
$\mathrm{C}(19)$	$7343(13)$	$6460(7)$	$6161(7)$	$96(4)$
$\mathrm{D}(19)$	8065	6871	6788	116

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{1 b}$.

$\mathrm{Mo}(1)-\mathrm{Cl}(1)$	2.286(2)
$\mathrm{Mo}(1)-\mathrm{O}(2)$	2.355(4)
$\mathrm{Mo}(1)-\mathrm{Cl}(3)$	$2.3673(19)$
$\mathrm{Mo}(1)-\mathrm{Cl}(4)$	2.4097(19)
$\mathrm{Mo}(1)-\mathrm{Cl}(5)$	$2.3680(18)$
$\mathrm{Mo}(1)-\mathrm{O}(1)$	$1.651(5)$
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A})$	0.8926
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~B})$	0.8928
$\mathrm{Se}(1)-\mathrm{C}(1)$	1.924(7)
$\mathrm{Se}(1)-\mathrm{C}(7)$	1.927(6)
$\mathrm{Se}(1)-\mathrm{C}(18)$	1.909(6)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.376 (9)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.390 (9)
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9500
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.387(11)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.399(11)$
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.352(12)$
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.389(12)$
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500
$\mathrm{C}(7)-\mathrm{C}(8)$	1.360(10)
$\mathrm{C}(7)-\mathrm{C}(12)$	1.399 (9)
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500
$\mathrm{C}(8)-\mathrm{C}(9)$	1.400(11)
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.375(12)$
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.367(12)$
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9500
$\mathrm{C}(11)-\mathrm{C}(12)$	1.390 (10)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.464(10)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.401(10)
$\mathrm{C}(13)-\mathrm{C}(18)$	$1.385(9)$
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.380(13)$
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500
$\mathrm{C}(15)-\mathrm{C}(16)$	1.382(13)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9500
C(16)-C(17)	$1.398(11)$
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
$\mathrm{C}(17)-\mathrm{C}(18)$	1.380(10)
$\mathrm{Cl}(6)-\mathrm{C}(19)$	$1.736(8)$

$\mathrm{Cl}(7)-\mathrm{C}(19)$	$1.735(9)$
$\mathrm{Cl}(8)-\mathrm{C}(19)$	$1.719(8)$
$\mathrm{C}(19)-\mathrm{D}(19)$	1.0000

$\mathrm{Cl}(1)-\mathrm{Mo}(1)-\mathrm{O}(2)$	82.99(12)
$\mathrm{Cl}(1)-\mathrm{Mo}(1)-\mathrm{Cl}(3)$	89.52(8)
$\mathrm{Cl}(1)-\mathrm{Mo}(1)-\mathrm{Cl}(4)$	164.04(8)
$\mathrm{Cl}(1)-\mathrm{Mo}(1)-\mathrm{Cl}(5)$	89.00(8)
$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{Cl}(3)$	80.58(13)
$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{Cl}(4)$	81.06(12)
$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{Cl}(5)$	81.34(12)
$\mathrm{Cl}(3)-\mathrm{Mo}(1)-\mathrm{Cl}(4)$	88.41(7)
$\mathrm{Cl}(3)-\mathrm{Mo}(1)-\mathrm{Cl}(5)$	161.90(7)
$\mathrm{Cl}(5)-\mathrm{Mo}(1)-\mathrm{Cl}(4)$	88.07(7)
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{Cl}(1)$	99.2(2)
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{O}(2)$	177.8(3)
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{Cl}(3)$	99.6(2)
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{Cl}(4)$	96.8(2)
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{Cl}(5)$	98.4(2)
$\mathrm{Mo}(1)-\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A})$	110.4
$\mathrm{Mo}(1)-\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~B})$	110.7
$\mathrm{H}(2 \mathrm{~A})-\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~B})$	103.3
$\mathrm{C}(1)-\mathrm{Se}(1)-\mathrm{C}(7)$	101.1(3)
$\mathrm{C}(18)-\mathrm{Se}(1)-\mathrm{C}(1)$	100.0(3)
$\mathrm{C}(18)-\mathrm{Se}(1)-\mathrm{C}(7)$	87.0(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Se}(1)$	121.3(5)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	122.9(7)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Se}(1)$	115.9(5)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	120.7
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	118.5(6)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	120.7
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	120.4
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.2(7)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	120.4
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	119.6
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	120.8(8)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	119.6
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	119.3
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.4(7)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	119.3
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6)$	121.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	117.1(7)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	121.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{Se}(1)$	125.5(5)

$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	$123.6(6)$
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{Se}(1)$	$110.9(5)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	121.4
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$117.2(7)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	121.4
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	119.9
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$120.2(8)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	119.9
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	119.1
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$121.9(7)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	119.1
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	120.3
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$119.4(7)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	120.3
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(13)$	$114.9(6)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	$117.8(7)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$127.3(6)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$126.8(7)$
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(12)$	$115.1(6)$
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)$	$118.1(7)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	120.8
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$118.5(8)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	120.8
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	118.5
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$122.9(7)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	118.5
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	120.5
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$119.1(8)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	120.5
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	121.1
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	$117.7(7)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	121.1
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{Se}(1)$	$111.9(5)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{Se}(1)$	$124.4(5)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	$123.6(6)$
$\mathrm{Cl}(6)-\mathrm{C}(19)-\mathrm{D}(19)$	108.3
$\mathrm{Cl}(7)-\mathrm{C}(19)-\mathrm{Cl}(6)$	108.3 .3
$\mathrm{Cl}(7)-\mathrm{C}(19)-\mathrm{D}(19)$	
$\mathrm{Cl}(8)-\mathrm{C}(19)-\mathrm{Cl}(6)$	$10.6(6)$
$\mathrm{Cl}(8)-\mathrm{C}(19)-\mathrm{Cl}(7)$	
$\mathrm{Cl}(8)-\mathrm{C}(19)-\mathrm{D}(19)$	

Symmetry transformations used to generate equivalent atoms:
Table 3. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{1 b}$.
(The anisotropic displacement factor exponent takes the form: $-2 \mathrm{pi}^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U} 11+\ldots\right.$ $+2 \mathrm{hka*} \mathrm{~b}^{*}$ U12])

	U 11	U 22	U 33	U 23	U 13	U 12
$\mathrm{Mo}(1)$	$42(1)$	$27(1)$	$43(1)$	$4(1)$	$-2(1)$	$12(1)$
$\mathrm{Cl}(1)$	$74(1)$	$69(1)$	$44(1)$	$21(1)$	$15(1)$	$20(1)$
$\mathrm{O}(2)$	$43(3)$	$25(2)$	$38(3)$	$9(2)$	$3(2)$	$3(2)$
$\mathrm{Cl}(3)$	$43(1)$	$52(1)$	$54(1)$	$14(1)$	$-1(1)$	$19(1)$
$\mathrm{Cl}(4)$	$62(1)$	$33(1)$	$46(1)$	$20(1)$	$7(1)$	$7(1)$
$\mathrm{Cl}(5)$	$40(1)$	$38(1)$	$48(1)$	$5(1)$	$-4(1)$	$10(1)$
$\mathrm{O}(1)$	$69(4)$	$31(3)$	$67(4)$	$-8(3)$	$-8(3)$	$19(3)$
$\mathrm{Se}(1)$	$34(1)$	$27(1)$	$38(1)$	$16(1)$	$0(1)$	$4(1)$
$\mathrm{C}(1)$	$31(3)$	$25(3)$	$33(3)$	$7(3)$	$0(3)$	$0(3)$
$\mathrm{C}(2)$	$37(4)$	$40(4)$	$47(4)$	$14(3)$	$-3(3)$	$15(3)$
$\mathrm{C}(3)$	$53(5)$	$61(5)$	$46(5)$	$19(4)$	$2(4)$	$17(4)$
$\mathrm{C}(4)$	$71(6)$	$52(5)$	$43(5)$	$4(4)$	$4(4)$	$24(4)$
$\mathrm{C}(5)$	$73(6)$	$34(4)$	$63(5)$	$7(4)$	$1(4)$	$24(4)$
$\mathrm{C}(6)$	$47(4)$	$34(4)$	$58(5)$	$20(4)$	$-3(4)$	$9(3)$
$\mathrm{C}(7)$	$41(4)$	$26(3)$	$34(4)$	$8(3)$	$5(3)$	$3(3)$
$\mathrm{C}(8)$	$42(4)$	$37(4)$	$43(4)$	$5(3)$	$-2(3)$	$2(3)$
$\mathrm{C}(9)$	$51(5)$	$46(5)$	$58(5)$	$6(4)$	$-1(4)$	$-5(4)$
$\mathrm{C}(10)$	$70(6)$	$32(4)$	$50(5)$	$12(4)$	$16(4)$	$-4(4)$
$\mathrm{C}(11)$	$68(5)$	$25(3)$	$44(4)$	$5(3)$	$9(4)$	$12(3)$
$\mathrm{C}(12)$	$48(4)$	$25(3)$	$28(3)$	$5(3)$	$3(3)$	$4(3)$
$\mathrm{C}(13)$	$44(4)$	$37(4)$	$31(4)$	$11(3)$	$13(3)$	$19(3)$
$\mathrm{C}(14)$	$61(5)$	$49(5)$	$51(5)$	$18(4)$	$9(4)$	$29(4)$
$\mathrm{C}(15)$	$45(5)$	$85(7)$	$67(6)$	$28(5)$	$-2(4)$	$28(5)$
$\mathrm{C}(16)$	$31(4)$	$77(6)$	$60(5)$	$22(5)$	$-6(4)$	$5(4)$
$\mathrm{C}(17)$	$34(4)$	$53(5)$	$50(5)$	$20(4)$	$7(3)$	$-2(3)$
$\mathrm{C}(18)$	$33(4)$	$37(4)$	$36(4)$	$13(3)$	$5(3)$	$7(3)$
$\mathrm{Cl}(6)$	$199(4)$	$121(3)$	$114(3)$	$34(2)$	$54(3)$	$39(3)$
$\mathrm{Cl}(7)$	$155(3)$	$159(4)$	$93(2)$	$61(2)$	$4(2)$	$63(3)$
$\mathrm{Cl}(8)$	$213(5)$	$72(2)$	$134(3)$	$27(2)$	$-34(3)$	$43(3)$
$\mathrm{C}(19)$	$182(13)$	$49(6)$	$55(6)$	$-1(5)$	$-16(7)$	$28(7)$

Table 4. Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times\right.$ 10^{3}) for $\mathbf{1 b}$.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(2 \mathrm{~A})$	8785	9417	408	53
$\mathrm{H}(2 \mathrm{~B})$	7174	9509	114	53
$\mathrm{H}(2)$	4610	7226	3529	48
$\mathrm{H}(3)$	3404	8101	5046	62
$\mathrm{H}(4)$	2417	9840	5128	66
$\mathrm{H}(5)$	2471	10624	3719	67
$\mathrm{H}(6)$	3600	9750	2176	54

$\mathrm{H}(8)$	1746	6269	678	50
$\mathrm{H}(9)$	793	4282	440	65
$\mathrm{H}(10)$	2547	3087	809	62
$\mathrm{H}(11)$	5213	3793	1465	55
$\mathrm{H}(14)$	7897	4780	2198	61
$\mathrm{H}(15)$	10329	5967	2883	74
$\mathrm{H}(16)$	10716	7921	2984	67
$\mathrm{H}(17)$	8576	8741	2357	55

Table 5. Torsion angles [${ }^{\circ}$] for $\mathbf{1 b}$.

$\mathrm{Se}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-178.7(6)$
$\mathrm{Se}(1)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$179.7(6)$
$\mathrm{Se}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$178.1(6)$
$\mathrm{Se}(1)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	$-177.4(5)$
$\mathrm{Se}(1)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(13)$	$2.6(7)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-1.6(12)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$0.5(11)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$2.0(14)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-1.1(14)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$-0.2(13)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$0.4(11)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-0.9(12)$
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$178.0(7)$
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	$-0.1(9)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	$1.1(10)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(13)$	$-178.9(6)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$1.2(13)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$-0.3(12)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	$-0.9(10)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$179.2(7)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-2.1(12)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	$179.8(7)$
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-0.2(11)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$-178.1(7)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{Se}(1)$	$-2.4(7)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$-179.6(6)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-1.0(13)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{Se}(1)$	$179.3(5)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$2.1(11)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-0.1(14)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$2.1(12)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{Se}(1)$	$-180.0(6)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	$-\mathrm{C})$
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$-11)$

Symmetry transformations used to generate equivalent atoms:

Table 6. Hydrogen bonds for $\mathbf{1 b}\left[\AA\right.$ and $\left.^{\circ}\right]$.

$$
\begin{array}{lllll}
\hline \text { D-H...A } & \text { d(D-H) } & \text { d(H...A) } & \text { d(D...A) } & <(\mathrm{DHA})
\end{array}
$$

7.2 X-ray structure of compound 8e.

Table 7. Sample and crystal data for $\mathbf{8 e}$.

Identification code
Chemical formula
Formula weight
Wavelength
Crystal size
Crystal system
Space group
Unit cell dimensions
ume
Z
Density (calculated)
Absorption coefficient
F(000)

Table 8. Data collection and structure refinement for 8e.

Theta range for data collection	2.91 to 28.30°
Index ranges	$-16<=\mathrm{h}<=16,-9<=\mathrm{k}<=9,-19<=\mathrm{l}<=18$

Reflections collected	28000
Independent reflections	$3075[\mathrm{R}(\mathrm{int})=0.0754]$
Max. and min. transmission	0.7457 and 0.4644
Structure solution technique	direct methods
Structure solution program	SHELXT 2014/5 (Sheldrick, 2014)
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL 2018/3 (Sheldrick, 2015)
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$
Data/restraints/parameters	$3075 / 0 / 173$
Goodness-of-fit on F2	1.035
$\Delta / \sigma m a x$	0.002
Final R indices	Final R indices $\mathrm{R} 1=0.0238, \mathrm{wR} 2=0.0510$
	all data
Weighting scheme	$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{Fo}^{2}\right)+1.0174 \mathrm{P}\right]$
	where $\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3$
Extinction coefficient	$0.0035(5)$
Largest diff. peak and hole	0.433 and $-0.344 \mathrm{e}^{\circ} \AA^{-3}$
R.M.S. deviation from mean	$0.083 \mathrm{e}^{-3}$

Table 9. Atomic coordinates and equivalent isotropic atomic displacement parameters ($\AA 2$) for $\mathbf{8 e}$.
$\mathrm{U}(\mathrm{eq})$ is defined as one-third of the trace of the orthogonalized Uij tensor.

	x / a	y / b	z / c	$\mathrm{U}(\mathrm{eq})$
Br 1	$0.95752(2)$	$0.41201(3)$	$0.88627(2)$	$0.02247(8)$
Se 1	$0.54838(2)$	$0.73159(3)$	$0.31459(2)$	$0.01810(7)$
O1	$0.63159(11)$	$0.64876(19)$	$0.59855(9)$	$0.0143(3)$
O2	$0.80504(13)$	$0.5569(2)$	$0.39823(11)$	$0.0256(3)$
C1	$0.89515(17)$	$0.4628(3)$	$0.75414(14)$	$0.0164(4)$
C2	$0.95954(17)$	$0.4209(3)$	$0.69190(15)$	$0.0187(4)$
C3	$0.91270(17)$	$0.4595(3)$	$0.59644(15)$	$0.0175(4)$
C4	$0.80300(17)$	$0.5389(3)$	$0.56071(14)$	$0.0151(4)$
C5	$0.74101(16)$	$0.5752(3)$	$0.62559(14)$	$0.0143(4)$
C6	$0.78684(17)$	$0.5398(3)$	$0.72313(14)$	$0.0156(4)$
C7	$0.75350(17)$	$0.5810(3)$	$0.45807(14)$	$0.0172(4)$
C8	$0.63850(17)$	$0.6553(3)$	$0.43663(14)$	$0.0155(4)$
C9	$0.58449(16)$	$0.6873(3)$	$0.50454(14)$	$0.0141(4)$
C10	$0.47183(16)$	$0.7696(3)$	$0.47303(14)$	$0.0144(4)$
C11	$0.43638(17)$	$0.8046(3)$	$0.37441(14)$	$0.0164(4)$
C12	$0.32984(18)$	$0.8862(3)$	$0.32950(15)$	$0.0191(4)$
C13	$0.25993(17)$	$0.9315(3)$	$0.38544(16)$	$0.0200(4)$
C14	$0.29407(17)$	$0.8977(3)$	$0.48430(15)$	$0.0184(4)$
C15	$0.39931(16)$	$0.8168(3)$	$0.52818(14)$	$0.0156(4)$

Table 10. Bond lengths (\AA) for 8e.

Br1-C1	$1.896(2)$	Se1-C8	$1.884(2)$
Se1-C11	$1.896(2)$	O1-C5	$1.377(2)$
O1-C9	$1.356(2)$	O2-C7	$1.230(2)$
C1-C2	$1.397(3)$	C1-C6	$1.377(3)$
C2-H2	0.95	C2-C3	$1.375(3)$
C3-H3	0.95	C3-C4	$1.404(3)$
C4-C5	$1.399(3)$	C4-C7	$1.478(3)$
C5-C6	$1.396(3)$	C6-H6	0.95
C7-C8	$1.442(3)$	C8-C9	$1.362(3)$
C9-C10	$1.438(3)$	C10-C11	$1.404(3)$
C10-C15	$1.401(3)$	C11-C12	$1.399(3)$
C12-H12	0.95	C12-C13	$1.381(3)$
C13-H13	0.95	C13-C14	$1.406(3)$
C14-H14	0.95	C14-C15	$1.381(3)$
C15-H15	0.95		

Table 11. Bond angles $\left({ }^{\circ}\right)$ for $\mathbf{8 e}$.

C8-Se1-C11	$86.52(9)$	C9-O1-C5	$117.10(15)$
C2-C1-Br1	$119.43(15)$	C6-C1-Br1	$118.17(15)$
C6-C1-C2	$122.40(18)$	C1-C2-H2	120.8
C3-C2-C1	$118.39(18)$	C3-C2-H2	120.8
C2-C3-H3	119.1	C2-C3-C4	$121.80(18)$
C4-C3-H3	119.1	C3-C4-C7	$121.49(18)$
C5-C4-C3	$117.67(18)$	C5-C4-C7	$120.84(17)$
O1-C5-C4	$122.89(17)$	O1-C5-C6	$115.23(17)$
C6-C5-C4	$121.88(18)$	C1-C6-C5	$117.84(18)$
C1-C6-H6	121.1	C5-C6-H6	121.1
O2-C7-C4	$123.73(18)$	O2-C7-C8	$124.09(19)$
C8-C7-C4	$112.18(17)$	C7-C8-Se1	$124.87(14)$
C9-C8-Se1	$111.88(15)$	C9-C8-C7	$123.17(18)$
O1-C9-C8	$123.80(17)$	O1-C9-C10	$119.30(17)$
C8-C9-C10	$116.90(18)$	C11-C10-C9	$112.39(17)$
C15-C10-C9	$128.00(18)$	C15-C10-C11	$119.61(18)$
C10-C11-Se1	$112.32(15)$	C12-C11-Se1	$126.18(16)$
C12-C11-C10	$121.49(19)$	C11-C12-H12	121.1
C13-C12-C11	$117.78(19)$	C13-C12-H12	121.1
C12-C13-H13	119.2	C12-C13-C14	$121.51(19)$
C14-C13-H13	119.2	C13-C14-H14	119.8
C15-C14-C13	$120.42(19)$	C15-C14-H14	119.8
C10-C15-H15	120.4	C14-C15-C10	$119.19(18)$
C14-C15-H15	120.4		

Table 12. Torsion angles $\left({ }^{\circ}\right)$ for $\mathbf{8 e}$.
Br1-C1-C2-C3 -179.80(15) Br1-C1-C6-C5 -179.38(14)

Se1-C8-C9-O1	$-178.59(14)$	Se1-C8-C9-C10	$0.4(2)$
Se1-C11-C12-C13	$-179.41(15)$	O1-C5-C6-C1	$178.76(17)$
O1-C9-C10-C11	$178.67(16)$	O1-C9-C10-C15	$-0.6(3)$
O2-C7-C8-Se1	$-1.1(3)$	O2-C7-C8-C9	$-177.5(2)$
C1-C2-C3-C4	$-0.1(3)$	C2-C1-C6-C5	$0.4(3)$
C2-C3-C4-C5	$-1.1(3)$	C2-C3-C4-C7	$179.62(18)$
C3-C4-C5-O1	$-178.45(17)$	C3-C4-C5-C6	$2.0(3)$
C3-C4-C7-O2	$-2.8(3)$	C3-C4-C7-C8	$177.79(18)$
C4-C5-C6-C1	$-1.6(3)$	C4-C7-C8-Se1	$178.35(14)$
C4-C7-C8-C9	$1.9(3)$	C5-O1-C9-C8	$0.9(3)$
C5-O1-C9-C10	$-178.12(16)$	C5-C4-C7-O2	$178.0(2)$
C5-C4-C7-C8	$-1.5(3)$	C6-C1-C2-C3	$0.4(3)$
C7-C4-C5-O1	$0.8(3)$	C7-C4-C5-C6	$-178.75(18)$
C7-C8-C9-O1	$-1.7(3)$	C7-C8-C9-C10	$177.26(18)$
C8-Se1-C11-C10	$0.05(15)$	C8-Se1-C11-C12	$179.44(19)$
C8-C9-C10-C11	$-0.4(3)$	C8-C9-C10-C15	$-179.67(19)$
C9-O1-C5-C4	$-0.4(3)$	C9-O1-C5-C6	$179.17(16)$
C9-C10-C11-Se1	$0.2(2)$	C9-C10-C11-C12	$-179.27(18)$
C9-C10-C15-C14	$179.05(19)$	C10-C11-C12-C13	$-0.1(3)$
C11-Se1-C8-C7	$-177.04(18)$	C11-Se1-C8-C9	$-0.25(15)$
C11-C10-C15-C14	$-0.2(3)$	C11-C12-C13-C14	$0.2(3)$
C12-C13-C14-C15	$-0.3(3)$	C13-C14-C15-C10	$0.3(3)$
C15-C10-C11-Se1	$179.51(14)$	C15-C10-C11-C12	$0.1(3)$

Table 13. Hydrogen bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{8 e}$.

	Donor-H	Acceptor-H	Donor-Acceptor	Angle
C6-H6...Se1	0.95	3.05	$3.900(2)$	150.4
C12-H12...O2	0.95	2.58	$3.484(3)$	158.9

8. Characterization of products.

Dibenzoselenophene (1c)
Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.56$ in petroleum ether) afforded $\mathbf{1 c}$ as a yellow solid (43.4 $\mathrm{mg}, 94 \%$ yield). $\mathrm{Mp}=53-55^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.14$ (dd, $J=7.9$, $1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{td}, J=$ $7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 139.3,138.3$, 126.8, 126.1, 124.8, 122.8. ${ }^{77}$ Se NMR (114 MHz , Chloroform- d) $\delta=450.5$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): v 2955, 2930, 1570, 1434, 1423, 1327, 1261, 1221, 1038, 1002, 896, 861, 729, 632; GC-MS (EI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Se}\left[\mathrm{M}^{+}\right]$231.9; found 232.0.

3-Methyldibenzo $[b, d]$ selenophene (2c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.52$ in petroleum ether) afforded $\mathbf{2 c}$ as a yellow solid (40.2 $\mathrm{mg}, 82 \%$ yield). $\mathrm{Mp}=73.5-75^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.01$ (dd, $J=$ $7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.75(\mathrm{dd}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{td}$, $J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) δ 139.5, 138.9, 138.4, 137.0, 135.9, 126.4, 126.3, 126.2, 126.1, 124.8, 122.5, 122.5, 21.6. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): v 2976, 2943, 1583, 1456, 1346, 1286, 1247, 1057, 1036, 885, 757, 664; GC-MS (EI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Se}$ [M^{+}]245.9; found 246.0.

3-Ethyldibenzo $[b, d]$ selenophene (3c)
Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.50$ in petroleum ether) afforded $\mathbf{3 c}$ as a yellow solid (49.2 $\mathrm{mg}, 90 \%$ yield). $\mathrm{Mp}=43-45.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.07$ (dd, $J=$ $7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.43$ $(\mathrm{td}, J=7.6,1 \mathrm{H}), 7.35(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{q}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 143.5$, 139.5, 139.0, 138.4, 136.1, 126.4, 126.1, 125.2, 125.0, 124.8, 122.6, 122.6, 29.0, 15.8. IR (KBr, cm ${ }^{-1}$): v 2967, 2955, 2867, 1587, 1456, 1446, 1367, 1283, 1257, 1046, 1034, 936, 876, 744, 657; GC-MS (EI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Se}\left[\mathrm{M}^{+}\right] 260.0$; found 260.1 .

3-Propyldibenzo $[b, d]$ selenophene (4c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.45$ in petroleum ether) afforded $\mathbf{4 c}$ as a yellow oily liquid ($50.8 \mathrm{mg}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.10$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-$
$1.66(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{td}, J=7.3,1.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ $141.8,138.9,138.3,136.0,126.4,126.0,125.7,125.6,124.7,122.5,122.5,38.0,24.6$, 13.8. IR (KBr, cm ${ }^{-1}$): v 2975, 2937, 2853, 1563, 1474, 1463, 1375, 1297, 1263, 1057, 1053, 958, 883, 755, 681; GC-MS (EI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{Se}\left[\mathrm{M}^{+}\right] 274.0$; found 274.1.

3-(Tert-butyl)dibenzo $[b, d]$ selenophene (5c)
Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.45$ in petroleum ether) afforded $\mathbf{5 c}$ as a yellow solid (51.7 $\mathrm{mg}, 90 \%$ yield). $\mathrm{Mp}=63.8-65.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.10$ (d, $J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 150.4,138.3,139.4,139.2,135.8,126.4,126.1,124.8$, 122.8, 122.6, 122.5, 122.4, 35.1, 31.5. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): v 2963, 2945, 2855, 1739, 1572, $1435,1376,1247,1228,991,812,745,717$; GC-MS (EI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Se}\left[\mathrm{M}^{+}\right]$ 288.0; found 288.1.

3-Methoxydibenzo $[b, d]$ selenophene (6c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.40$ in petroleum ether) afforded $\mathbf{6 c}$ as a yellow solid (45.9 $\mathrm{mg}, 85 \%$ yield). $\mathrm{Mp}=67-69^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.00$ (dd, $J=8.5$, $2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 159.0, 140.7, 138.4, 138.2, 131.7, 125.9, 125.8, 124.9, 123.4, 122.1, 113.4, 109.5, 55.6. IR (KBr, cm ${ }^{-1}$): v 2973, 2929, 1555, 1486, 1457, 1437, 1256, 1214, 1068, 1012, 776, 751, 721,682; GC-MS (EI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{OSe}$ $\left[\mathrm{M}^{+}\right]$261.9; found 262.0.

Dibenzo[b,d]selenophen-3-yl(methyl)sulfane (7c)

Purification by PTLC $\left(\mathrm{R}_{\mathrm{f}}=0.36\right.$ in petroleum ether) afforded 7c as a white solid (49.3 $\mathrm{mg}, 89 \%$ yield). $\mathrm{Mp}=95-97^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.06$ (d, $J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 140.2,138.9,138.0,137.7,135.6,126.7,126.1,125.0,124.0,123.1$, 122.8, 122.6, 16.2. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): v 2965, 2913, 1543, 1472, 1442, 1419, 1237, 1191, 1043, 1002, 767, 734, 705, 664; GC-MS (EI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{SSe}\left[\mathrm{M}^{+}\right] 277.9$; found 278.0.

3-Bromodibenzo $[b, d]$ selenophene (8c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.48$ in petroleum ether) afforded 8 c as a yellow solid (55.2 $\mathrm{mg}, 89 \%$ yield). $\mathrm{Mp}=83.5-86^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.09-8.01$ (m, $1 \mathrm{H}), 7.98$ (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{ddd}, J=11.3,8.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{td}, J=7.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 140.8,139.3,137.4,137.2,128.6,128.2,127.3$, $126.0,125.1,123.9,122.9,120.6$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): v 3032, 2904, 1554, 1439, 1413, 1365, 1189, 1045, 1001, 842, 788, 731, 705, 683, 657; GC-MS (EI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{BrSe}\left[\mathrm{M}^{+}\right] 309.9$; found 310.0.

3-Chlorodibenzo $[b, d]$ selenophene (9c)
Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.32$ in petroleum ether) afforded $9 \mathbf{c}$ as a yellow solid (46.8 $\mathrm{mg}, 88 \%$ yield). $\mathrm{Mp}=53-55.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.08$ (dd, $J=$ $7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}$, 1H), $7.45-7.38$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 140.4, 139.3, 137.4, $136.8,132.7,127.1,126.1,125.7,125.5,125.1,123.5,122.9$. $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right):$ v 3067 , 2957, 2865, 1589, 1466, 1445, 1408, 1275, 1242, 1112, 1055, 841, 803, 776, 738; GCMS (EI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClSe}\left[\mathrm{M}^{+}\right]$265.9; found 266.0.

3-Nitrodibenzo $[b, d]$ selenophene (10c)
Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.32$ in petroleum ether) afforded 10c as a yellow solid ($47.5 \mathrm{mg}, 86 \%$ yield). $\mathrm{Mp}=140-142^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.77$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.49(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 146.1,143.4$, $141.8,139.5,136.3,128.7,126.4,125.6,124.3,122.9,121.9,120.2$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v$ 3089, 2976, 1679, 1493, 1486, 1467, 1255, 1263, 1134, 1069, 853, 783, 705; GC-MS (EI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{NO}_{2} \mathrm{Se}\left[\mathrm{M}^{+}\right] 276.9$; found 277.0.

3-(Trifluoromethyl)dibenzo $[b, d]$ selenophene (11c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.28$ in petroleum ether) afforded 11c as a yellow solid (52.0 $\mathrm{mg}, 87 \%$ yield). $\mathrm{Mp}=74.2-76^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.15$ (s, 3 H), $7.91(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 141.1,140.4,139.4,137.0,128.7$ (q, $J=32.3 \mathrm{~Hz}$), 128.0, $126.2,125.6,125.3,124.1(\mathrm{~d}, J=233.6 \mathrm{~Hz}), 123.2(\mathrm{q}, J=4.1 \mathrm{~Hz}), 122.9,121.7(\mathrm{q}, J=$ $3.6 \mathrm{~Hz})$. IR (KBr, cm^{-1}): v 3376, 2997, 1366, 1275, 1189, 1145, 1098, 1067, 901, 843 , 758, 719; GC-MS (EI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{Se}\left[\mathrm{M}^{+}\right]$299.9; found 300.0.

Dibenzo[b,d]selenophene-3-carbaldehyde (12c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.36$ in petroleum ether $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=15: 1: 1$) afforded 12c as a yellow solid ($41.5 \mathrm{mg}, 80 \%$ yield). $\mathrm{Mp}=103-105^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d) $\delta 10.05(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.15$ (dd, $J=7.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.91$ (dd, $J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.43 (ddd, $J=9.1,7.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 190.5,142.3$, $140.4,138.7,136.1,133.7,127.4,127.3,125.3,124.8,124.3,123.0,122.2$. IR (KBr, cm^{-1}): v 3205, 2955, 1768, 1597, 1542, 1475, 1423, 1367, 1256, 1021, 822, 775, 734; GC-MS (EI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{OSe}\left[\mathrm{M}^{+}\right] 259.9$; found 260.0.

Dibenzo $[b, d]$ selenophen-3-yl(phenyl)methanone (13c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.32$ in petroleum ether) afforded 13c as a yellow solid ($54.9 \mathrm{mg}, 82 \%$ yield). $\mathrm{Mp}=123-125^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.34$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.93$ (dd, $J=8.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.87-$ $7.84(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 196.1, 141.7, 141.0, 139.1, 137.8, 137.3, 135.7, 132.5, $130.1,128.4,128.0,126.8,126.3,125.2,123.8,122.5$. IR (KBr, cm $\left.{ }^{-1}\right): ~ v 3205,3015$, 1778, 1536, 1513, 1443, 1417, 1331, 1213, 1075, 863, 734, 702; GC-MS (EI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{OSe}\left[\mathrm{M}^{+}\right] 336.0$; found 336.1.

1-Methyldibenzo $[b, d]$ selenophene (15c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.48$ in petroleum ether) afforded 15 c as a yellow solid ($42.1 \mathrm{mg}, 86 \%$ yield). $\mathrm{Mp}=79.8-81.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.39$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ (dd, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (td, J $=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{td}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{td}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}$, $1 \mathrm{H}), 2.92$ (dd, $J=7.2,1.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 139.9,139.6$, $139.6,136.4,136.2,128.1,126.8,126.1,126.1,125.9,124.6,123.9,23.5$. IR (KBr, cm^{-1}): v 3023, 2901, 2827, 1537, 1487, 1175, 1067, 1012, 878, 787, 745; GC-MS (EI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Se}\left[\mathrm{M}^{+}\right] 245.9$; found 246.0.

1-Bromodibenzo $[b, d]$ selenophene (16c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.45$ in petroleum ether) afforded 16c as a yellow solid ($52.7 \mathrm{mg}, 85 \%$ yield). $\mathrm{Mp}=91-93^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.31$ (dd, $J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (dd, $J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{td}, J=8.3,7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 141.8,139.9,137.8$, 135.1, 131.2, 127.4, 127.2, 126.7, 125.8, 125.2, 124.3, 119.6. IR (KBr, cm ${ }^{-1}$) v 3022,

3014, 1644, 1443, 1423, 1376, 1207, 1063, 1042, 863, 775, 751, 724, 698, 663; GCMS (EI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{BrSe}\left[\mathrm{M}^{+}\right]$309.9; found 310.0.

1-Fluorodibenzo $[b, d]$ selenophene (17c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.26$ in petroleum ether) afforded $\mathbf{1 7 c}$ as a white crystal ($45.8 \mathrm{mg}, 92 \%$ yield). $\mathrm{Mp}=70-72^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.54-8.41$ (m, 1H), $7.93-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.46$ - $7.40(\mathrm{~m}, 1 \mathrm{H}), 7.34$ (td, $J=8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (dddd, $J=11.6,8.1,2.3,1.2 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 160.7$ (d, $J=252.4 \mathrm{~Hz}$), 141.1 (d, $J=3.4$ $\mathrm{Hz}), 138.8,136.1(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=59.7 \mathrm{~Hz}), 127.3(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 127.0$ (d, $J=12.6 \mathrm{~Hz}$), $126.9,125.6,125.3,121.7(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 111.6(\mathrm{~d}, J=20.9 \mathrm{~Hz})$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right):$ v 3043, 2953, 1667, 1574, 1412, 1363, 1237, 1042, 1017, 834, 763, 734, 712, 683, 647; GC-MS (EI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{FSe}\left[\mathrm{M}^{+}\right] 249.9$; found 250.0.

1-Phenyldibenzo $[b, d]$ selenophene (18c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.46$ in petroleum ether) afforded $\mathbf{1 8 c}$ as a yellow oily liquid $\left(54.7 \mathrm{mg}, 89 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.88$ (dt, $J=7.9,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.82(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dt}, J=4.6,2.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.40(\mathrm{ddd}, J=5.2$, $3.2,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{td}, J=7.3,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{td}, J=$ $3.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 141.9,140.9,140.1,139.6$, 138.4, 135.3, 129.1, 128.8, 127.7, 126.8, 126.3, 125.9, 125.7, 125.2, 124.2. IR (KBr, $\left.\mathrm{cm}^{-1}\right): ~ v 3035,2942,2845,1466,1435,1423,1353,1226,1063,998,795,718,667$; GC-MS (EI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Se}\left[\mathrm{M}^{+}\right]$308.0; found 308.1.

1,3-Dimethyldibenzo $[b, d]$ selenophene (19c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.42$ in petroleum ether) afforded 19 c as a yellow solid ($47.7 \mathrm{mg}, 92 \%$ yield). $\mathrm{Mp}=111.7-114^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.32$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{td}, J=7.5,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 140.2,139.6,139.2,136.2,135.7,134.0,129.6$, 126.3, 126.1, 125.5, 124.6, 124.0, 23.3, 21.2. IR $\left(\mathrm{KBr}_{\mathrm{cm}} \mathrm{cm}^{-1}\right): v 3105,2956,2974,1783$, 1647, 1467, 1434, 1256, 1086, 1061, 875, 782, 734, 679; GC-MS (EI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Se}\left[\mathrm{M}^{+}\right] 260.0$; found 260.1.

1,2-Dimethyldibenzo $[b, d]$ selenophene (20c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.50$ in petroleum ether) afforded 20c as a yellow solid (85% yield). $\mathrm{Mp}=48-50^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.91(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37 (td, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 139.9, 139.7, 137.2, 136.8, 134.8, 133.6, 128.8, 127.2, 126.2, 125.7, 124.4, 123.2, 20.9, 18.2. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): v3063, 2947, 2863, 1667, 1634, 1453, 1423, 1274, 1073, 1035, 834, 763, 742, 693, 653; GC-MS (EI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Se}\left[\mathrm{M}^{+}\right] 260.0$; found 260.1.

1,4-Dimethyldibenzo $[b, d]$ selenophene (21c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.42$ in petroleum ether) afforded 21c as a yellow oily liquid ($37.8 \mathrm{mg}, 73 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.41$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=8.3,7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{td}, J=8.3,7.8,2 \mathrm{H})$, $7.20(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 141.3$, 140.4, 139.2, 133.4, 133.0, 132.2, 128.6, 126.6, 126.1, 126.1, 125.7, 124.6, 23.1, 22.4. IR (KBr, $\left.\mathrm{cm}^{-1}\right): v 3045,2976,2967,1756,1683$, 1461, 1298, 1067, 1045, 867, 796, 634; GC-MS (EI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Se}\left[\mathrm{M}^{+}\right] 260.0$; found 260.1 .

2,4-Dimethyldibenzo $[b, d]$ selenophene (22c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.52$ in petroleum ether) afforded 22c as a yellow solid ($45.1 \mathrm{mg}, 87 \%$ yield). $\mathrm{Mp}=43-45.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.08$ (dd, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 139.3$, 138.9, 138.2, 137.2, 135.1, 134.5, 128.5, 126.5, 126.1, 124.7, 123.0, 120.6, 22.4, 21.3. IR (KBr, cm^{-1}): v 3096, 2913, 1775, 1668, 1434, 1413, 1243, 1075, 1047, 886, 774, 762, 663; GC-MS (EI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Se}\left[\mathrm{M}^{+}\right]$ 260.0; found 260.1.

1,3,4-Trimethyldibenzo $[b, d]$ selenophene (23c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.43$ in petroleum ether) afforded 23c as a yellow oily liquid
($45.3 \mathrm{mg}, 83 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.33$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.91 (dd, $J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (ddd, $J=8.3,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (td, $J=7.5,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 140.8,139.1,134.2,133.7,133.1,131.0,130.2,126.2,125.9,125.3$, 124.6, 22.9, 19.9, 19.7. IR (KBr, cm^{-1}): v 3024, 2965, 2835, 1634, 1623, 1565, 1423, 1412, 1283, 1083, 1046, 883, 763, 721, 678, 613; GC-MS (EI): calcd. for $\left.\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{Se}^{[\mathrm{M}}{ }^{+}\right]$ 274.0; found 274.1.

2-Bromo-1-fluorodibenzo $[b, d]$ selenophene (24c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.22$ in petroleum ether) afforded $\mathbf{2 4 c}$ as a yellow solid ($42.6 \mathrm{mg}, 65 \%$ yield). $\mathrm{Mp}=83-84.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.44$ (dd, $J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{td}, J=$ $7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 156.8$ (d, $J=252.9 \mathrm{~Hz}$), 140.0 (d, $J=4.6 \mathrm{~Hz}), 139.4,135.4(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 130.6,127.9(\mathrm{~d}, J=15.3 \mathrm{~Hz}), 127.4(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}), 127.1(\mathrm{~d}, J=13 \mathrm{~Hz}), 125.7,125.5,122.6(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 105.1(\mathrm{~d}, J=20.8$ $\mathrm{Hz})$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): v 3168, 3023, 1631, 1525, 1474, 1364, 1248, 1067, 1028, 867, 823, 731, 711, 623, 606; GC-MS (EI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{FBrSe}\left[\mathrm{M}^{+}\right] 327.9$; found 328.0.

Benzo[4,5]selenopheno $[2,3-b]$ thianthrene (25c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.24$ in petroleum ether) afforded $\mathbf{2 5 c}$ as a yellow solid ($45.8 \mathrm{mg}, 62 \%$ yield). $\mathrm{Mp}=108.3-110^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 9.52$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=7.4$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) δ 139.1, 138.9, 137.0, 136.4, 135.4, 134.0, 133.9, $132.5,128.5,127.6,127.5,127.3,126.8,125.9,125.8,124.9,124.0,123.8$. IR (KBr, cm^{-1}): v 3035, 3007, 1645, 1423, 1331, 1067, 898, 764, 725, 606; GC-MS (EI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~S}_{2} \mathrm{Se}\left[\mathrm{M}^{+}\right] 369.9$; found 370.0.

Benzo[b]phenanthro[9,10- d]selenophene (26c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.26$ in petroleum ether) afforded 26c as a yellow solid ($60.2 \mathrm{mg}, 91 \%$ yield). $\mathrm{Mp}=107.6-110^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.06$ (dd, $J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.89-8.80(\mathrm{~m}, 2 \mathrm{H}), 8.72(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}$, $J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.57$ $(\mathrm{m}, 1 \mathrm{H}), 7.44(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 141.5$,
$140.6,139.9,131.0,130.7,130.2,130.1,129.3,127.5,127.4,127.2,126.6,126.3,125.7$, 125.4, 125.2, 124.2, 123.9, 123.3. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): v 3035, 2873, 2869, 1454, 1422, 1407, 1376, 1254, 1031, 972, 714, 656, 623; GC-MS (EI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Se}\left[\mathrm{M}^{+}\right]$ 332.0; found 332.1.

2-Isopropyldibenzo $[b, d]$ selenophene (27c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.56$ in petroleum ether) afforded $\mathbf{2 7 c}$ as a yellow oily liquid ($46.4 \mathrm{mg}, 85 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.15$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.00(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 144.8, 138.6, 137.3, 135.3, 125.6, 125.1, 124.9, 124.8, 123.7, 121.7, 119.5, 33.2, 23.3. GC-MS (EI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{Se}$ $\left[\mathrm{M}^{+}\right]$274.0; found 274.1.

1-(Dibenzo[b,d]selenophen-3-yl)-4-methylpiperazine (28c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.28$ in petroleum ether/EtOAc $=5: 1$) afforded 28c as a brown solid ($36.2 \mathrm{mg}, 55 \%$ yield). $\mathrm{Mp}=98-91{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.97(\mathrm{dd}, J=8.4,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{t}, J=$ $5.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.63(\mathrm{t}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroformd) $\delta 150.6,140.9,138.5,138.2,130.7,125.9,125.5,124.8,123.1,121.9,114.7,111.8$, 55.1, 49.2, 46.1.GC-MS (EI): calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Se}\left[\mathrm{M}^{+}\right] 330.0$; found 330.1.

1-Chloro-2,3,4-trimethoxydibenzo[b, $\boldsymbol{d}]$ selenophene (29c)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.30$ in petroleum ether) afforded 29c as a yellow oily liquid ($45.9 \mathrm{mg}, 62 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.06$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H})$, $4.03(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 149.3,147.5,144.2$, $139.5,138.5,130.1,129.9,127.1,126.6,125.9,124.7,120.6,61.5,61.3,60.8$. HR-ESIMS (m / z): calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{SeCl}[\mathrm{M}+\mathrm{H}]^{+} 356.9791$, found 356.9788 .

Benzo[b]naphtho[1,2-d] selenophene (32c)
Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.32$ in petroleum ether) afforded 32c as a yellow solid
($51.7 \mathrm{mg}, 92 \%$ yield). $\mathrm{Mp}=93-95^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.05$ (dd, $J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.91(\mathrm{dd}, J=8.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01$ (dd, $J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (ddd, $J=8.5,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (tdd, $J=7.9,7.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$ (ddd, $J=8.2,7.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) δ 140.4, 139.9, 139.6, 132.4, 131.7, 131.7, 129.5, 127.7, 127.0, 126.6, 126.5, 125.4, 125.1, 124.9, 123.9, 123.3. GC-MS (EI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Se}\left[\mathrm{M}^{+}\right]$281.9; found 282.0.

3-Ethyl-7-methyldibenzo $[b, d]$ selenophene (35c)
Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.54$ in petroleum ether) afforded $\mathbf{3 5 c}$ as a yellow oily liquid ($48.6 \mathrm{mg}, 89 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.97$ (t, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.68 (dd, $J=9.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}$, $3 \mathrm{H}), 1.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 143.0$, 139.1, 139.1, 136.5, 136.1, 135.9, 126.2, 126.2, 125.1, 125.0, 122.3, 122.2, 29.0, 21.6, 15.8. GC-MS (EI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{Se}\left[\mathrm{M}^{+}\right]$274.0; found 274.1.

11H-Benzo[4,5]selenopheno[3,2-b]chromen-11-one (1e)
Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.35$ in petroleum ether/EtOAc $=10: 1$) afforded $1 \mathbf{e}$ as a yellow solid ($42.4 \mathrm{mg}, 71 \%$ yield). $\mathrm{Mp}=197-201^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroformd) $\delta 8.38(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.27-8.19(\mathrm{~m}, 1 \mathrm{H}), 8.02-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{td}$, $J=7.8,6.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.54$ (m, 2H), 7.51 (t, $J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) δ 174.6, 156.2, 155.6, 139.9, 133.9, 132.2, 129.4, 126.9, 126.0, 125.5, 125.2, 124.4, 122.5, 121.6, 118.1. IR (KBr, $\left.\mathrm{cm}^{-1}\right): ~ v 3887$, 3843, 3836, 3614, 3573, 3405, 2936, 2814, 1561, 1505, 1489, 1278, 1254, 1146, 913, 823, 804, 743; HR-ESI-MS (m / z): calcd. for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+} 300.9762$, found 300.9758 .

8-Methyl-11H-benzo[4,5]selenopheno[3,2-b]chromen-11-one (2e)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.38$ in petroleum ether/EtOAc $=10: 1$) afforded 2e as a yellow solid ($42.5 \mathrm{mg}, 68 \%$ yield). $\mathrm{Mp}=158-160^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 8.33(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.61$ (dd, $J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (td, $J=7.5,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 174.4,156.1,155.6,140.3$, 140.1, 133.6, 129.7, 127.1, 126.8, 125.9, 125.0, 123.9, 122.4, 120.6, 118.0, 21.9. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right):$ v 3943, 3867, 3624, 3589, 3418, 2923, 2856, 1513, 1487, 1289, 1256, 1165, 923, 804; HR-ESI-MS (m / z): calcd. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+} 314.9919$, found

8-Ethyl-11H-benzo[4,5]selenopheno[3,2-b]chromen-11-one(3e)
Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.42$ in petroleum ether/EtOAc $=10: 1$) afforded $3 \mathbf{e}$ as a yellow solid ($40.6 \mathrm{mg}, 62 \%$ yield). $\mathrm{Mp}=117.5-120^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.34$ (dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.08 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.80-7.68$ $(\mathrm{m}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{q}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 174.4$, 156.1, 155.7, 146.6, 140.3, 133.6, 130.0, 126.1, 125.9, 125.6, 125.0, 124.1, 122.5, 120.7, 118.0, 29.3, 15.4. IR (KBr, cm^{-1}): v 3916, 3863, 3842, 3605, 3475, 3447, 2979, 2964, 2891, 1675, 1586, 1558, 1365, 1234, 1227, 1168, 984, 874, 725, 683; HR-ESI-MS (m / z): calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+} 329.0075$, found 329.0073.

8-(Tert-buty)-11H-benzo[4,5]selenopheno[3,2-b]chromen-11-one (4e)

Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.36$ in petroleum ether/EtOAc $=10: 1$) afforded $4 \mathbf{e}$ as a yellow solid ($49.7 \mathrm{mg}, 70 \%$ yield). $\mathrm{Mp}=111-113^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 8.36(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.75 (ddd, $J=8.6,7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=8.5$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (td, $J=8.1,7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 174.4,156.2,155.7,153.5,140.3,133.6,129.7,126.0,125.0,123.9$, $123.7,123.2,122.5,121.0,118.0,35.5,31.3$. IR ($\mathrm{KBr}^{2} \mathrm{~cm}^{-1}$): v 3912, 3883, 3827, 3646, $3602,3522,3487,3434,2964,2913,2864,1644,1608,1561,1517,1463,1306,1264$, 1217, 1110, 937, 874, 822, 756, 694; HR-ESI-MS (m / z): calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+}$ 357.0388, found 357.0387.

8-Pentyl-11H-benzo $[4,5]$ selenopheno $[3,2-b]$ chromen-11-one (5e)
Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.32$ in petroleum ether/EtOAc $=10: 1$) afforded 5e as a yellow solid ($26.6 \mathrm{mg}, 36 \%$ yield). $\mathrm{Mp}=83.7-85^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 8.37(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.67$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 1.71(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.33(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 174.5,156.2,155.8,145.4,140.2,133.6,130.0$, 126.6, 126.3, 126.0, 125.0, 124.1, 122.5, 120.7, 118.0, 36.3, 31.5, 31.0, 22.5, 14.0. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): ~ v 3954,3889,3863,3647,3534,3487,2968,2926,2867,1658,1667$, $1589,1543,14755,1367,1258,1252,1103,934,862,852,769,692 ;$ HR-ESI-MS (m / z):
calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+} 371.0545$, found 371.0547.

8-Methoxy-11H-benzo[4,5]selenopheno[3,2-b]chromen-11-one (6e)
Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.42$ in petroleum ether/EtOAc $=10: 1$) afforded $\mathbf{6 e}$ as a yellow solid ($28.3 \mathrm{mg}, 43 \%$ yield). $\mathrm{Mp}=207.7-210^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.36$ (dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{td}, J=$ $7.8,7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.13 (dd, $J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroformd) $\delta 174.1,161.3,156.1,155.7,142.0,133.5,125.9,125.5,125.2,125.0,122.5,119.3$, 117.9, 115.3, 109.5, 55.8. IR (KBr, cm ${ }^{-1}$): v 3926, 3854, 3837, 3622, 3469, 2977, 2958, $2889,1672,1593,1516,1378,1246,1223,1172,965,803,726,678 ;$ HR-ESI-MS (m / z) : calcd. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+} 330.9868$, found 330.9867 .

3-Methoxy-11H-benzo[4,5]selenopheno[3,2-b]chromen-11-one (7e)
Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.38$ in petroleum ether/EtOAc $=10: 1$) afforded 7e as a yellow solid ($30.2 \mathrm{mg}, 46 \%$ yield). $\mathrm{Mp}=175.7-180^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.24(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.18-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.97-7.88(\mathrm{~m}, 1 \mathrm{H})$, 7.53 - 7.49 (m, 2H), 7.03 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.95 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 173.9,164.3,158.0,155.1,139.6,132.2,129.1,127.3,126.8,125.3$, 124.1, 121.7, 116.4, 114.2, 100.5, 55.9. HR-ESI-MS (m/z): calcd. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{Se}$ $[\mathrm{M}+\mathrm{H}]^{+} 330.9868$, found 330.9865 .

3-Bromo-11H-benzo[4,5]selenopheno[3,2-b]chromen-11-one (8e)
Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.48$ in petroleum ether/EtOAc $=10: 1$) afforded $\mathbf{8 e}$ as a yellow solid ($39.3 \mathrm{mg}, 52 \%$ yield). $\mathrm{Mp}=95.5-98^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 8.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21-8.13(\mathrm{~m}, 1 \mathrm{H}), 7.96(\mathrm{dt}, J=7.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87$ $(\mathrm{s}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 173.7,156.2,155.3,140.1,131.8,129.6,128.8,128.0,127.4,126.9$, 125.6, 124.3, 121.9, 121.3, 121.2. IR (KBr, cm ${ }^{-1}$): v 3907, 3876, 3863, 3614, 3582, 3405, 2814, 1569, 1510, 1489, 1278, 1254, 1152, 913, 823, 757; HR-ESI-MS (m/z): calcd. for $\mathrm{C}_{15} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{SeBr}[\mathrm{M}+\mathrm{H}]^{+} 378.8867$, found 378.8867.

4-(Tert-buty)-6H-benzo $[4,5]$ selenopheno $[2,3-c]$ chromen-6-one (9e)
Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.48$ in petroleum ether/EtOAc $=10: 1$) afforded 9 e as a yellow solid ($37.6 \mathrm{mg}, 53 \%$ yield). Mp $=68-70^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 8.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-$ $7.58(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 157.4,150.7,144.1,141.7,138.1,137.1,127.5,127.0$, 126.7, 126.6, 126.0, 124.9, 123.0, 120.7, 118.6, 34.4, 29.1. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): v 3955, 3847, 3832, 3654, 3527, 3498, 3442, 2979, 2962, 2835, 1645, 1610, 1564, 1521, 1472, 1309, 1272, 1217, 1124, 939, 878, 822, 764, 681; HR-ESI-MS (m / z): calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+} 357.0388$, found 357.0388 .

Dibenzo $[b, d]$ selenophene 5 -oxide (1 g)
Purification by PTLC ($\mathrm{R}_{\mathrm{f}}=0.48$ in $\mathrm{DCM} / \mathrm{MeOH}=10: 1$) afforded $\mathbf{1 g}$ as a yellow solid ($109.9 \mathrm{mg}, 89 \%$ yield). $\mathrm{Mp}=192-195^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.95(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{td}$, $J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Methanol-d4) $\delta 144.9,141.0,132.7,129.9$, 128.5, 123.3.

(2'-Chloro-4',6'-dimethyl-[1,1'-biphenyl]-2-yl)(phenyl)selane (19f)
Purification by PTLC $\left(\mathrm{R}_{\mathrm{f}}=0.45\right.$ in petroleum ether) afforded $\mathbf{1 9 f}$ as a yellow solid (4.5 $\mathrm{mg}, 6 \%$ yield).Mp $=182.6-185^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.33$ (d, $J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ (dd, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (s, 1H), $7.52-7.42$ (m, 3H), 7.35 (td, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=4.9,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 140.2, 139.6, 139.2, 136.2, 135.7, 134.0, 133.0, 131.2, 129.6, 129.3, 127.3, 126.3, 126.1, 125.5, 124.6, 124.0, 23.3, 21.1. GCMS (EI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{SeCl}\left[\mathrm{M}^{+}\right] 372$; found 372 .

9. References.

[1] G. A. M. Jardim, Í. A. O. Bozzi, W. X. C. Oliveira, C. Mesquita-Rodrigues, R. F. S. Menna-Barreto, R. A. Kumar, E. Gravel, E. Doris, A. L. Braga and E. N. da Silva Júnior, New. J. Chem., 2019, 43, 13751-13763.
[2] V. P. Reddy, A. V. Kumar, K. Swapna and K. R. Rao, Org. Lett., 2009, 11, $951-$ 953.
[3] M. Tobisu, Y. Masuya, K. Baba and N. Chatani, Chem. Sci., 2016, 7, 2587-2591..
[4] Z. Ai, J. Xiao, Y. Li, B. Guo, Y. Du and K. Zhao, Org. Chem. Front., 2020, 7, 3935-3940.
[5] J. D. Fang, X. B. Yan, L. Zhou, Y. Z. Wang and X. Y. Liu, Adv. Synth. Catal., 2019, 361, 1985-1990.
[6] P. Ghosh, A. K. Nandi, G. Chhetri and S. Das, J. Org. Chem., 2018, 83, 1241112419.
[7] S. Saba, J. Rafique, M. S. Franco, A. R. Schneider, L. Espindola, D. O. Silva and A. L. Braga, Org. Biomol. Chem., 2018, 16, 880-885.
[8] Z. Song, C. Ding, S. Wang, Q. Dai, Y. Sheng, Z. Zheng and G. Liang, Chem. Comтип., 2020, 56, 1847-1850.
10. Copies of NMR spectra.

$\underbrace{\infty} \boldsymbol{\infty}$

1 c
${ }^{1} \mathrm{H}$ NMR(400MHz, Chloroform- d)

1c
${ }^{77}$ Se NMR(114MHz, Chloroform- d)

2c

4 c
${ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, Chloroform- d)

${ }^{13} \mathrm{C} \operatorname{NMR}(101 \mathrm{MHz}$, Chloroform- d)

(

6c
${ }^{1} \mathrm{H}$ NMR(400 MHz , Chloroform- d)

7c

7c
${ }^{13} \mathrm{C}$ NMR(101MHz, Chloroform- d)

8c
${ }^{1} \mathrm{H}$ NMR(500MHz, Chloroform-d)

8c
${ }^{13} \mathrm{C}$ NMR(126MHz, Chloroform- d)

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d)

10c
${ }^{1} \mathrm{H}$ NMR(400MHz, Chloroform- d)

11/11 sill

10c
${ }^{13} \mathrm{C}$ NMR(101MHz, Chloroform-d)

11c
${ }^{1} \mathrm{H}$ NMR(400 MHz , Chloroform- d)

11c

13c
${ }^{1} \mathrm{H}$ NMR(400 MHz , Chloroform-d)

15c
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d)

16c
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d)

${ }^{13} \mathrm{C}$ NMR(101 MHz , Chloroform-d)

10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-]
											pm)										

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d)

${ }^{13} \mathbf{C}$ NMR $(101 \mathrm{MHz}$, Chloroform- d)

${ }^{1} \mathrm{H}$ NMR(400 MHz , Chloroform-d)

${ }^{13} \mathbf{C}$ NMR(101 MHz , Chloroform- d)

${ }^{1}$ H NMR(400MHz, Chloroform-d)

の时

26c
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d)

26c
${ }^{13} \mathrm{C}$ NMR(101 MHz , Chloroform- d)

29c
${ }^{1} \mathrm{H}$ NMR(400 MHz , Chloroform-d)

1 MHz , Chloroform- d)

1e
${ }^{1} \mathrm{H}$ NMR(600 MHz , Chloroform- d)

2e
${ }^{13} \mathrm{C}$ NMR(101 MHz , Chloroform- d)

3e
${ }^{1} \mathrm{H}$ NMR(400MHz, Chloroform- d)

3e
${ }^{13} \mathrm{C}$ NMR(101MHz, Chloroform- d)

5 e
${ }^{13}$ C NMR(101MHz, Chloroform-d)

6e
${ }^{1} \mathrm{H}$ NMR(400MHz, Chloroform- d)

8 e
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d)

8 e
${ }^{13} \mathbf{C}$ NMR(101 MHz , Chloroform- d)

1g
${ }^{1} \mathrm{H}$ NMR(400MHz, Chloroform- d)

1 g
${ }^{13} \mathrm{C}$ NMR(101 MHz , Chloroform-d)

${ }^{13} \mathrm{C}$ NMR(101 MHz , Chloroform- d)

