Supporting Information 1 2 3 4 Deciphering the Roles of Ammonium Doping for Lead-Free (NH₄)_xCs₃₋ xCu₂I₅ Perovskites to Regulate the Photoelectronic Properties 5 6 Zeyao Xu^{a,b}, Linqin Jiang*^b, Hao Xiong^b, Jiansen Wen^c, Ping Li^b, Lingyan Lin^b, Bo Wu^c, 7 Aijun Yang^d, Yu Qiu^{*b} 8 9 10 11 12 College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China. а 13 b Key Laboratory of Green Perovskites Application of Fujian Provincial Universities, Fujian 14 350108, China, E-mail: linginjiang@fjjxu.edu.cn, Jiangxia University, Fuzhou 15 yuqiu@fjjxu.edu.cn. Multiscale Computational Materials Facility, Key Laboratory of Eco-Materials Advanced 16 с 17 Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, 18 China 19 d PV Metrology Institute, Fujian Metrology Institute, Fuzhou 350003, China. 20 21

1 Experimental

2 Materials

3 Cesium iodide (CsI, 99.9%), copper(I) iodide (CuI, 99.5%), ammonium iodide (NH4I, 99.9%),

4 dimethylsulfoxide (DMSO, 99.8%) and chlorobenzene (C₆H₅Cl, anhydrate,) were all purchased from

5 Aladdin Industrial Corporation.

6 Synthesis of (NH₄)_xCs_{3-x}Cu₂I₅ (0≤x≤3) powders

7 Under the dry atmospheric conditions, NH₄I, CsI, and CuI were mixed to a 50 ml agate ball mill jar with 8 the weight ratio of x:(3-x):2. The agate grinding balls are composed of 30 pieces of 5 mm grinding balls 9 and 4 pieces of 8 mm grinding balls. The powders were ground using a planetary ball-mill (Changsha 10 MITR Corp., YXQM-4L) at the speed of 1000 rpm for 2h in air. Then the products were removed and 11 stored in a dry box. Typically for the preparation of (NH₄)_{0.9}Cs_{2.1}Cu₂I₅ powder, NH₄I (130 mg, 0.9 mmol), 12 CsI (546 mg, 2.1 mmol), and CuI (571 mg, 3 mmol) were mixed evenly and ball-milled. Under the same 13 conditions, (NH₄)_xCs_{3-x}Cu₂I₅(0 \leq x \leq 3) powders with various NH₄I ratios were fabricated.

14 Fabrication of the perovskite films

15 The precursor solution was prepared by adding 0.5 mmol of perovskite powder to 1 ml of mixed solution 16 (DMF: DMSO=4:1) at 50°C for 1 h. In a glove box, the filtered solution was spin-coated on the FTO 17 conductive glass substrate with a low-speed spinning (1000 rpm, 15 s) and a high-speed spinning (3000 18 rpm, 30 s). During the spin-coating process, 100 ul of chlorobenzene was dropwised for the remaining 10 s 19 to form the film. The resulting film was annealed at 100°C for 1h.

20 Fabrication of the UV-pumped pc-LEDs

Taking Cs₃Cu₂I₅-LED as an example. Firstly, Cs₃Cu₂I₅ powder (0.1 g) was placed into a small isotope
bottle. Then 0.1 g thermal-curable silicone resin OE-6551 A was added to the bottle with stirring intensely.
The hardener OE-6551 B (0.2 g) was also mixed to form blue-emitting phosphor paste. Finally, the paste
was integrated with the semiconductor LED chip (310 nm, EPILED Co., Ltd). The (NH₄)_{0.6}Cs_{2.4}Cu₂I₅ LED and (NH₄)_{0.9}Cs_{2.1}Cu₂I₅ - LED were achieved in the same processes.

26 Characterization

27 The crystallinity characterizations of the samples were analyzed by X-ray diffraction (XRD, Ultima IV).

28 The morphologies of the products were analyzed by scanning electron microscope (SEM, TESCAN MIRA

29 LMS). The optical properties of the perovskites were measured by Ultraviolet-visible (UV-vis) absorption

1	spectroscopy (Shimadzu UV-3600) and steady-state PL spectra (Edinburgh FLS1000) with an excitation
2	line of 300 nm. The photoluminescence quantum efficiency (PLQY) and time-resolved PL (TRPL) decay
3	curves of the $(NH_4)_xCs_{3-x}Cu_2I_5$ ($0 \le x \le 3$) samples were determined with the same fluorescence spectrometer.
4	Fourier Transform Infrared Spectroscopy (FTIR, Nicolet, Avatar-360)) is used to test samples for
5	composition analysis and identification. Thermal analysis of the samples is used to perform by
6	thermogravimetric analysis (TG/TGA, NETZSCH STA449C). The X-ray photoelectron spectroscopy
7	(XPS) and ultraviolet photoelectron spectroscopy (UPS) were collected on a Thermo instrument (Thermo
8	ESCALAB 250XI).
9	
10	

- 12 13
- 15

19 20

24

28

- 32 33 34

- 35
 36
 37
 38
 39
 40
 41

- **Figures and tables**

Fig. S1 Images of $(NH_4)_x Cs_{3-x} Cu_2 I_5$ ($0 \le x \le 3$) powders in sunlight (up) and under excitation with a 254nm UV lamp (down).

Fig. S2 Size distribution of $(NH_4)_xCs_{3-x}Cu_2I_5$ ($0 \le x \le 3$): (A) $Cs_3Cu_2I_5$, (B) $(NH_4)_{0.6}Cs_{2.1}Cu_2I_5$, (C) $(NH_4)_{0.9}Cs_{2.1}Cu_2I_5.$

1 2 3 4 Fig. S3 XRD patterns of Cs₃Cu₂I₅ powder prepared by ball milling and standard card of Cs₃Cu₂I₅ (PDF#79-0333).

Fig. S4 (a) XRD patterns of $(NH_4)_xCs_{3-x}Cu_2I_5$ ($0 \le x \le 3$): x=1.5, x=1.8, x=2.1, x=2.4, x=2.7, x=3 and pure NH₄I. (B) Enlarged XRD patterns at $2\theta = 20 - 40^{\circ}$ of (NH₄)_xCs_{3-x}Cu₂I₅: x=0, x=0.3, x=0.6, x=0.9, x=1.2.

- 56 78 9

2 3 4 5 6 Fig. S5 Crystal structure of Cs₃Cu₂I₅.

1Binding energy(eV)Binding energy(eV)Binding energy(eV)23Fig. S8 (a) UPS spectra, (b) cut-off edges spectra and (c) Fermi edges spectra of $(NH_4)_xCs_{3-x}Cu_2I_5$ ($0 \le x \le 3$):4x=0, x=0.6, x=0.9.5

6 The valence band maxima (E_{VBM}) of Cs₃Cu₂I₅, (NH₄)_{0.6}Cs_{2.1}Cu₂I₅ and (NH₄)_{0.9}Cs_{2.1}Cu₂I₅ were determined

7 and obtained from the following equation:

8
$$E_{VBM} = hv - E_{Cutoff} + E_{Fermi}$$
 (1)
9 $E_{CBM} = E_{VBM} + E_g$ (2)

10 hv is the UV radiation energy of 21.2 eV, E_{Cutoff} is the binding energy of the second cutoff edge, E_{Fermi} is

11 the difference between VBM and Fermi energy levels, E_{CBM} is the conduction band minimum.

6 Fig. S10 HRXPS spectra of (a) Cu 2p; (b) I 3d; (c) Cs 3d; and (d) N 1s of $(NH_4)_xCs_{3-x}Cu_2I_5$: x=0, 0.6, 0.9, 3. 7 (e) FTIR spectra of $(NH_4)_xCs_{3-x}Cu_2I_5$: x=0, 0.6, 0.9, 3 and pure NH₄I. (f) TGA spectra of $(NH_4)_xCs_{3-x}Cu_2I_5$: 8 x=0, 0.6, 0.9.

1 **Table S1** Diffraction angles corresponding to the main crystal planes of $(NH_4)_xCs_{3-x}Cu_2I_5$ ($0 \le x \le 3$): x=0, 2 x=0.6, x=0.9.

	(122)	(312)	(222)	(131)	(004)
$Cs_3Cu_2I_5$	23.99°	25.55°	26.31°	28.05°	30.67°
$(NH_4)_{0.6}Cs_{2.4}Cu_2I_5$	24.25°	25.76°	26.56°	28.44°	30.84°
$(NH_4)_{0.9}Cs_{2.1}Cu_2I_5$	24.52°	25.99°	26.84°	28.75°	31.16°

4

5

7

6 Table S2 The lattice constants of $(NH_4)_x Cs_{3-x} Cu_2 I_5$ ($0 \le x \le 3$): x=0, x=0.6, x=0.9.

Material	a ^a	b ^b	cc	α^d	βe	γ^{f}	Vg
	[Å]	[Å]	[Å]	[°]	[°]	[°]	[Å ³]
$Cs_2Cu_2I_5$	14.76	10.51	11.87	90	90	90	1842.13
$(NH_4)_{0.6}Cs_{2.4}Cu_2I_5$	14.78	10.49	11.69	89.39	88.35	89.75	1811.92
$(NH_4)_{0.9}Cs_{2.1}Cu_2I_5$	14.75	10.52	11.65	89.55	87.77	89.39	1805.42

8 9

10 Table S3 Tabulated fitted lifetime components of (NH₄)_xCs_{3-x}Cu₂I₅ (0≤x≤3): x=0, x=0.6, x=0.9.

11

	α ₁ (%)	τ_1 (ns)	α ₂ (%)	τ_2 (ns)	$\tau_{ave}\left(ns\right)$
$Cs_3Cu_2I_5$	30.81	1456.60	69.19	9061.83	6718.66
$(NH_4)_{0.6}Cs_{2.4}Cu_2I_5$	31.62	2159.81	68.38	9781.90	7371.80
$(NH_4)_{0.9}Cs_{2.1}Cu_2I_5$	25.08	1605.69	74.92	8820.55	7011.06

12

13 The TRPL decay time, amplitude curves and τ_{ave} (average lifetime) are determined and obtained from the 14 following equation, where equation (3) is a double-exponential equation:

15

16 $y = y_0 + a_1 e^{-x/\tau_1} + a_2 e^{-x/\tau_2}$ (3) $\tau_{ave} = \frac{a_1 \tau_1^2 + a_2 \tau_2^2}{a_1 \tau_1 + a_1 \tau_2}$ (4)

19 The pure $Cs_3Cu_2I_5$ shows a τ_2 of 9061 ns with α_2 of 69.2%. When the proportion of doped NH₄⁺ (*x*) is 0.6, 20 (NH₄)_{0.6}Cs_{2.4}Cu₂I₅ has the highest τ_2 (9782 ns) with the slightly decreased α_2 (68.4%), producing a longer 21 average carrier lifetime (τ_{ave}) of 7372 ns than that of Cs₃Cu₂I₅ (6719 ns). Further increasing *x* to 0.9, lower 22 τ_2 (8821 ns) but the largest α_2 (74.9%) resulted in a moderate τ_{ave} of 7011 ns. On the other hand, the 23 undoped Cs₃Cu₂I₅ shows the smallest τ_1 (1456 ns) compared to those of (NH₄)_{0.6}Cs_{2.4}Cu₂I₅ (2160 ns) and 24 (NH₄)_{0.9}Cs_{2.1}Cu₂I₅ (1606 ns).

1 Table S4. Optical parameter comparison of NH_4^+ doped Pb-based perovskites.

Ref	Formula	Morphology	Method	Emission peak	PLQY	Lifetime
($CsPb(I_{0.5}Br_{0.5})_3$	Nanocrystals	Ligand assisted re- precipitation	520nm	-	-
0	(NH ₄) _{0.5} Cs _{0.5} Pb(I _{0.5} Br _{0.5}) ₃	Nanocrystals	Ligand assisted re- precipitation	562nm	8%	-
7	MAPbBr ₃	Quantum dots	Ligand assisted re- precipitation	456nm	-	17.60ns
/	MA _{0.5} (NH ₄) _{0.5} PbBr ₃	Quantum dots	Ligand assisted re- precipitation	448nm	99.79%	19.94ns
0	CsPbCl ₂ Br	Powders	Ball milling	434nm	9.91%	12.20ns
8	$Cs_{0.7}(NH_4)_{0.3}PbCl_2Br$	Powders	Ball milling	447nm	39.26%	15.06ns
0	CsPbBr ₃	Quantum dots	Ligand assisted re- precipitation	509nm	35.8%	8.43ns
9	(NH4) _x Cs _{1-x} PbBr ₃	Quantum dots	Ligand assisted re- precipitation	509nm	85.3%	15.72ns
10	CsPbI ₃	Films	Spin-coating	730nm	-	2.1ns
10 -	CsPbI ₃ :NH ₄ ⁺	Films	Spin-coating	730nm	-	15.69ns

4 Table S5. Optical parameter comparison of Cs₃Cu₂I₅ perovskites regulated by various metal doping 5 methods.

Ref	Formula	Morphology	Emission peak	PLQY	Lifetime
11	$Cs_3Cu_2I_5$	Powders	440nm	-	1.13us
11	Cs ₃ Cu ₂ I ₅ :Na	Powders	440nm	-	1.45us
12	$Cs_3Cu_2I_5$	Films	440nm	76.2%	1088ns
12 -	Cs ₃ Cu ₂ I ₅ :Tl	Films	520nm	64%	688ns
12	$Cs_3Cu_2I_5$	Powders	450nm	-	-
15	Cs ₃ Cu ₂ I ₅ :Mn	Powders	562nm	-	39.84~51.64us
14	$Cs_3Cu_2I_5$	Microcrystals	445nm	-	1.23us
14	$\frac{14}{\text{Cs}_3\text{Cu}_2\text{I}_5:\text{Cd}}$	Microcrystals	445,560nm	14.53%	0.86us
This work	$Cs_3Cu_2I_5$	Powders	450nm	20.90%	6719ns
	$(NH_4)_{0.6}Cs_{2.4}Cu_2I_5$	Powders	450nm	33.10%	7372ns

12 13

2 Results and Discussions of XPS, FTIR, TGA and the formation energy

3 To investigate the difference in the chemistry state of the elements between doped and undoped Cs₃Cu₂I₅ 4 powders, their X-ray photoelectron spectra (XPS) are provided. The XPS survey spectra confirmed the 5 presence of Cu, I, Cs and N in the samples (Fig. S9). In addition, the high-resolution spectra of each 6 element (Cs 3d, Cu 2p, I 3d and N 1s) are shown in Fig. S10a-d. The Cu 2p spectra of Cs₃Cu₂I₅ and 7 (NH₄)_xCs_{3-x}Cu₂I₅ consist of two distinct peaks at about 931.4 eV (Cu 2p3/2) and 951.3 eV (Cu 2p1/2), demonstrating the presence of monovalent Cu⁺ in both materials^{1,2}. With increasing ammonium content, the 8 9 peak positions of I 3d signals shifted slightly towards lower binding energies (-0.05~0.1 eV). It is 10 noteworthy that the N 1S and the Cs 3d peaks exhibit more pronounced shifts of about 0.1 eV towards higher binding energy with the substitution of Cs⁺ by ammonium. These results suggest the change of the 11 12 chemical environment of Cs and I ions after the NH₄⁺ doping^{3,4}.

13 Fourier transform infrared spectroscopy (FTIR) measurements were conducted to investigate the 14 interaction between NH_4^+ and Cu-I framework for further confirmation. As shown in Fig. S10e, both 15 (NH₄)_{0.6}Cs_{2.4}Cu₂I₅ and (NH₄)_{0.9}Cs_{2.1}Cu₂I₅ samples have N-H asymmetric stretching vibration at 3000-3300 16 nm and N-H bending vibration at around 1390 nm, which shifts slightly to lower wavelengths as the 17 proportion of ammonium ions increases. The bending of the N-H bond also appears in pure NH₄I, 18 indicating that the H atoms are connected to the I atoms by hydrogen bonds in the crystal structure of (NH₄)_xCs_{3-x}Cu₂I₅⁵. According to the above XRD measurement, there was no NH₄I left in the 19 20 $(NH_4)_{0.6}Cs_{2.4}Cu_2I_5$ and $(NH_4)_{0.9}Cs_{2.1}Cu_2I_5$ powders. Therefore, the FTIR and XPS results indicate that NH_4^+ 21 has replaced Cs⁺ in the lattice of perovskite and form NH-I bonding, which may favour the optical 22 properties of perovskite⁵.

The successful incorporation of NH_{4^+} is likewise proven by the thermogravimetric analysis (TGA) data in Fig. S10f. The weight curves show that the $(NH_4)_{0.6}Cs_{2.4}Cu_2I_5$ and $(NH_4)_{0.9}Cs_{2.1}Cu_2I_5$ lost 8.15% and 12.39% of the original weights at 230~380 °C, respectively. These experimental values correspond very well with the calculated weight portion of NH_4I according to the formulae (7.97% and 12.34% for $(NH_4)_{0.6}Cs_{2.4}Cu_2I_5$ and $(NH_4)_{0.9}Cs_{2.1}Cu_2I_5$, respectively).

28
$$E_{form} = E_{(NH_4)_x C_3 - x} C u_2 I_5 - E_{CsI}^{total} - E_{CuI}^{total} - E_{NH_4 I}^{total}$$
(5)

The thermodynamic stability of (x=0, 0.6, 0.9, 2, 3) crystal structures has been studied using first-30 principles calculation, and the formation energy can be obtained using the equation (5). To limit the atomic

- 1 number of unit cells in the calculation, we chose the two approximate chemical formulas (NH₄)_{0.5}Cs_{2.5}Cu₂I₅
- 2 and (NH₄)₁Cs₂Cu₂I₅ to represent (NH₄)_{0.6}Cs_{2.4}Cu₂I₅ and (NH₄)_{0.9}Cs_{2.1}Cu₂I₅ respectively, because their
- 3 stoichiometric ratios are close.

5 Reference

- 6
 - P. Yang, G. Liu, B. Liu, X. Liu, Y. Lou, J. Chen and Y. Zhao, Chem. Commun., 2018, 54, 11638-11641. 1
- 7 8 9 2 Li T, Mo X, Peng C, Q. Lu, C. Qi, X. Tao, Y. Ouyang and Y. Zhou, Chem. Commun., 2019, 55, 4554-4557.
- 3 T. Jun, K. Sim, S. Iimura, M. Sasase, H. Kamioka, J. Kim and H. Hosono, Adv. Mater., 2018, 30, 1804547.
- 10 Fang S, Wang Y, Li H, F. Fang, K. Jiang, Z. Liu, H. Li and Y. Shi, J. Mater. Chem C., 2020, 8, 4895-4901. 4
- 11 5 S. Tan, J. Shi, B. Yu, W. Zhao, Y. Li, Y. Li, H. Wu, Y. Luo, D. Li and Q. Meng, Adv. Func. Mater., 2021, 31, 2010813.
- C. Wang, Y. Liu, X. Feng, C. Zhou, Y. Liu, X. Yu and G. Zhao, Angew. Chem. Int. Ed., 2019, 58, 11642-11646. 6
- J. Deng, J. Xun, Y. Qin, M. Li and R. He, Chem. Commun., 2020, 56, 11863-11866. 7
- H. Xiao, H. Xiong, P. Li, L. Jiang, A. Yang, L. Lin, Z. Kang, Q. Yan and Y. Qiu, Chem. Commun., 2022, 58, 8 3827-3830.
- 9 G. Getachew, W.-W. Huang T.-H. Chou, A. S. Rasal and J.-Y. Chang, J. Colloid Interface Sci., 2020, 605, 500-512.
- $\begin{array}{c} 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24 \end{array}$ 10 S. Tan, J. Shi, B. Yu, W. Zhao, Y. Li, Y. Li, H. Wu, Y. Luo, D. Li and Q. Meng, Adv. Func. Mater., 2021, 31, 2010813.
- 11 L. Xie, B. Chen and F. Zhang, et al., J. Lumin., 2021, 239, 118333.
- 12 Q. Wang, M. Nikl, S. Cheng, G. Ren and Y. Wu, Phys. Status Solidi RRL., 2021, 15, 2100422.
- 13 P. Du, L. Luo and W. Cheng, J Am Ceram Soc., 2020, 103, 1149-1155.
- 14 J. Qu, S. Xu, Y. Cui and C. Wang, Chem. Eur. J., 2022, 28, e202200877.
- 25