Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Contents

1. General Methods	2
2. Representative Procedures	3
3. Characterization of Products	6
4. X-Ray Single Crystal Data for (S)-3f	
5. NMR Spectra	19
6. HPLC Spectra	54
7. References	82

1. General Methods

Unless otherwise specified, all reactions were conducted under an inert atmosphere and anhydrous conditions. All the solvents were purified according to the standard procedures. All chemicals which are commercially available were employed without further purification. Thin-layer chromatography (TLC) was performed on silica gel plates (60F-254) using UV-light (254 nm). Flash chromatography was conducted on silica gel (200-300 mesh). ¹H, ¹³C and ¹⁹F NMR spectra were recorded at ambient temperature in CDCl₃ on a 400 MHz NMR spectrometer. Chemical shifts were reported in parts per million (ppm). The data are reported as follows: for ¹H NMR, chemical shift in ppm from tetramethylsilane with the solvent as internal standard (CDCl₃ & 7.26 ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or overlap of nonequivalent resonances), integration; for ¹³C NMR, chemical shift in ppm from tetramethylsilane with the solvent as internal indicator (CDCl3 & 77.1 ppm), multiplicity with respect to protons. All high-resolution mass spectra were obtained on a Q-TOF Micro LC/MS System ESI spectrometer to be given in m/z. Enantiomeric excesses values were determined with HPLC (chiral column; mobile phase hexane/i-PrOH). Ethyl 5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylate 1 were synthesized according to modified literature-reported procedures^[1-3]; azoalkenes 2 were either employed directly from commercial sources or prepared according to the literature^[4].

2. Representative Procedures

2.1 Optimization of the reaction conditions^a

	EtO ₂ C	O $+$ N Ph C	N C (10 r → solv O ₂ Et	PA EtO ₂ C	D ² C, NHCOPh N NHPG 3a	
	1a	l ,	2a 	(P)	G = CO ₂ Et)	
			СРА-1: СРА-2: СРА-2: СРА-3: СРА-4: СРА-5:	$G = 2,4,6-(i-Pr)_{3}C_{6}H$ $G = 4-CIC_{6}H_{4}$ G = 9-anthyl G = 2-naphthyl $G = SiPh_{3}$	2	
Entry	СРА	solvent	T (°C)	Additive	Yield (%) ^b	<i>ee</i> (%) ^c
1	CPA-1	toluene	r.t.	None	82	74
2	CPA-2	toluene	r.t.	None	80	14
3	CPA-3	toluene	r.t.	None	81	74
4	CPA-4	toluene	r.t.	None	78	8
5	CPA-5	toluene	r.t.	None	79	20
6	CPA-1	THF	r.t.	None	76	4
7	CPA-1	CH ₃ CN	r.t.	None	73	51
8	CPA-1	CH_2Cl_2	r.t.	None	84	89
9	CPA-1	DCE	r.t.	None	85	86
10	CPA-1	CCl ₄	r.t.	None	83	93
11	CPA-3	CCl ₄	r.t.	None	82	87
12	CPA-3	CH_2Cl_2	r.t.	None	85	85
13	CPA-3	CHCl ₃	r.t.	None	73	16
14	CPA-3	DCE	r.t.	None	83	81
15	CPA-1	CH_2Cl_2	r.t	3Å MS	62	2
16	CPA-1	CH_2Cl_2	r.t	4Å MS	65	6
17	CPA-1	CH_2Cl_2	r.t	5Å MS	63	4
18	CPA-3	CH_2Cl_2	r.t	3Å MS	65	-4
19	CPA-3	CH_2Cl_2	r.t	4Å MS	63	10
20	CPA-3	CH_2Cl_2	r.t	5Å MS	61	8
21	CPA-1	CH_2Cl_2	0 °C	None	85	90
22	CPA-1	CH_2Cl_2	-40 °C	None	89	94

^aReaction conditions: 1a (0.05 mmol), 2a (0.1 mmol), and Cat. (10 mol%) in the solvent specified (1 mL) for 3d.

^bIsolated yields. ^cDetermined by chiral HPLC analysis.

2.2 General procedure for the synthesis of products

Azlactone 1 (0.15 mmol) was dissolved in CH_2Cl_2 (1.5 ml), **CPA-1** was added and stirred at -40 °C for 20 min. Azoalkene 2 (0.3 mmol) was dissolved in CH_2Cl_2 (1.5 ml) and added to the above system and reacted at -40 °C for 3d. After the completion of the reaction which was indicated by TLC, the reaction mixture was purified through preparative thin layer chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford pure product **3**.

2.3 Derivatization of 3a into compounds 4-5

To the solution of compound **3a** (89.5 mg, 0.2 mmol) in CH₃CN (1 mL) was added ethyl 2bromoacetate (66.8 mg, 0.4 mmol). Then, Cs₂CO₃ (78.2 mg, 0.24 mmol) was added to the reaction mixture, which was stirred at room temperature for 5 h. After the completion of the reaction which was indicated by TLC, the reaction mixture was purified through preparative thin layer chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to afford pure product **4**.

Add Cs_2CO_3 (39.1 mg, 0.12 mmol) to the CH₃CN (1 ml) solution of compound 4 (53.4 mg, 0.1 mmol) and then, stir the resulting mixture at 40 °C for 4d. After the reaction indicated by TLC is completed, the reaction mixture is purified by preparation of thin layer chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to obtain pure product 5.

To the solution of compound 3e (47.5 mg, 0.1 mmol) in CH₂Cl₂ (1 mL) was added TFA (0.3 ml), the reaction mixture was stirred at room temperature for 12 h. After the completion of the reaction which was indicated by TLC, the reaction mixture was extracted with NaCl and CH₂Cl₂. The combined organic layers were dried with anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified through preparative thin layer chromatography on silica gel (petroleum ether/ethyl acetate 4:1) to afford pure product **6**.

2.5 Large-scale synthesis

Azlactone 1 (1.5 mmol) was dissolved in CH₂Cl₂ (10 ml), CPA-1 (10 mol%) was added and stirred at -40 °C for 20 min. Azoalkene 2 (3.0 mmol) was dissolved in CH₂Cl₂ (10 ml) and added to the above system and reacted at -40 °C for 3d. After the completion of the reaction which was indicated by TLC, the reaction was quenched by adding water. The reaction mixture was then extracted twice with CH₂Cl₂. The combined organic phase was dried by Na₂SO₄, and concentrated in vacuum. The resulting mixture was purified through column on silica gel (petroleum ether/ethyl acetate = 3:1) to afford pure product **3a** in 86% yield (576 mg) with the retinted enantioselectivity (93% *ee*).

2.6 Mechanism considerations

Based on the previous reports (*iScience*, 2020, **23**, 100873; *Angew. Chem. Int. Ed.*, 2022, **61**, e202207517; *Chem Catal.*, 2022, **2**, 386-399), a plausible reaction pathway was suggested in Scheme 4. In transition state (**TS-1**), the **CPA-1** catalyst simultaneously activated both azoalkene **2a** and enolized azlactone **1a'** via dual hydrogen-bonding interactions. Asymmetric 1,4-addition reaction took place to afford the hydrazone intermediate (**Int-1**). The intramolecular cyclization followed by ring-opening and iminium–enamine tautomerization completed the whole (3 + 2) process, allowing the formation of 4-pyrrolin-2-one **3a**.

Scheme S1. Plausible reaction pathway ($PG = CO_2Et$).

3. Characterization of Products

Diethyl (S)-3-benzamido-1-((ethoxycarbonyl)amino)-5-methyl-2-oxo-2,3-dihydro-1 *H*-pyrrole-3,4-dicarboxylate **3a**:

A yellow oil; 59.7 mg; isolated yield = 89%; $[\alpha]^{27.5}_{D}$ = +63.68 (*c* 0.38, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 7.91 min (major), t₂ = 9.92 min (minor), *ee* = 94%; ¹H NMR (400 MHz, CDCl₃) δ 7.74 - 7.34 (m, 7H), 4.27 - 4.07 (m, 6H), 2.42 - 4.10 (m, 3H), 1.22 - 1.16 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 165.9, 165.7, 162.5, 158.7, 155.3, 132.5, 132.2, 128.6, 128.6, 127.3, 104.0, 64.7, 63.7, 62.7, 60.2, 14.3, 14.3, 13.9, 11.8; HRMS (ESI) m/z calcd for C₂₁H₂₅N₃O₈Na [M + Na]⁺ = 470.1534, found = 470.1529.

<u>Diethyl</u> (*S*)-3-benzamido-1-((methoxycarbonyl)amino)-5-methyl-2-oxo-2,3-dihydro-1*H*-pyrrole-3,4-dicarboxylate **3b**:

A yellow oil; 54.6 mg; isolated yield = 84%; $[\alpha]^{27.5}_{D}$ = +160.59 (*c* 0.51, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 8.51 min (major), t₂ = 10.30 min (minor), *ee* = 93%; ¹H NMR (400 MHz, CDCl₃) δ 7.89 - 7.78 (m, 4H), 7.54 - 7.50 (m, 1H), 7.45 - 7.41 (m, 2H), 4.43 - 4.13 (m, 4H), 3.77 (s, 3H), 2.49 - 2.25 (m, 3H), 1.30 - 1.23 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 165.9, 165.7, 162.5, 158.6, 155.8, 132.5, 132.3, 128.8, 128.6, 127.4, 104.0, 64.7, 63.7, 60.2, 53.4, 14.3, 13.9, 11.7; HRMS (ESI) m/z calcd for C₂₀H₂₃N₃O₈Na [M + Na]⁺ = 456.1377, found = 456.1382.

Diethyl (S)-3-benzamido-1-(((benzyloxy)carbonyl)amino)-5-methyl-2-oxo-2,3-dihyd ro-1*H*-pyrrole-3,4-dicarboxylate **3c**:

A yellow oil; 67.2 mg; isolated yield = 88%; $[\alpha]^{27.6}_{D}$ = +71.43 (*c* 0.63, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 8.04 min (major), t₂ = 9.80 min (minor), *ee* = 95%; ¹H NMR (400 MHz, CDCl₃) δ 8.07 - 7.69 (m, 4H), 7.52 - 7.47 (m, 1H), 7.42 - 7.28 (m, 7H), 5.20 (s, 2H), 4.43 - 4.06 (m, 4H), 2.44 - 2.33 (m, 3H), 1.28 - 1.21 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ

167.7, 166.0, 165.7, 162.5, 158.6, 155.3, 135.3, 132.4, 132.2, 128.8, 128.6, 128.6, 128.5, 128.4, 128.0, 127.5, 127.5, 127.4, 104.1, 68.1, 64.7, 63.7, 60.2, 14.3, 13.8, 11.8; HRMS (ESI) m/z calcd for $C_{26}H_{27}N_3O_8Na [M + Na]^+ = 532.1690$, found = 532.1697.

<u>Diethyl</u> (*S*)-1-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-benzamido-5-methyl-2-oxo-2,3-dihydro-1*H*-pyrrole-3,4-dicarboxylate **3d**:

3d (R = fluorenylmethyl)

A yellow oil; 74.4 mg; isolated yield = 83%; $[\alpha]^{27.6}_{D}$ = +83.24 (*c* 0.68, CH₂Cl₂); HPLC (ID column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 12.89 min (major), t₂ = 44.84 min (minor), *ee* = 98%; ¹H NMR (400 MHz, CDCl₃) δ 8.39 – 7.06 (m, 15H), 4.50 – 4.03 (m, 7H), 2.39 – 2.26 (m, 3H), 1.25 – 1.09 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 166.1, 165.7, 162.6, 158.7, 155.2, 143.5, 141.3, 141.3, 132.5, 132.3, 131.0, 128.7, 127.9, 127.4, 127.2, 125.2, 120.0, 104.2, 68.4, 64.8, 63.8, 60.3, 46.8, 14.3, 13.9, 11.8; HRMS (ESI) m/z calcd for C₃₃H₃₁N₃O₈Na [M + Na]⁺ = 620.2003, found = 620.2020.

<u>Diethyl (S)-3-benzamido-1-((tert-butoxycarbonyl)amino)-5-methyl-2-oxo-2,3-dihydr</u> <u>o-1H-pyrrole-3,4-dicarboxylate **3e**:</u>

A yellow oil; 52.1 mg; isolated yield = 73%; $[\alpha]^{27.6}_{D}$ = +60.00 (*c* 0.50, CH₂Cl₂); HPLC (ID column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 10.24 min (major), t₂ = 36.52 min (minor), *ee* = 87%; ¹H NMR (400 MHz, CDCl₃) δ 7.93 - 7.32 (m, 7H), 4.41 - 4.10 (m, 4H), 2.49 - 2.13 (m, 3H), 1.49 - 1.46 (m, 9H), 1.29 - 1.22 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 165.8, 165.8, 162.6, 159.0, 154.1, 132.5, 132.2, 128.7, 128.6, 127.4, 127.3, 103.9, 82.5, 64.7, 63.6, 60.1, 28.1, 28.0, 27.8, 14.3, 13.9, 11.8; HRMS (ESI) m/z calcd for C₂₃H₂₉N₃O₈Na [M + Na]⁺ = 498.1847, found = 498.1860.

<u>3-ethyl-4-methyl (S)-3-benzamido-1-((ethoxycarbonyl)amino)-5-methyl-2-oxo-2,3-di</u> hydro-1*H*-pyrrole-3,4-dicarboxylate **3f**:

A colorless solid; 53.3 mg; isolated yield = 82%; m.p. 137.1-137.7°C; $[\alpha]^{27.6}_{D}$ = +158.00 (*c* 0.20, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min,

 $\lambda = 254$ nm), product: t₁ = 7.37 min (major), t₂ = 8.60 min (minor), *ee* = 96%; ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.70 (m, 4H), 7.57 – 7.49 (m, 1H), 7.44 – 7.41 (m, 2H), 4.37 – 4.17 (m, 4H), 3.71 (s, 3H), 2.49 – 2.46 (m, 3H), 1.29 – 1.24 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 166.0, 165.7, 163.0, 159.0, 155.3, 132.4, 132.3, 128.6, 127.4, 103.8, 64.7, 63.7, 62.7, 51.3, 14.3, 13.8, 11.8; HRMS (ESI) m/z calcd for C₂₀H₂₃N₃O₈Na [M + Na]⁺ = 456.1377, found = 456.1386.

<u>4-benzyl-3-ethyl (S)-3-benzamido-1-((ethoxycarbonyl)amino)-5-methyl-2-oxo-2,3-di</u> hydro-1*H*-pyrrole-3,4-dicarboxylate **3g**:

A yellow oil; 62.7 mg; isolated yield = 82%; $[\alpha]^{27.6}{}_{D}$ = +67.83 (*c* 0.60, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 6.94 min (major), t₂ = 8.81 min (minor), *ee* = 97%; ¹H NMR (400 MHz, CDCl₃) δ 7.98 - 7.11 (m, 12H), 5.19 - 4.95 (m, 2H), 4.25 - 4.03 (m, 4H), 2.42 - 2.06 (m, 3H), 1.23 - 1.07 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 165.9, 165.7, 162.2, 159.7, 155.3, 135.8, 132.4, 132.2, 128.6, 128.6, 128.6, 128.5, 128.4, 128.3, 128.1, 127.3, 103.6, 65.9, 64.6, 63.7, 62.7, 14.3, 13.8, 11.8; HRMS (ESI) m/z calcd for C₂₆H₂₇N₃O₈Na [M +]⁺ = 532.1690, found = 532.1704.

<u>4-allyl-3-ethyl (S)-3-benzamido-1-((ethoxycarbonyl)amino)-5-methyl-2-oxo-2,3-dihy</u> <u>dro-1*H*-pyrrole-3,4-dicarboxylate **3h**:</u>

A yellow oil; 58.6 mg; isolated yield = 85%; $[\alpha]^{27.6}_{D}$ = +76.20 (*c* 0.50, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 6.45 min (major), t₂ = 7.64 min (minor), *ee* = 97%; ¹H NMR (400 MHz, CDCl₃) δ 7.77 - 7.70 (m, 4H), 7.46 - 7.43 (m, 1H), 7.37 - 7.33 (m, 2H), 5.86 - 5.76 (m, 1H), 5.28 - 5.06 (m, 2H), 4.56 - 4.54 (m, 2H), 4.25 - 4.14 (m, 4H), 2.43 - 4.25 (m, 3H), 1.22 - 1.17 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 166.0, 165.7, 162.2, 159.3, 155.3, 132.4, 132.3, 132.0, 128.6, 127.4, 118.1, 103.7, 64.8, 64.6, 63.8, 62.7, 14.3, 13.9, 11.8; HRMS (ESI) m/z calcd for C₂₂H₂₅N₃O₈Na [M + Na]⁺ = 482.1534, found = 482.1536.

<u>3-ethyl-4-(2-methoxyethyl) (S)-3-benzamido-1-((ethoxycarbonyl)amino)-5-methyl-2-oxo-2,3-dihydro-1*H*-pyrrole-3,4-dicarboxylate **3i**:</u>

3i (R' = 2-methoxyethyl)

A yellow oil; 60.2 mg; isolated yield = 84%; $[\alpha]^{27.3}_{D}$ = +82.59 (*c* 0.58, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 11.39 min (major), t₂ = 15.45 min (minor), *ee* = 96%; ¹H NMR (400 MHz, CDCl₃) δ 7.86 - 7.79 (m, 4H), 7.53 - 7.49 (m, 1H), 7.44 - 7.40 (m, 2H), 4.37 - 4.16 (m, 6H), 3.57 - 3.54 (m, 2H), 3.30 (s, 3H), 2.50 - 2.43 (m, 3H), 1.30 - 1.23 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 165.9, 165.7, 162.4, 159.3, 155.3, 132.6, 132.2, 128.6, 127.4, 103.7, 70.3, 64.6, 63.6, 63.0, 62.7, 58.7, 14.3, 13.8, 11.7; HRMS (ESI) m/z calcd for C₂₂H₂₇N₃O₉Na [M + Na]⁺ = 500.1640, found = 500.1644.

<u>3-ethyl-4-isobutyl (S)-3-benzamido-1-((ethoxycarbonyl)amino)-5-methyl-2-oxo-2,3-</u> <u>dihydro-1*H*-pyrrole-3,4-dicarboxylate **3**<u>j</u>:</u>

A colorless solid; 60.6 mg; isolated yield = 85%; m.p. 142.4-143.2°C; $[\alpha]^{27.1}_{D}$ = +74.55 (*c* 0.55, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 7.71 min (major), t₂ = 10.70 min (minor), *ee* = 96%; ¹H NMR (400 MHz, CDCl₃) δ 7.80 - 7.78 (m, 4H), 7.54 - 7.50 (m, 1H), 7.45 - 7.41 (m, 2H), 4.34 - 4.20 (m, 4H), 3.95 - 3.87 (m, 2H), 2.51 - 2.25 (m, 3H), 1.96 - 1.86 (m, 1H), 1.30 - 1.25 (m, 6H), 0.92 - 0.91 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 165.8, 162.7, 158.9, 155.3, 132.4, 132.3, 128.6, 127.3, 104.0, 70.5, 64.6, 63.7, 62.7, 27.8, 19.2, 19.1, 14.3, 13.9, 11.7; HRMS (ESI) m/z calcd for C₂₃H₂₉N₃O₅₈Na [M + Na]⁺ = 498.1847, found = 498.1858.

<u>4-(tert-butyl)-3-ethyl (S)-3-benzamido-1-((ethoxycarbonyl)amino)-5-methyl-2-oxo-2,</u> <u>3-dihydro-1*H*-pyrrole-3,4-dicarboxylate **3k**:</u>

A yellow oil; 51.4 mg; isolated yield = 72%; $[\alpha]^{27.6}_{D}$ = +62.17 (*c* 0.46, CH₂Cl₂); HPLC (ID column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 9.95 min (major), t₂ = 44.11 min (minor), *ee* = 94%; ¹H NMR (400 MHz, CDCl₃) δ 8.00 - 7.67 (m, 4H), 7.56 - 7.50 (m, 1H), 7.47 - 7.40 (m, 2H), 4.40 - 4.19 (m, 4H), 2.46 - 2.14 (m, 3H), 1.44 (s, 9H), 1.33 - 1.23 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 165.9, 165.7, 161.7, 157.9, 155.3, 132.6, 132.2, 128.7, 127.5, 127.4, 127.2, 105.3, 81.2, 64.7, 63.6, 62.7, 28.3, 14.3, 14.0, 11.5; HRMS (ESI) m/z calcd for C₂₃H₂₉N₃O₈Na [M + Na]⁺ = 498.1847, found = 498.1853.

<u>4-ethyl-3-methyl (S)-3-benzamido-1-((ethoxycarbonyl)amino)-5-methyl-2-oxo-2,3-di</u> hydro-1*H*-pyrrole-3,4-dicarboxylate **3**I:

A yellow oil; 61.1 mg; isolated yield = 94%; $[\alpha]^{20.0}_{D}$ = +79.01 (*c* 0.54, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 12.30 min (major), t₂ = 14.44 min (minor), *ee* = 99%; ¹H NMR (400 MHz, CDCl₃) δ 8.12 - 7.66 (m, 4H), 7.54 - 7.50 (m, 1H), 7.45 - 7.41 (m, 2H), 4.24 - 4.15 (m, 4H), 3.85 (s, 3H), 2.47 - 2.38 (m, 3H), 1.26 - 1.23 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 166.4, 165.9, 162.5, 158.7, 155.4, 132.5, 132.3, 128.8, 128.6, 127.5, 127.4, 127.3, 103.9, 64.6, 62.8, 60.2, 54.3, 14.3, 11.8; HRMS (ESI) m/z calcd for C₂₀H₂₃N₃O₈Na [M + Na]⁺ = 456.1377, found = 456.1384.

<u>4-ethyl-3-isopropyl (S)-3-benzamido-1-((ethoxycarbonyl)amino)-5-methyl-2-oxo-2,3</u> -dihydro-1*H*-pyrrole-3,4-dicarboxylate **3m**:

A yellow oil; 58.1 mg; isolated yield = 84%; $[\alpha]^{27.3}_{D}$ = +93.27 (*c* 0.55, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 6.20 min (major), t₂ = 8.06 min (minor), *ee* = 93%; ¹H NMR (400 MHz, CDCl₃) δ 8.49 - 7.33 (m, 7H), 5.30 - 4.90 (m, 1H), 4.23 - 4.17 (m, 4H), 2.49 - 2.25 (m, 3H), 1.37 - 1.15 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 166.2, 165.1, 162.5, 158.6, 154.8, 132.5, 132.3, 128.7, 127.3, 104.1, 72.0, 64.7, 62.7, 60.2, 21.3, 21.3, 14.3, 11.7; HRMS (ESI) m/z calcd for C₂₂H₂₇N₃O₈Na [M + Na]⁺ = 484.1690, found = 484.1695.

A yellow oil; 59.5 mg; isolated yield = 86%; $[\alpha]^{27.5}_{D}$ = +115.10 (*c* 0.49, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 10.64 min (major), t₂ = 14.51 min (minor), *ee* = 94%; ¹H NMR (400 MHz, CDCl₃) δ 7.80 - 7.64 (m, 4H), 7.23 - 7.21 (m, 2H), 4.38 - 4.09 (m, 6H), 2.49 - 2.29 (m, 6H), 1.31 - 1.21 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 165.8, 162.6, 158.6, 155.3, 142.8, 129.6, 129.3, 127.5, 127.3, 104.1, 64.6, 63.6, 62.7, 60.2, 21.5, 14.3, 14.3, 13.9, 11.7; HRMS (ESI) m/z calcd for C₂₂H₂₇N₃O₈Na [M + Na]⁺ = 484.1690, found = 484.1698.

<u>Diethyl (S)-1-((ethoxycarbonyl)amino)-3-(4-methoxybenzamido)-5-methyl-2-oxo-2,</u> <u>3-dihydro-1*H*-pyrrole-3,4-dicarboxylate **30**:</u>

A yellow oil; 68.0 mg; isolated yield = 95%; $[\alpha]^{27.5}_{D}$ = +154.44 (*c* 0.45, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 11.23 min (major), t₂ = 14.57 min (minor), ee = 98%; ¹H NMR (400 MHz, CDCl₃) δ 7.77 - 7.67 (m, 4H), 7.00 - 6.84 (m, 2H), 4.40 - 4.10 (m, 6H), 3.84 (s, 3H), 2.49 - 2.41 (m, 3H), 1.30 - 1.23 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 165.9, 165.4, 162.7, 162.6, 158.5, 155.3, 129.3, 124.8, 113.8, 104.2, 64.7, 63.6, 62.7, 60.1, 55.4, 14.3, 13.9, 11.7; HRMS (ESI) m/z calcd for C₂₂H₂₇N₃O₉Na [M + Na]⁺ = 500.1640, found = 500.1646.

Diethyl (S)-1-((ethoxycarbonyl)amino)-3-(4-fluorobenzamido)-5-methyl-2-oxo-2,3-d ihydro-1*H*-pyrrole-3,4-dicarboxylate **3p**:

A yellow oil; 60.7 mg; isolated yield = 87%; $[\alpha]^{27.5}_{D}$ = +102.64 (*c* 0.53, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 8.73 min (minor), t₂ = 10.55 min (major), *ee* = 93%; ¹H NMR (400 MHz, CDCl₃) δ 7.94 - 7.69 (m, 4H), 7.12 - 7.08 (m, 2H), 4.39 - 4.08 (m, 6H), 2.49 - 2.33 (m, 3H), 1.30 - 1.23 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 165.7, 165.1 (*J* = 252 Hz), 164.9, 162.5, 158.6, 155.3, 129.9, 129.8, 128.7, 115.7, (*J* = 22 Hz), 104.0, 64.7, 63.7, 62.7, 60.2, 14.3, 14.1, 13.9, 11.8; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -106.86; HRMS (ESI) m/z calcd for C₂₁H₂₄FN₃O₈Na [M + Na]⁺ = 488.1440, found = 488.1451.

<u>Diethyl (S)-3-(4-chlorobenzamido)-1-((ethoxycarbonyl)amino)-5-methyl-2-oxo-2,3-d</u> ihydro-1*H*-pyrrole-3,4-dicarboxylate **3q**:

A yellow oil; 63.6 mg; isolated yield = 88%; $[\alpha]^{27.6}_{D}$ = +109.6 (*c* 0.50, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 8.28 min (minor), t₂ = 11.34 min (major), *ee* = 97%; ¹H NMR (400 MHz, CDCl₃) δ 7.79 - 7.71 (m, 4H), 7.45 - 7.36 (m, 2H), 4.40 - 4.12 (m, 6H), 2.49 - 2.27 (m, 3H), 1.43 - 1.18 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 165.7, 164.9, 162.5, 158.7, 155.3, 138.6, 130.9, 128.9, 128.8, 103.9, 64.7, 63.8, 62.8, 60.3, 14.3, 14.1, 13.9, 11.8; HRMS (ESI) m/z calcd for C₂₁H₂₄ClN₃O₈Na [M + Na]⁺ = 504.1144, found = 504.1145.

A yellow oil; 67.9 mg; isolated yield = 86%; $[\alpha]^{27.5}_{D}$ = +228.75 (*c* 0.56, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 8.77 min (minor), t₂ = 13.06 min (major), *ee* = 98%; ¹H NMR (400 MHz, CDCl₃) δ 7.86 - 7.51 (m, 6H), 4.49 - 4.09 (m, 6H), 2.46 - 2.31 (m, 3H), 1.30 - 1.22 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 165.7, 165.0, 162.5, 158.7, 155.3, 131.9, 131.4, 129.1, 129.0, 127.0, 103.9, 64.7, 63.8, 62.7, 60.3, 14.3, 14.1, 13.9, 11.8; HRMS (ESI) m/z calcd for C₂₁H₂₄BrN₃O₈Na [M + Na]⁺ = 548.0639, found = 548.0645.

Diethyl (*S*)-1-((ethoxycarbonyl)amino)-5-methyl-2-oxo-3-(4-(trifluoromethyl)benza mido)-2,3-dihydro-1*H*-pyrrole-3,4-dicarboxylate **3s**:

A yellow oil; 65.7 mg; isolated yield = 85%; $[\alpha]^{27.5}_{D} = +99.51$ (*c* 0.61, CH₂Cl₂); HPLC

(IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 5.14 min (minor), t₂ = 7.43 min (major), *ee* = 94%; ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 7.52 (m, 6H), 4.47 – 4.09 (m, 6H), 2.50 – 2.08 (m, 3H), 1.31 – 1.23 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 165.6, 164.6, 162.5, 158.7, 155.2, 135.8, 133.8 (*J* = 33.4 Hz), 127.9, 125.7 (*J* = 3.5 Hz), 123.5 (*J* = 272.6 Hz), 103.8, 64.7, 63.8, 62.8, 60.3, 14.3, 14.1, 13.9, 11.8.; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -63.09; HRMS (ESI) m/z calcd for C₂₂H₂₄F₃N₃O₈Na [M + Na]⁺ = 538.1408, found = 538.1415.

<u>Diethyl (S)-1-((ethoxycarbonyl)amino)-5-methyl-3-(3-methylbenzamido)-2-oxo-2,3-</u> <u>dihydro-1*H*-pyrrole-3,4-dicarboxylate **3t**:</u>

A yellow oil; 60.9 mg; isolated yield = 88%; $[\alpha]^{27.5}_{D}$ = +95.47 (*c* 0.53, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 9.05 min (major), t₂ = 12.04 min (minor), *ee* = 89%; ¹H NMR (400 MHz, CDCl₃) δ 7.99 - 7.50 (m, 4H), 7.32 - 7.30 (m, 2H), 4.42 - 4.06 (m, 6H), 2.49 - 2.47 (m, 3H), 2.37 (s, 3H), 1.30 - 1.23 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 166.1, 165.8, 162.6, 158.7, 155.3, 138.5, 132.9, 132.4, 128.5, 128.0, 124.4, 104.0, 64.7, 63.6, 62.7, 60.2, 21.3, 14.3, 14.1, 13.9, 11.7; HRMS (ESI) m/z calcd for C₂₂H₂₇N₃O₈Na [M + Na]⁺ = 484.1690, found = 484.1697.

Diethyl (S)-1-((ethoxycarbonyl)amino)-3-(3-fluorobenzamido)-5-methyl-2-oxo-2,3-d ihydro-1*H*-pyrrole-3,4-dicarboxylate **3u**:

A yellow oil; 58.6 mg; isolated yield = 84%; $[\alpha]^{27.5}_{D}$ = +65.20 (*c* 0.25, CH₂Cl₂); HPLC (IE column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 9.26 min (major), t₂ = 18.91 min (minor), *ee* = 92%; ¹H NMR (400 MHz, CDCl₃) δ 7.88 - 7.37 (m, 5H), 7.25 - 7.20 (m, 1H), 4.39 - 4.08 (m, 6H), 2.50 - 2.03 (m, 3H), 1.39 - 1.18 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 165.6, 164.5, 162.7 (*J* = 246 Hz), 162.5, 158.8, 155.2, 134.7, 130.4, 130.3, 122.8, 122.7, 119.4, 119.2, 114.7 (*J* = 23 Hz), 103.9, 64.7, 63.8, 62.82, 60.3, 14.3, 14.2, 13.9, 11.8; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -111.48; HRMS (ESI) m/z calcd for C₂₁H₂₄FN₃O₈Na [M + Na]⁺ = 488.1440, found = 488.1449.

A yellow oil; 57.9 mg; isolated yield = 83%; $[\alpha]^{27.6}{}_{D}$ = +100.27 (*c* 0.37, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 7.34 min (major), t₂ = 8.46 min (minor), *ee* = 90%; ¹H NMR (400 MHz, CDCl₃) δ 8.45 - 8.42 (m, 1H), 7.95 - 7.91 (m, 1H), 7.75 - 7.66 (m, 1H), 7.54 - 7.45 (m, 1H), 7.26 - 7.09 (m, 2H), 4.39 - 4.08 (m, 6H), 2.50 - 2.27 (m, 3H), 1.30 - 1.22 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 165.4, 162.4, 161.7, 160.9 (*J* = 248 Hz), 158.8, 155.3, 134.2, 134.1, 131.9, 124.8, 124.7, 119.5, 119.4, 116.2 (*J* = 24 Hz), 104.0, 64.9, 63.6, 62.7, 60.2, 14.3, 14.1, 13.9, 11.6; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm: -111.98; HRMS (ESI) m/z calcd for C₂₁H₂₄FN₃O₈Na [M + Na]⁺ = 488.1440, found = 488.1441.

<u>Diethyl (S)-3-(2-naphthamido)-1-((ethoxycarbonyl)amino)-5-methyl-2-oxo-2,3-dihyd</u> ro-1*H*-pyrrole-3,4-dicarboxylate **3w**:

A yellow oil; 65.7 mg; isolated yield = 88%; $[\alpha]^{27.5}{}_{D}$ = +147.59 (*c* 0.54, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 7.55 min (minor), t₂ = 8.76 min (major), *ee* = 92%; ¹H NMR (400 MHz, CDCl₃) δ 8.37 - 8.31 (m, 1H), 8.00 - 7.75 (m, 6H), 7.62 - 7.45 (m, 2H), 4.40 - 4.13 (m, 6H), 2.56 - 2.36 (m, 3H), 1.32 - 1.20 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 166.0, 165.9, 162.6, 158.7, 155.4, 135.0, 132.5, 129.7, 129.1, 128.5, 128.3, 128.0, 127.7, 126.8, 123.5, 104.1, 64.8, 63.7, 62.7, 60.2, 14.3, 14.3, 13.9, 11.8; HRMS (ESI) m/z calcd for C₂₅H₂₇N₃O₈Na [M + Na]⁺ = 520.1690, found = 520.1698.

Diethyl (S)-3-(1-naphthamido)-1-((ethoxycarbonyl)amino)-5-methyl-2-oxo-2,3-dihyd ro-1*H*-pyrrole-3,4-dicarboxylate **3x**:

A colorless solid; 64.2 mg; isolated yield = 86%; m.p. 127.5-128.1°C; $[\alpha]^{27.5}_{D}$ = +10.85 (*c* 0.47, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 7.25 min (minor), t₂ = 8.32 min (major), *ee* = 91%; ¹H NMR (400 MHz, CDCl₃) δ 8.45 – 7.43 (m, 9H), 4.38 – 4.19 (m, 6H), 2.53 – 2.24 (m, 3H), 1.34 – 1.25 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 168.2, 165.5, 162.6, 158.9, 155.2, 133.6, 132.0, 131.4, 130.2, 128.3, 127.4, 126.5, 126.0, 125.2, 124.6, 104.0, 64.9, 63.6, 62.8, 60.3, 14.4, 14.3, 13.9, 11.8; HRMS (ESI) m/z calcd for C₂₅H₂₇N₃O₈Na [M + Na]⁺ = 520.1690, found = 520.1696.

Diethyl (S)-1-((ethoxycarbonyl)amino)-3-(furan-2-carboxamido)-5-methyl-2-oxo-2,3 -dihydro-1*H*-pyrrole-3,4-dicarboxylate **3**<u>y</u>:

A yellow oil; 53.8 mg; isolated yield = 82%; $[\alpha]^{27.4}_{D}$ = +111.43 (*c* 0.35, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 7.91 min (major), t₂ = 11.56 min (minor), *ee* = 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.89 - 7.85 (m, 1H), 7.62 - 7.47 (m, 2H), 7.10 - 7.09 (m, 1H), 6.49 - 6.48 (m, 1H), 4.42 - 4.11 (m, 6H), 2.48 - 2.10 (m, 3H), 1.30 - 1.22 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 165.3, 162.4, 158.5, 156.8, 155.2, 146.6, 144.8, 115.6, 112.2, 104.2, 64.2, 63.6, 62.8, 60.2, 14.3, 14.2, 13.9, 11.7; HRMS (ESI) m/z calcd for C₁₉H₂₃N₃O₉Na [M + Na]⁺ = 460.1327, found = 460.1338.

<u>Diethyl (S)-1-((ethoxycarbonyl)amino)-5-methyl-2-oxo-3-(thiophene-2-carboxamid o)-2,3-dihydro-1H-pyrrole-3,4-dicarboxylate **3z**:</u>

A yellow oil; 55.8 mg; isolated yield = 82%; $[\alpha]^{27.3}_{D}$ = +119.36 (*c* 0.47, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 7.94 min (major), t₂ = 10.82 min (minor), *ee* = 94%; ¹H NMR (400 MHz, CDCl₃) δ 7.80 - 7.43 (m, 4H), 7.09 - 7.07 (m, 1H), 4.40 - 4.08 (m, 6H), 2.49 - 2.23 (m, 3H), 1.34 - 1.19 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 165.6, 162.5, 160.4, 158.6, 155.2, 136.9, 131.2, 129.3, 127.9, 104.1, 64.6, 63.7, 62.8, 60.2, 14.3, 14.3, 13.9, 11.8; HRMS (ESI) m/z calcd for C₁₉H₂₃N₃O₈SNa [M + Na]⁺ = 476.1098, found = 476.1103.

Diethyl-3-benzamido-1-((ethoxycarbonyl)amino)-5-ethyl-2-oxo-2,3-dihydro-1Hpyrrole-3,4-dicarboxylate **S1**:

A yellow oil; 24.2 mg; isolated yield = 35%; HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 6.11 min (major), t₂ = 6.86 min (minor), *ee* = 17%; ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.55 (m, 4H), 7.54 – 7.47 (m, 1H), 7.44 – 7.40 (m, 2H), 4.49 – 3.94 (m, 6H), 2.94 – 2.37 (m, 2H), 1.32 – 1.20 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 165.9, 165.7, 163.7, 162.3, 155.4, 132.5, 132.2, 128.6, 128.5, 127.3, 127.2, 103.1, 64.6, 63.6, 62.7, 60.1, 18.9, 14.3, 14.2, 13.8, 11.9; HRMS (ESI) m/z calcd for C₂₂H₂₇N₃O₈Na [M + Na]⁺ = 484.1690, found = 484.1697.

<u>3-ethyl-4-methyl-3-benzamido-1-((ethoxycarbonyl)amino)-2-oxo-5-pentyl-2,3-dihydro-1H-pyrrole-3,4-dicarboxylate **S2**:</u>

A yellow oil; 23.5 mg; isolated yield = 33%; HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm), product: t₁ = 7.91 min (major), t₂ = 9.01 min (minor), *ee* = <5%; ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.63 (m, 4H), 7.54 – 7.48 (m, 1H), 7.44 – 7.40 (m, 2H), 4.43 – 4.13 (m, 4H), 3.80 – 3.71 (m, 3H), 3.02 – 2.29 (m, 2H), 1.65 – 1.16 (m, 10H), 0.95 – 0.91 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 165.9, 165.7, 162.9, 162.7, 155.3, 132.5, 132.2, 128.6, 128.5, 127.4, 103.6, 64.6, 63.6, 62.7, 51.3, 29.4, 25.1, 22.3, 14.3, 13.8, 13.7; HRMS (ESI) m/z calcd for C₂₃H₂₉N₃O₈Na [M + Na]⁺ = 498.1847, found = 498.1858.

Diethyl (S)-3-benzamido-1-((2-ethoxy-2-oxoethyl)(ethoxycarbonyl)amino)-5-methyl-2-oxo-2,3-dihydro-1*H*-pyrrole-3,4-dicarboxylate **4**:

A yellow oil; 104.6 mg; isolated yield = 98%; dr = 1.5:1; $[\alpha]^{20.2}_{D}$ = +52.11 (*c* 0.19, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), major product: t₁ = 16.46 min (minor), t₂ = 21.44 min (major), *ee* = 92%; minor product: t₁ = 18.14 min (major), t₂ = 50.29 min (minor), *ee* = 93%; ¹H NMR (400 MHz, CDCl₃) & 7.96 - 7.37 (m, 6H), 5.11 - 3.90 (m, 10H), 2.73 - 2.31 (m, 3H), 1.43 - 1.20 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) & 168.3, 168.2, 165.7, 165.0, 162.5, 158.6, 155.3, 132.6, 132.1, 132.0, 128.6, 127.3, 104.4, 64.6, 63.5, 63.4, 61.4, 60.1, 50.8, 14.2, 14.1, 13.8, 12.2; HRMS (ESI) m/z calcd for C₂₅H₃₁N₃O₁₀Na [M + Na]⁺ = 556.1902, found = 556.1906.

A yellow solid; 29.6 mg; isolated yield = 82%; m.p. 203.2-203.8°C; $[\alpha]^{20.0}_{D}$ = +28.86 (*c* 0.35, CH₂Cl₂); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 9.04 min (major), t₂ = 20.57 min (minor), *ee* = 92%; ¹H NMR (400 MHz, CDCl₃) δ 9.24 – 9.22 (m, 1H), 8.07 – 7.66 (m, 3H), 7.62 – 7.51 (m, 1H), 7.50 – 7.40 (m, 2H), 4.34 – 4.28 (m, 2H), 4.18 – 4.10 (m, 2H), 2.42 (s, 3H), 1.29 – 1.21 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 166.4, 165.6, 162.9, 158.0, 132.7, 132.2, 128.9, 128.7, 127.6, 127.3, 105.5, 67.0, 63.4, 59.8, 14.3, 14.0, 13.9; HRMS (ESI) m/z calcd for C₁₈H₂₀N₂O₆Na [M + Na]⁺ = 383.1214, found = 383.1217.

Diethyl (S)-1-amino-3-benzamido-5-methyl-2-oxo-2,3-dihydro-1*H*-pyrrole-3,4-dicar boxylate 6:

A yellow oil; 54.6 mg; isolated yield = 97%; $[\alpha]^{27.3}_{D}$ = +90.87 (*c* 0.46, CH₂Cl₂); HPLC (IE column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 6.96 min (minor), t₂ = 9.03 min (major), *ee* = 87%; ¹H NMR (400 MHz, CDCl₃) δ 7.91 - 7.74 (m, 3H), 7.59 - 7.52 (m, 1H), 7.47 - 7.43 (m, 2H), 4.45 - 4.10 (m, 4H), 2.45 - 2.31 (m, 3H), 1.31 - 1.25 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 166.8, 165.2, 162.2, 156.7, 132.5, 132.2, 128.8, 127.3, 105.1, 64.9, 64.0, 60.5, 14.2, 13.7, 11.3; HRMS (ESI) m/z calcd for C₁₈H₂₁N₃O₆Na [M + Na]⁺ = 398.1323, found = 398.1332.

4. X-ray Single Crystal Data for (S)-3f

CCDC: 2246700 for (+)-3f

Table S1 Crystal data and s	structure refinement for 20230221A.			
Identification code	20230221A			
Empirical formula	$C_{20}H_{23}N_3O_8$			
Formula weight	433.41			
Temperature/K	293(2)			
Crystal system	monoclinic			
Space group	C2			
a/Å	21.0745(7)			
b/Å	12.0391(4)			
c/Å	9.3014(3)			
α/\circ	90			
β/°	107.027(3)			
$\gamma/^{\circ}$	90			
Volume/Å ³	2256.50(14)			
Z	4			
$\rho_{calc}g/cm^3$	1.276			
μ/mm^{-1}	0.845			
F(000)	912.0			
Crystal size/mm ³	0.17 imes 0.14 imes 0.1			
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)			
2Θ range for data collection/° 8.556 to 141.706				
Index ranges	$-25 \leq h \leq 24, -14 \leq k \leq 12, -11 \leq l \leq 11$			
Reflections collected	11094			
Independent reflections	$3802 [R_{int} = 0.0254, R_{sigma} = 0.0241]$			
Data/restraints/parameters	3802/5/288			
Goodness-of-fit on F ²	1.037			
Final R indexes [I>= 2σ (I)]	$R_1 \!=\! 0.0403, wR_2 \!=\! 0.1102$			
Final R indexes [all data]	$R_1 = 0.0439, wR_2 = 0.1161$			
Largest diff. peak/hole / e Å ⁻³ 0.20/-0.15				
Flack parameter	0.14(11)			

5. NMR Spectra

110 100 f1 (ppm) -10

110 100 f1 (ppm) -10

110 100 f1 (ppm)

110 100 fl (ppm) 160 150 140 130 120 -10

110 100 f1 (ppm) -10

S29

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

S31

110 100 f1 (ppm) -10

110 100 f1 (ppm) -10

-10 110 100 f1 (ppm)

 ^{19}F NMR spectrum of compound 3p (CDCl₃, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

110 100 f1 (ppm) -10

-10 110 100 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S40

-10 110 100 f1 (ppm)

 $^{19}\mathrm{F}$ NMR spectrum of compound $\boldsymbol{3u}$ (CDCl_3, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

110 100 f1 (ppm) -10

 ^{19}F NMR spectrum of compound 3v (CDCl_3, 376 MHz)

110 100 f1 (ppm)

S48

110 100 f1 (ppm) -10

¹H NMR spectrum of compound **S2** (CDCl₃, 400 MHz)

S52

110 100 f1 (ppm) -10

6. HPLC Spectra

3d (R = fluorenylmethyl)

3i (R' = 2-methoxyethyl)

0.26 0.24 0.22 0.20 0.18 0.16 0.14 0.14 0.12 0.10

7. References

[1] X.-P. Chen, J.-X. Liu, H.-Y. Li, Y.-C. Xiao, F.-E. Chen. *Adv. Synth. Catal.* **2022**, *364*, 2067–2071.

[2] Robert A. Mosey, Jason S. Fisk, Timothy L. Friebe, Jetze J. Tepe. Org. Lett. 2008, 10, 825-828.

[3] Ansgar Oberheide, Hans-Dieter Arndt. Adv. Synth. Catal. 2021, 363, 1132 – 1136.

[4] Nelson A. M. Pereira, Américo Lemos, Arménio C. Serraa, Teresa M. V. D. Pinho e Melo. *Tetrahedron. Lett.* **2013**, *54*, 1553-1557.