Supporting Information

Sensitive Quantification of Short-Chain Fatty Acids Combined with Global Metabolomics in Microbiome Cultures

Weifeng Lin^a, Fabricio Romero García^b, Elisabeth Lissa Norin^b, Didem Kart^b, Lars Engstrand^b, Juan Du^b, and Daniel Globisch^{a,b,*}

^a Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden.

^b Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden

*To whom correspondence should be addressed: <u>Daniel.globisch@scilifelab.uu</u>.

Table of contents

1. General	4
2. Description of procedures	4
2.1 UPLC-MS analysis.	4
2.2 Preparation of magnetic bead-bound, SCFAs quantification probe 1.	5
2.3 Bacteria cultures.	5
2.4 Preparation of bacterial metabolite extracts.	6
2.5 Treatment of bacterial metabolite extracts.	6
2.6 Cleavage of the bead-bound chemical probe 13.	6
2.7 LOQ measurement.	7
2.8 Global metabolomics analysis.	7
3. Supporting Schemes	8
4. Supporting Figures	10
5. Supporting Tables	16
6. Synthesis	22
6.1 Synthesis of tert-butyl (4-((2-(N-(2-(((benzyloxy)carbonyl)amino)ethyl)benzami	do)
ethyl)carbamoyl)benzyl)(methyl)carbamate (11)	22
6.2 Synthesis of tert-butyl (4-((2-(N-(2-(((benzyloxy)carbonyl)amino)ethyl)benzami	do)
ethyl)carbamoyl)benzyl)(methyl)carbamate (phenyl- ¹³ C ₆) (11*)	22
6.3 Synthesis of (2-(N-(2-(4-((methylamino)methyl)benzamido)ethyl)benzamido)ethyl) carbam	ate
(6)	23
6.4 Synthesis of (2-(N-(2-(4-((methylamino)methyl)benzamido)ethyl)benzamido) ethyl)carbam	ate
$(\text{phenyl}^{-13}C_6)(6^*)$	24
6.5 Synthesis of benzyl (2-(N-(2-(4-((N-methylformamido)methyl)benzamido) ethyl)benzami	do)
ethyl)carbamate (12a)	24
6.6 Synthesis of benzyl (2-(N-(2-(4-((N-methylformamido)methyl)benzamido)ethyl) benzami	do)
ethyl)carbamate (phenyl- ${}^{13}C_6$) (12a*)	25
6.7 Synthesis of benzyl (2-(N-(2-(4-((N-methylacetamido)methyl)benzamido)ethyl) benzami	do)
ethyl)carbamate (12b)	26
6.8 Synthesis of benzyl (2-(N-(2-(4-((N-methylacetamido)methyl)benzamido) ethyl)benzami	do)
ethyl)carbamate (phenyl- ${}^{13}C_6$) (12b*)	26
6.9 Synthesis of benzyl (2-(N-(2-(4-((N-methylpropionamido)methyl)benzamido)eth	ıyl)
benzamido)ethyl)carbamate (12c)	27
6.10 Synthesis of benzyl (2-(N-(2-(4-((N-methylpropionamido)methyl)benzamido)eth	ıyl)
benzamido)ethyl)carbamate (phenyl- ${}^{13}C_6$) (12c*)	28
6.11 Synthesis of benzyl (2-(N-(2-(4-((N-methylbutyramido)methyl)benzamido)ethyl) benzami	do)
ethyl)carbamate (12d)	29
6.12 Synthesis of benzyl $(2-(N-(2-(4-((N-methylbutyramido)methyl)benzamido)eth$	iyl)
benzamido)ethyl)carbamate (phenyl- ${}^{15}C_6$) (12d*)	29
6.13 Synthesis of benzyl $(2-(N-(2-(4-((N-methylpentanamido)methyl)benzamido)eth$	iyl)
benzamido)ethyi)carbamate (12e)	3U
0.14 Synthesis OI benzyl $(2-(N-(2-(4-((N-methylpentanamido))methyl))benzamido)eth$	iyi) ⊃₄
benzamido jetnyi jearbamate (pnenyi-"C ₆) (12e ⁺)	5 1
0.15 Symmetric Symmetry $(2-(1/2-(1/2-(1/2-(1/2-(1/2-(1/2-(1/2-(1$	191) 20
benzamido jeunyi joenzamido jeunyi joenzamide (121)	
0.10 Symmetris of Denzyi $(2-(N-(2-(N-(2-nydroxy-N-metnyipropanamido))))$	191) 20
venzamiuojeunyijoenzamiuojeunyijoearoamaie (pnenyi-"C ₆) (121")	32

6.17	Synthesis	of	N-(2-aminoethyl)-N-(2-(4-((N-methylformamido)met	hyl)
benzami	ido)ethyl)benzai	mide (3a)		. 33
6.18 S	ynthesis of <i>N</i>	V-(2-aminoeth	yl)-N-(2-(4-((N-methylformamido)methyl)benzamido) et	thyl)
benzami	ide (phenyl- ¹³ C ₆	5) (3a*)		. 34
6.19 S	ynthesis of	N-(2-aminoeth	hyl)-N-(2-(4-((N-methylacetamido)methyl)benzamido) et	hyl)
benzami	ide (3b)			. 35
6.20	Synthesis	of N-(2-a	aminoethyl)-N-(2-(4-((N-methylacetamido)methyl)benzam	iido)
ethyl)be	nzamide (pheny	$(1^{-13}C_6)(3b^*)$.		. 35
5.21	Synthesis	of	N-(2-aminoethyl)-N-(2-(4-((N-methylpropionamido)met	hyl)
oenzami	ido)ethyl)benzai	mide (3c)		. 36
5.22	Synthesis of	f <i>N</i> -(2-amin	noethyl)-N-(2-(4-((N-methylpropionamido)methyl)benzam	iido)
ethyl)be	nzamide (pheny	$(1^{-13}C_6)(3c^*)$.		. 37
5.23	Synthesis	of N-(2-ar	minoethyl)-N-(2-(4-((N-methylbutyramido)methyl)benzam	iido)
ethyl)be	nzamide (3d)			. 37
5.24	Synthesis	of N-(2-ar	minoethyl)-N-(2-(4-((N-methylbutyramido)methyl)benzam	ido)
ethyl)be	nzamide (pheny	$(1^{-13}C_6)(3d^*)$.		. 38
5.25	Synthesis o	of <i>N</i> -(2-am	inoethyl)-N-(2-(4-((N-methylpentanamido)methyl)benzam	ido)
ethyl)be	nzamide (3e)			. 39
5.26	Synthesis o	of <i>N</i> -(2-am	inoethyl)-N-(2-(4-((N-methylpentanamido)methyl)benzam	iido)
ethyl)be	nzamide (pheny	$(1^{-13}C_6)(3e^*)$.		. 39
5.27	Synthesis c	of <i>N</i> -(2-am	ninoethyl)-N-(2-(4-((2-hydroxy-N-methylpropanamido)met	hyl)
oenzami	ido)ethyl)benzai	mide (3f)		. 40
6.28	Synthesis c	of <i>N</i> -(2-am	ninoethyl)-N-(2-(4-((2-hydroxy-N-methylpropanamido)met	hyl)
benzami	ido)ethyl)benzai	mide (phenyl-	$^{13}C_6$ (3f*)	. 41
6.29	Synthesis of	f methyl	(E)-5-(5-benzoyl-1-(4-(((tert-butoxycarbonyl)(methyl)am	ino)
methyl)	phenyl)-1,9-dioz	xo-10-oxa-2,5	,8-triazatridec-12-en-13-yl)-2-nitrobenzoate (8)	. 41
6.30 Syı	thesis of (E) -5-	(5-benzoyl-1-	(4-(((tert-butoxycarbonyl)(methyl)amino)methyl) phenyl)	-1,9-
dioxo-10	0-oxa-2,5,8-tria	zatridec-12-en	n-13-yl)-2-nitrobenzoic acid (9)	. 42
. NN	AR spectra			. 43
. Re	ferences			70

1. General

All non-aqueous reactions were performed using flame- or oven dried glassware under an atmosphere of dry nitrogen. All reagents and solvents were purchased from Sigma-Aldrich or Fischer Scientific and were used without further purification. Mass spectrometry grade solvents were used for UHPLC-ESI-MS analysis. Solutions were concentrated in vacuo on a Heidolph or a IKA rotary evaporator. Thin Layer Chromatography (TLC) was performed on silica gel 60 F-254 plates. Chromatographic purification of products was accomplished using flash column chromatography on Merck silica gel 60 (40–63 µm. All synthesized compounds were \geq 95% pure as determined by NMR. NMR spectra were recorded on a Bruker 600 MHz spectrometer (¹H NMR: 600.18 MHz, ¹³C NMR: 150.92 MHz) or Agilent 400 MHz spectrometer (¹H NMR: 399.97 MHz, ¹³C NMR: 100.58 MHz). Chemical shifts are reported in parts per million (ppm) on the δ scale from an internal standard. Multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Glass vials used for handling magnetic beads were microwave vials from Biotage (0.2-0.5 mL or 0.5-2.0 mL).

2. Description of procedures

2.1 UPLC-MS analysis.

The UPLC-MS analysis was performed in a Maxis II ETD Q-TOF mass spectrometer using an electrospray ionization (ESI) source with an Elite UHPLC system and equipped with a Waters ACQUITY UPLCVR HSS T3 column (1.8 mm, 100 2.1 mm). Milli-Q water with 0.1% formic acid was used as mobile phase A and LCMS grade methanol with 0.1% formic acid was used as mobile phase B. The column temperature was kept at 40 °C, and the autosampler was kept at 4 °C. The flow rate was set to 0.22 mL/min. The gradient used was as follows: 0–2 min, 0% B; 2–15 min, 0–100% B; 15–16 min, 100% B; 16–17 min, 100-0% B; 17–23 min, 0% B. The system was controlled using the Compass HyStar software package from Bruker. High-resolution mass spectra were acquired in positive mode at a mass range of m/z 50–1200. The samples were introduced into the q-TOF using positive electrospray ionization. A solution of sodium formate (0.5 mM in 2-propanol: water, 90:10, v/v) was used to calibrate the instrument. Data acquisition was performed in MSE mode. The samples were injected to the UPLC-MS system in a randomized order with QC samples injected in the beginning and end of the sample list in both ionization modes, as well as after every eight samples (7 QCs in each ionization mode in total).

2.2 Preparation of magnetic bead-bound, SCFAs quantification probe 1.

MagnaBind Amine Derivatized Beads slurry (50 µL, Thermo ScientificTM) was transferred into a 1.5 mL Eppendorf tube. Original solution from supplier was taken out by magnetic separation. The beads were washed with THF ($2 \times 150 \mu$ L) followed by phosphate buffer ($2 \times 150 \mu$ L, 25 nM, pH 7.5). DMF (150 µL) was added to the Eppendorf followed by 5 µL DIPEA and then vortexed for at least 30 s to yield the unprotonated amine. The beads were washed with DMF (150 µL) followed by DCM (150 µL). An amide coupling solution (4.5 mM PyBop, 3.3 mM HOBT, 1% DIPEA v/v in DCM) and probe solution (3 mM in DMF) were freshly prepared in separate. The probe solution (100 μ L) and amide coupling solution (100 μ L) were combined into the Eppendorf tube containing magnetic beads. The mixture was shaken and incubated using a Thermomixer (1,500 rpm, 25 °C, overnight.). The solution was removed and the beads consecutively washed with 2×150 µL THF and 2×150 µL DCM. After removal of all the solution, DCM (190 µL) and TFA (10 µL) were added in sequence to the Eppendorf for Boc deprotection. The mixture was shaken and incubated with a Thermomixer (1,500 rpm, 25 °C, 5 h). The reaction mixture was removed and followed by washing with THF (2×150 µL). DCM $(150 \,\mu\text{L})$ and DIPEA $(10 \,\mu\text{L})$ were added in sequence to the Eppendorf for amine deprotonation and TFA neutralization. The beads were washed with DMF ($2 \times 150 \mu$ L). The beads were suspended in the DMF (100 μ L), ready to be used for sample treatment.

2.3 Bacteria cultures.

Anaerobic Cultivated Human Intestinal Microflora system (ACHIM) culture was originally obtained from the fresh feces of a healthy Scandinavian donor on an ordinary Western diet. The culture has been re-cultivated every week in anaerobic conditions as described previously¹ (Patent Number: WO 2013/053836A). This ACHIM culture is referred to as "healthy gut microbiota" in this paper and the 1:10 dilution of the ACHIM culture is represented here as "weak gut microbiota". *Salmonella typhimurium* SL1344 at 107 or 106 colony forming units (CFU) were co-cultured with the "Healthy" and "Weak" gut microbiota in vitro, respectively. Further antibiotic treatment with 50 µg/mL of Spectinomycin was added to both conditions to evaluate the influence of the antibiotic treatment on the interaction between the gut microbiota and *Salmonella*. "Healthy" and "Weak" gut microbiota without *Salmonella* nor antibiotic were used as negative control for the analysis. *Salmonella* culture without gut microbiota culture is considered the positive control for the CFU comparison.

All tubes were grown anaerobically in a 9 mL culture system. On day 1 and day 5 after coculture, *Salmonella* and gut microbial numbers were counted by series dilution and plated on CHROMagar *Salmonella* agar plates (CHROMagar, Paris France) and modified YCFA plates (recommended from Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) supplemented with 2 g/L maltose and 2 g/L cellobiose, all reagents from Sigma-Aldrich, Germany), and grown aerobically and anaerobically, respectively as published before.²

In addition, on day 1 and day 5, 2 mL supernatant without bacteria from all the conditions was collected after filtering the culture mix through the 0.2 µm PES-membrane filter (Whatman Uniflo, Cytva UK). Afterwards, the supernatant was mixed with 8 ml ice-cold methanol (Sigma-Aldrich, Germany) and kept at -80°C until further *quant*-SCHEMA analysis.

2.4 Preparation of bacterial metabolite extracts.

10 μ L bacterial extract (2 μ L bacterial sample + 8 μ L MeOH) was direct used in the bead treatment.

2.5 Treatment of bacterial metabolite extracts.

A suspension of activated beads 1 in DMF (100 μ L) was used to treat the bacterial extract. A capture solution (4.8 mM HBTU, 3.6 mM HOBT, 1% DIPEA v/v in DCM) was freshly prepared in separate and 100 μ L of this solution was added into Eppendorf for SCFAs capture before it was shaken for 16 h at 1,500 rpm and 25 °C. The remaining bacterial extract solution was removed from the beads and the beads were washed with THF (2 x 200 μ L) before being resuspended in THF (300 μ L).

2.6 Cleavage of the bead-bound chemical probe 13.

The suspension of beads was transferred to a glass vial. Triphenylphosphine (97.0 μ L, 12.9 mM in THF, 1.25 μ mol) and dimethylbarbituric acid (90.0 μ L, 30.7 mM in THF, 2.76 μ mol) solutions were added to the vial, followed by palladium (II) acetate solution (84.0 μ L, 6.53 mM in THF, 549 nmol). Then ¹³C₆-3 mixture (depend on SCFAs concentration in the samples) was spiked into the beads solution as internal standard. The vial was quickly sealed and a stream of nitrogen was passed through until approximately half the volume of the suspension remained. The vial was agitated at intervals on a vortexer and the reaction was allowed to continue 16 h at 25 °C. In parallel, a sample of unmodified beads was treated with the same cleavage conditions as the activated beads treated with human sample extract and used as control sample.

The supernatant was removed from the beads using magnetic separation and the solvent removed using a vacuum centrifuge. The residues were redissolved in MeOH (30 μ L each) and triphenylphosphine and triphenylphosphine oxide were precipitated through the addition of water (120 μ L each). The suspension was centrifuged (benchtop centrifuge, 12,000 g, 5 min), the supernatant removed, and the solvent was again removed with the vacuum centrifuge. The residues were redissolved in water/acetonitrile solution (95:5 v/v) and submitted for LC-MS analysis.

2.7 LOQ measurement.

Synthetic conjugated SCFAs **3a-f** was prepared in a solution of water and acetonitrile (95:5 v/v) at a range of concentrations (1 μ M, 100 nM, 50 nM, 10 nM, 1 nM, 0.5 nM, 0.1 nM) before being submitted for UPLC-MS analysis. The measurement was based on the conventional concepts that signal to noise ratios at least higher than 10 corresponding to Limit of Quantification (LOQ), respectively. The signal to noise ratios were calculated according to European Pharmacopoeia guidelines by using DataAnalysis 5.0 (Bruker).

2.8 Global metabolomics analysis.

490 μ L bacterial extract (98 μ L bacterial sample + 392 μ L MeOH) was transferred into an empty Eppendorf tube. As an internal standard (I.S.), a mixture of C-13 isotopically labelled tyrosine (5 mg/mL), phenylalanine (10 mg/mL) and valine (30 mg/mL) was used. The mixture was dried under vacuum on a Speedvac and re-suspended with 50 μ L water:acetonitrile (95:5) prior to UPLC-MS/MS analysis. Quality control (QC) samples were prepared by 3 μ L aliquots from all samples.

The chromatograms and mass spectra were processed using the XCMS R package (version 1.4.414) for peak alignment and retention time correction in both positive and negative ionization mode. From the corresponding feature lists obtained from the software, features with intensities > 30,000 ion count, rt > 1.5 min and %CV of the QCs < 30 were selected for further statistical analysis as considerably higher than noise. An overview of the data was provided by principal component analysis (PCA) and heatmap, prior to which the data was autoscaled using the metabolomics platform Metaboanalyst. The normality of the test statistics and p values were evaluated using the same platform, and the data were distributed normally.

3. Supporting Schemes

Scheme S1. Synthesis of the SCFAs full-length probe 10

Scheme S2. Synthesis of the SCFAs conjugates 3a-f.

Note: Phenyl-¹³C₆ labelled compounds have been synthesized following the same synthetic route and marked as **3a***, **3b***, **3c***, **3d***, **3e***, **and 3f***.

Scheme S3. Chemistry for SCFAs capture with the chemoselective probe immobilized to magnetic beads.

4. Supporting Figures

Figure S1. Comparison of TIC within sample matrix and without sample matrix.

Figure S2. Calibration curve for formic acid (FA), acetic acid (AA), propanoic acid (PA), butyric acid (BA), valeric acid (VA), and lactic acid (LA) conjugates. Data are presented as mean \pm SD from experimental replicates (N = 3).

Figure S3. The linear concentration ranges from 1 nM to 1000 nM.

Figure S4. Comparison results of the impact of sample matrix. A) Area under curve, B) quantification results (N=4).

Figure S5. Salmonella colony forming units (CFU).

Figure S6. Multivariate analysis (PCA).

Figure S7. Boxplots of 13 validated metabolites. N = 3, error bars are standard deviation.

5. Supporting Tables

Table S1. LOD/LOQ experiment results in 1 μ M, 100 nM, 10 nM and 1 nM. S/N = signal to noise ratio.

S/N	FA	AA	PA	BA	VA	LA
1 µM	1260.8	3497	7006.5	7269.4	3263.9	1963.6
100 nM	297.2	487.8	1840.4	1575.6	2082.4	155.7
10 nM	16	63	259.5	124.8	250	30
1 nM	ND	5.7	19.2	10.1	27.5	5.8
0.5 nM	ND	ND	ND	ND	ND	ND

Note: Formic acid (FA), acetic acid (AA), propanoic acid (PA), butyric acid (BA), valeric acid (VA), and lactic acid (LA)

 Table S2. LOD/LOQ experiment results from calibration curve and linearity.

SCFAs	Linear Range(nM)	R ²	LOD(nM)	LOQ(nM)
Formic acid	1-1000	1	3.36	10.19
Acetic acid	1-1000	0.9999	13.87	42.04
Propionic acid	1-1000	0.9999	12.59	38.17
Butyric acid	1-1000	0.9999	9.00	27.26
Valeric acid	1-1000	1	6.32	19.17
Lactic acid	1-1000	0.9999	9.53	28.88

Table S3 LOD/LOQ Comparison with other studies.^{3, 4}

SCFAs	This	study	Other st Borche	udy from ers Lab	Other study from Molloy Lab	
	LOD (nM)	LOQ (nM)	LOD (nM)	LOQ (nM)	LOD (nM)	LOQ (nM)
Formic acid	3.36	10.19	-	-	-	-
Acetic acid	13.87	42.04	5.00	19.50	0.85	2.74
Propionic acid	12.59	38.17	1.20	4.90	0.36	1.30
Butyric acid	9.00	27.26	0.08	0.31	0.28	0.91
Valeric acid	6.32	19.17	0.02	0.06	0.31	1.11
Lactic acid	9.53	28.88	-	-	-	-

Matrix	FA	AA	PA	BA	VA	LA
Exp.1	8639695	18451720	395641	1862294	78089	242071
Exp.2	8003012	16492046	226079	1577423	66085	180811
Exp.3	7573860	15920651	157094	1611376	78229	184810
Exp.4	7480087	14270476	159437	1493546	85568	179342
Mean	7924164	16283723	234563	1636160	76993	196759
SD	457744	1494038	97035	137422	6986	26238
RSD	5.8%	9.2%	41.4%	8.4%	9.1%	13.3%
Average RSD	14.5%					

Table S4. Comparison of matrix effect in detection using area under curve (AUC).

No Matrix	FA	AA	PA	BA	VA	LA
Exp.1	9746659	20581568	267394	2342578	96999	269245
Exp.2	10327008	19592296	301084	2064538	113020	250381
Exp.3	10687108	19462392	436994	1978676	124480	234328
Exp.4	9933801	17973286	295962	1943592	116728	221785
Mean	10173644	19402386	325359	2082346	112807	243935
SD	362976	931727	65719	156555	10020	17784
RSD	3.6%	4.8%	20.2%	7.5%	8.9%	7.3%
Average RSD	8.7%					
Matrix effect Average	77.9% 76.9%	83.9%	72.1%	78.6%	68.3%	80.7%

Matrix	FA	AA	PA	BA	VA	LA	
Exp.1	162.71	88.44	1.35	7.44	3.53	5.28	μM
Exp.2	133.01	74.83	0.77	4.89	3.28	2.47	μM
Exp.3	107.89	71.93	0.50	4.29	4.05	3.06	μM
Exp.4	118.91	64.35	0.52	4.07	3.99	2.40	μM
Mean	130.63	74.89	0.78	5.17	3.71	3.30	μM
SD	20.55	8.71	0.35	1.34	0.32	1.17	
RSD	15.7%	11.6%	44.0%	26.0%	8.6%	35.4%	
Average RSD	23.6%						

 Table S5. Comparison of matrix effect in quantification.

No Matrix	FA	AA	PA	BA	VA	LA	
Exp.1	169.55	114.37	1.17	9.15	7.53	4.20	μΜ
Exp.2	155.81	107.60	1.18	9.44	8.60	3.76	μΜ
Exp.3	155.49	99.00	1.41	7.59	8.55	3.61	μΜ
Exp.4	144.11	94.72	1.08	7.67	7.00	3.32	μΜ
Mean	156.24	103.92	1.21	8.46	7.92	3.72	μΜ
SD	9.01	7.61	0.12	0.84	0.68	0.32	
RSD	5.8%	7.3%	10.1%	9.9%	8.6%	8.6%	
Average RSD	8.4%						
Matrix effect	83.6%	72.1%	64.5%	61.1%	46.8%	88.7%	
Average	69.5%						

Table S6. LC-MS output for quality control by measuring internal standards.

Ion count	Val	Phe	Tyr
QC-1	10698395	11655347	5980158
QC-2	12114594	17797059	7452672
QC-3	13564925	18100738	7540969
QC-4	13481020	17435237	8136903
QC-5	13313388	18726162	7545794
QC-6	14114205	18242556	8349312
QC-7	12486019	17898733	7632020
Mean	12824649	17122262	7519690
SD	1070411	2262374	702813.4
RSD	8.35%	13.21%	9.35%

Features	P.value	FDR	Annotation	m/z	RT(min)
M101T298	7.78E-17	9.73E-14	Succinic anhydride	101.0229	4.96
M119T298	1.64E-16	1.02E-13	4-Hydroxy-2-oxobutanoic acid	119.0336	4.97
M222T343	3.2E-15	6.66E-13	9-(Methylaminomethyl)anthracene	222.1281	5.72
M361T479	3.46E-15	6.66E-13		361.1723	7.98
M173T749	2.32E-14	3.62E-12	6-oxononanoic acid	173.1174	12.48
M436T406	3.95E-14	5.46E-12		436.1751	6.76
M141T166_1	6.28E-14	6.83E-12	5-Ethyluracil	141.0657	2.77
M123T167	5.69E-14	6.83E-12	Isonicotinamide	123.055	2.78
M101T132	5.78E-14	6.83E-12		101.1169	2.21
M231T245	6.07E-14	6.83E-12		230.9775	4.08
M361T412	8.5E-14	8.85E-12		361.1729	6.87
M291T299	1.59E-13	1.59E-11		290.98	4.98
M140T204	1.66E-13	1.6E-11	3-Nitrophenol	140.034	3.40
M471T593_1	2.23E-13	1.91E-11		471.256	9.88
M197T302	2.27E-13	1.91E-11		196.9201	5.03
M279T444	2.37E-13	1.91E-11		279.1553	7.40
M141T193	3.31E-13	2.44E-11	5-Ethyluracil	141.0657	3.22
M145T396_2	9.15E-13	6.53E-11	Triacetic acid	145.0494	6.60
M127T262	1.33E-12	8.73E-11		127.0364	4.37
M197T158	1.47E-12	9.39E-11		197.0535	2.64
M170T743	1.73E-12	1.05E-10	1-Naphthyl isocyanate	170.0602	12.38
M279T416	1.88E-12	1.12E-10		279.1557	6.93
M141T298	2.77E-12	1.61E-10		141.0156	4.96
M304T649	3.33E-12	1.85E-10	3-hydroxyoctanoyl carnitine	304.212	10.82
M134T196	3.33E-12	1.85E-10		134.0439	3.27
M148T156	4.03E-12	2.19E-10	D-Glutamic acid	148.0603	2.61
M213T757	5.28E-12	2.75E-10	2',3'-Dideoxyuridine	213.0873	12.61
M401T745	6.26E-12	2.91E-10	Sinapic acid glucuronide	401.1093	12.41
M230T252	6.29E-12	2.91E-10		229.9748	4.21
M437T406	7.17E-12	3.26E-10		437.1784	6.77
M456T369	7.43E-12	3.31E-10		456.2094	6.15
M490T380	7.61E-12	3.33E-10		490.1906	6.33
M537T622	8.37E-12	3.57E-10		537.1439	10.36
M197T278_1	8.79E-12	3.66E-10		196.9201	4.64
M279T412	1E-11	4.04E-10	Phenylalanylleucine 2-(Sec-butyldisulfanyl)-1h-	279.1693	6.86
M189T622	1.05E-11	4.16E-10	imidazole	189.0523	10.37
M237T352	1.28E-11	4.77E-10		237.1345	5.87
M186T222	1.46E-11	5.34E-10		185.985	3.70
M189T763	1.47E-11	5.34E-10		189.0786	12.72
M490T562	1.62E-11	5.79E-10		490.2748	9.37
M157T123	1.65E-11	5.82E-10	1,5-Dimethylbarbituric acid	157.061	2.05
M143T358	1.85E-11	6.26E-10	Piracetam	143.0814	5.96
M158T159	1.88E-11	6.26E-10	Succinimidyl acetate	158.045	2.65

 Table S7. Top100 significant features from ANOVA analysis and their annotation.

M234T265	2.03E-11	6.59E-10	Hydroxypropionylcarnitine	234.1338	4.41
M416T203	2.01E-11	6.59E-10		416.0392	3.38
M314T247	2.07E-11	6.64E-10		314.0151	4.12
M420T288	2.82E-11	8.7E-10		420.023	4.81
M252T397	3.06E-11	9.2E-10		252.1532	6.62
M140T221	3.47E-11	1.02E-09	3-Nitrophenol	140.034	3.69
M112T205	3.81E-11	1.1E-09	2,4-Dihydroxypyridine	112.0392	3.41
M238T396 1	3.79E-11	1.1E-09		238.08	6.60
M207T279	3.9E-11	1.1E-09		206.9157	4.64
M379T297	4.84E-11	1.31E-09	6-Methylthiopurine ribonucleoside	379.0456	4.96
M129T189	5.13E-11	1.36E-09	Dihydrothymine	129.0656	3.14
M190T297	5.36E-11	1.41E-09	Glutarylglycine	190.0712	4.95
M190T622	5.4E-11	1.41E-09	Thiotepa	190.0554	10.36
M401T746	5.95E-11	1.53E-09		401.1468	12.44
M393T487	6.05E-11	1.54E-09		393.2232	8.12
M205T327	7.57E-11	1.91E-09		204.9795	5.45
M235T124 2	8.05E-11	1.99E-09		235.1288	2.07
M418T746	8.45E-11	2.07E-09		418.1165	12.44
M148T260	8.82E-11	2.14E-09	Daunosamine	148.0968	4.34
M130T120 1	9.23E-11	2.21E-09	4-Oxoproline	130.0497	2.00
M144T794	9.38E-11	2.21E-09	Quinaldine	144.0806	13.24
M228T746	9.44E-11	2.21E-09		228.042	12.43
M87T259	9.5E-11	2.21E-09		87.04358	4.32
M429T394 2	9.53E-11	2.21E-09		428.6937	6.56
M166T436	9.87E-11	2.26E-09	Phenyl-Alanine	166.0864	7.26
M534T649 1	1.01E-10	2.3E-09	2	534.3109	10.82
M235T351	1.06E-10	2.39E-09		235.1415	5.85
M277T530	1.12E-10	2.5E-09		277.1543	8.84
M295T370 1	1.18E-10	2.62E-09		294.6531	6.17
M503T324	1.21E-10	2.64E-09		503.2101	5.39
M127T326	1.25E-10	2.72E-09		127.0365	5.44
M364T388	1.36E-10	2.91E-09	Pyroglutamyl-histidyl-proline	364.1627	6.47
M182T328	1.48E-10	3.13E-09	D-Tyrosine	182.0813	5.47
M329T159	1.51E-10	3.18E-09	-	329.157	2.65
M251T398 2	1.53E-10	3.18E-09		251.1504	6.63
M250T398	1.62E-10	3.35E-09		250.1656	6.64
M488T502	1.65E-10	3.37E-09	Ac-Ser-Asp-Lys-Pro-OH	488.2356	8.36
M229T746 1	1.66E-10	3.37E-09	Aminoethylcysteine ketimine	229.0453	12.43
M490T580	1.69E-10	3.39E-09		490.2754	9.67
M188T745	1.73E-10	3.41E-09	Indoleacrylic acid	188.0708	12.41
M95T167	1.78E-10	3.48E-09	2-Aminopyridine	95.06002	2.79
M177T199	1.83E-10	3.55E-09	Alanylserine	177.0872	3.32
M377T608	1.84E-10	3.55E-09	Riboflavin	377.146	10.13
M235T124 1	2.03E-10	3.84E-09	Glutamylserine	235.0927	2.06
M275T746	2.14E-10	3.97E-09	,	275.0246	12.43
M359T344	2.14E-10	3.97E-09		359.1764	5.73
	-				

2.18E-10	4E-09	Haloperidol decanoate	530.2823	9.83
2.43E-10	4.43E-09		351.1766	7.88
2.63E-10	4.58E-09	DL-Asparagine	133.0607	2.69
2.64E-10	4.58E-09	Phenyl-Leucine	208.1332	11.18
2.59E-10	4.58E-09	Tropate	167.0703	10.37
2.58E-10	4.58E-09		670.3047	8.66
2.64E-10	4.58E-09		213.0717	12.43
2.78E-10	4.79E-09	7-Methoxy tropisetron	315.1702	5.03
2.86E-10	4.9E-09		212.0684	12.71
3.03E-10	5.05E-09		645.2481	6.83
	2.18E-10 2.43E-10 2.63E-10 2.64E-10 2.59E-10 2.58E-10 2.64E-10 2.78E-10 2.86E-10 3.03E-10	2.18E-104E-092.43E-104.43E-092.63E-104.58E-092.64E-104.58E-092.59E-104.58E-092.58E-104.58E-092.64E-104.58E-092.78E-104.79E-092.86E-104.9E-093.03E-105.05E-09	2.18E-10 4E-09 Haloperidol decanoate 2.43E-10 4.43E-09 DL-Asparagine 2.63E-10 4.58E-09 DL-Asparagine 2.64E-10 4.58E-09 Phenyl-Leucine 2.59E-10 4.58E-09 Tropate 2.58E-10 4.58E-09 7-Methoxy tropisetron 2.64E-10 4.9E-09 3.03E-10	2.18E-104E-09Haloperidol decanoate530.28232.43E-104.43E-09351.17662.63E-104.58E-09DL-Asparagine133.06072.64E-104.58E-09Phenyl-Leucine208.13322.59E-104.58E-09Tropate167.07032.58E-104.58E-09213.07172.64E-104.58E-09213.07172.78E-104.79E-097-Methoxy tropisetron315.17022.86E-104.9E-09645.2481

Conc.	FA	AA	PA	BA	VA	LA	
Rep.1	61.82	169.84	5.10	76.60	5.74	3.21	μM
Rep.2	74.65	205.62	6.16	55.44	4.72	3.12	μM
Rep.3	79.35	270.71	5.17	61.10	4.15	3.17	μM
Rep.4	63.29	211.88	5.30	46.69	4.54	3.30	μM
Rep.5	79.13	202.87	5.26	48.37	5.14	3.86	μM
Rep.6	90.45	200.91	5.05	67.13	5.37	2.62	μM
Mean:	74.78	210.31	5.34	59.22	4.94	3.21	μM
SD	9.8755	30.1503	0.3795	10.4675	0.5327	0.3630	
RSD	13.21%	14.34%	7.11%	17.68%	10.78%	11.30%	

Table S8. Quantification results of an identical bacteria sample six times.

6. Synthesis

Compounds 5, 7 were synthesized according to the procedures from the literature.^{5, 6}

6.1 Synthesis of tert-butyl (4-((2-(N-(2-(((benzyloxy)carbonyl)amino)ethyl)benzamido) ethyl)carbamoyl)benzyl)(methyl)carbamate (11)

 N_1 -Cbz, N_4 -benzyl diethylenetriamine **4** (41 mg, 120.1 µmol, 1 eq.), 4-(((tertbutoxycarbonyl)(methyl)amino) methyl)benzoic acid **5** (38.2 mg, 144.1 µmol, 1.2 eq.), HBTU (59.2 mg, 156.1 µmol, 1.3 eq.), HOBT (19.5 mg, 144.1 µmol, 1.2 eq.), DIPEA (63.0 µL, 360.3 µmol, 3 eq.) were dissolved in DCM (3 mL). The reaction was stirred at room temperature for 16 h and monitored by TLC. Upon full consumption of the starting material, the sat. NaHCO₃ (10 mL) was added to quench the reaction. Then the reaction mixture was extracted by DCM (3 X 20 mL). All the organic solvent were combined and washed by sat. NaHCO₃ (2 X 30 mL) and brine (2 X 30 mL). All the organic solvent were collected and dried over MgSO₄. The mixture was then filtered and concentrated in *vacuo* affording the yellow oil. The residual was purified by flash column chromatography on silica gel (1:19 MeOH/DCM) to afford the compound **11** (65.4 mg, 92.5 %) as a light yellow liquid.

¹H NMR (400 MHz, CDCl₃): δ 7.79 (s, 2H), 7.37 – 7.07 (m, 12H), 5.59 (s, 1H), 5.15 – 4.98 (m, 2H), 4.43 (s, 2H), 3.93 – 3.14 (m, 8H), 2.79 (s, 3H), 1.45 (s, 9H).; ¹³C NMR (101 MHz, CDCl₃): δ 174.3, 167.8, 156.8, 156.4, 142.0, 136.5, 136.0, 132.9, 129.7, 128.7, 128.6, 128.2, 128.1, 127.5, 126.4, 80.0, 66.8, 52.5, 49.8, 45.0, 39.8, 39.1, 34.2, 28.5.; HRMS (ESI+) *m/z* [M+H]⁺ calcd. for C₃₃H₄₁O₆N₄⁺: 589.3021; found 589.3019.

6.2 Synthesis of tert-butyl (4-((2-(*N*-(2-(((benzyloxy)carbonyl)amino)ethyl)benzamido) ethyl)carbamoyl)benzyl)(methyl)carbamate (phenyl-¹³C₆) (11*)

 N_1 -Cbz, N_4 -benzyl diethylenetriamine (phenyl-¹³C₆) **4*** (43.9 mg, 126.3 µmol, 1 eq.), 4-(((tertbutoxycarbonyl)(methyl) amino)methyl)benzoic acid **5** (40.2 mg, 151.5 µmol, 1.2 eq.), HBTU (71.8 mg, 189.4 µmol, 1.5 eq.), HOBT (20.5 mg, 151.5 µmol, 1.2 eq.), DIPEA (63.0 µL, 360.3 µmol, 3 eq.) were dissolved in DCM (3 mL). The reaction was stirred at room temperature for 16 h and monitored by TLC. Upon full consumption of the starting material, the sat. NaHCO₃ (10 mL) was added to quench the reaction. Then the reaction mixture was extracted by DCM (3 X 20 mL). All the organic solvent were combined and washed by sat. NaHCO₃ (2 X 30 mL) and brine (2 X 30 mL). All the organic solvent were collected and dried over MgSO₄. The mixture was then filtered and concentrated in *vacuo* affording the yellow oil. The residual was purified by flash column chromatography on silica gel (1:19 MeOH/DCM) to afford the compound **11*** (68.3 mg, 91.0 %) as a light yellow liquid.

¹H NMR (400 MHz, CDCl₃): δ 7.78 (s, 2H), 7.66 – 6.90 (m, 12H), 5.02 (s, 2H), 4.42 (s, 2H), 3.95 – 3.05 (m, 8H), 2.79 (t, *J* = 10.9 Hz, 3H), 1.45 (s, 9H).; ¹³C NMR (101 MHz, CDCl₃): δ 174.6, 167.8, 157.1, 156.4, 142.0, 136.6-125.8, 80.0, 66.8, 52.5, 49.8, 45.0, 39.6, 39.0, 34.2, 28.5.; HRMS (ESI+) *m/z* [M+H]⁺ calcd. for C₂₇¹³C₆H₄₁O₆N₄⁺: 595.3222; found 595.3217.

<u>6.3 Synthesis of (2-(N-(2-(4-((methylamino)methyl)benzamido)ethyl)benzamido)ethyl)</u> carbamate (6)

Tert-butyl(4-((2-(N-(2-(((benzyloxy)carbonyl)amino)ethyl)benzamido)ethyl)carbamoyl) benzyl)(methyl)carbamate **11** (65.4 mg, 111.1 μ mol) was dissolve in DCM (1 mL), and trifluoroacetic acid (250 μ L) was then added into the reaction mixture. The reaction was stirred at room temperature for 2 h and monitored by TLC. Upon full consumption of the starting material, the solvent is removed under reduced pressure with several additions of DCM in order to remove trifluoroacetic acid. The product 6 (54.3 mg, quant.) was obtained as TFA salt form and directly used in the next step.

<u>6.4 Synthesis of (2-(N-(2-(4-((methylamino)methyl)benzamido)ethyl)benzamido)</u> ethyl)carbamate (phenyl-¹³C₆) (6*)

Tert-butyl(4-((2-(N-(2-(((benzyloxy)carbonyl)amino)ethyl)benzamido)ethyl)carbamoyl) benzyl)(methyl) carbamate (phenyl-¹³C₆) ¹³C₆-11 (68.3 mg, 114.9 µmol) was dissolve in DCM (1 mL), and trifluoroacetic acid (250 µL) was then added into the reaction mixture. The reaction was stirred at room temperature for 2 h and monitored by TLC. Upon full consumption of the starting material, the solvent is removed under reduced pressure with several additions of DCM in order to remove trifluoroacetic acid. The product ¹³C₆-6 (56.9 mg, quant.) was obtained as TFA salt form and directly used in the next step.

6.5 Synthesis of benzyl (2-(N-(2-(4-((N-methylformamido)methyl)benzamido) ethyl)benzamido) ethyl)carbamate (12a)

(2-(N-(2-(4-((methylamino)methyl)benzamido)ethyl)benzamido)ethyl)carbamate**6**(9 mg, 18.4 µmol, 1 eq.), formic acid (3 µL, 55.3 µmol, 3 eq.), HBTU (10.5 mg, 27.6 µmol, 1.5 eq.), HOBT (3.0 mg, 22.1 µmol, 1.2 eq.), DIPEA (10.0 µL, 55.3 µmol, 3 eq.) were dissolved in DCM (3 mL). The reaction was stirred at room temperature for 16 h and monitored by TLC. Upon full consumption of the starting material, the sat. NaHCO₃ (10 mL) was added to quench the reaction. Then the reaction mixture was extracted by DCM (3 X 20 mL). All the organic solvent were combined and washed by sat. NaHCO₃ (2 X 30 mL) and brine (2 X 30 mL). All the organic solvent in*vacuo*affording the yellow oil. The residual was purified by flash column chromatography

on silica gel (1:19 MeOH/DCM) to afford the compound **12a** (5.1 mg, 53.6 %) as a light yellow liquid.

¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, *J* = 44.7 Hz, 1H), 7.88 – 7.75 (m, 2H), 7.41 – 7.17 (m, 12H), 5.05 (s, 2H), 4.48 (d, *J* = 52.2 Hz, 2H), 3.94 – 3.24 (m, 8H), 2.80 (d, *J* = 28.4 Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃): δ 162.9, 162.8, 136.5, 135.9, 133.5, 129.8, 128.8, 128.7, 128.5, 128.4, 128.2, 128.0, 127.7, 126.5, 67.0, 53.3, 47.7, 34.3, 29.8, 18.79, 17.6.; HRMS (ESI+) *m/z* [M+H]⁺ calcd. for C₂₉H₃₃O₅N₄⁺ [M+H]⁺: 517.2445; found 517.2450.

<u>6.6 Synthesis of benzyl (2-(N-(2-(4-((N-methylformamido)methyl)benzamido)ethyl)</u> benzamido) ethyl)carbamate (phenyl-¹³C₆) (12a*)

(2-(*N*-(2-(4-((methylamino)methyl)benzamido)ethyl)benzamido)ethyl)carbamate (phenyl- $^{13}C_6$) **6*** (9 mg, 18.2 µmol, 1 eq.), formic acid (3 µL, 54.6 µmol, 3 eq.), HBTU (10.4 mg, 27.3 µmol, 1.5 eq.), HOBT (3.0 mg, 21.8 µmol, 1.2 eq.), DIPEA (10.0 µL, 54.6 µmol, 3 eq.) were dissolved in DCM (3 mL). The reaction was stirred at room temperature for 16 h and monitored by TLC. Upon full consumption of the starting material, the sat. NaHCO₃ (10 mL) was added to quench the reaction. Then the reaction mixture was extracted by DCM (3 X 20 mL). All the organic solvent were combined and washed by sat. NaHCO₃ (2 X 30 mL) and brine (2 X 30 mL). All the organic solvent were collected and dried over MgSO₄. The mixture was then filtered and concentrated in *vacuo* affording the yellow oil. The residual was purified by flash column chromatography on silica gel (1:19 MeOH/DCM) to afford the compound **12a*** (9.5 mg, 99.9 %) as a light yellow liquid.

¹H NMR (400 MHz, CDCl₃): δ 8.23 (d, J = 46.9 Hz, 1H), 7.82 (dd, J = 13.6, 7.7 Hz, 2H), 7.54 - 6.97 (m, 12H), 5.05 (s, 2H), 4.48 (d, J = 50.4 Hz, 2H), 3.96 - 3.21 (m, 8H), 2.80 (d, J = 29.6 Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃): δ 163.0, 162.9, 136.4-125.9, 67.0, 53.4, 47.7, 34.4, 29.8.; HRMS (ESI+) m/z [M+H]⁺ calcd. for C₂₃¹³C₆H₃₃O₅N₄⁺: 577.2600; found 577.2599.

6.7 Synthesis of benzyl (2-(N-(2-(4-((N-methylacetamido)methyl)benzamido)ethyl) benzamido) ethyl)carbamate (12b)

(2-(*N*-(2-(4-((methylamino)methyl)benzamido)ethyl)benzamido)ethyl)carbamate **6** (6 mg, 12.3 μ mol, 1 eq.), acetic acid (2 μ L, 36.8 μ mol, 3 eq.), HBTU (7.0 mg, 18.4 μ mol, 1.5 eq.), HOBT (2.0 mg, 14.7 μ mol, 1.2 eq.), DIPEA (6.0 μ L, 36.8 μ mol, 3 eq.) were dissolved in DCM (3 mL). The reaction was stirred at room temperature for 16 h and monitored by TLC. Upon full consumption of the starting material, the sat. NaHCO₃ (10 mL) was added to quench the reaction. Then the reaction mixture was extracted by DCM (3 X 20 mL). All the organic solvent were combined and washed by sat. NaHCO₃ (2 X 30 mL) and brine (2 X 30 mL). All the organic solvent were collected and dried over MgSO₄. The mixture was then filtered and concentrated in *vacuo* affording the yellow oil. The residual was purified by flash column chromatography on silica gel (1:19 MeOH/DCM) to afford the compound **12b** (4.3 mg, 66.0 %) as a light yellow liquid.

¹H NMR (400 MHz, CDCl₃): δ 7.80 (s, 2H), 7.39 – 7.14 (m, 12H), 5.05 (s, 2H), 4.59 (m, 2H), 3.96 – 3.17 (m, 8H), 2.93 (s, 3H), 2.20 (s, 3H).; ¹³C NMR (101 MHz, CDCl₃): δ 136.5, 135.9, 129.8, 128.8, 128.7, 128.3, 128.2, 127.7, 126.5, 67.0, 50.8, 50.0, 39.5, 36.2, 29.9, 28.6.; HRMS (ESI+) *m*/*z* [M+H]⁺ calcd. for C₃₀H₃₅O₅N₄⁺: 531.2602; found 531.2598.

<u>6.8 Synthesis of benzyl (2-(N-(2-(4-((N-methylacetamido)methyl)benzamido)</u> ethyl)benzamido) ethyl)carbamate (phenyl-¹³C₆) (12b*)

(2-(N-(2-(4-((methylamino)methyl)benzamido)ethyl)benzamido)ethyl)carbamate (phenyl-¹³C₆)**6*** (9 mg, 18.2 µmol, 1 eq.), acetic acid (3 µL, 54.6 µmol, 3 eq.), HBTU (10.4 mg, 27.3 µmol, 1.5 eq.), HOBT (3.0 mg, 21.8 μ mol, 1.2 eq.), DIPEA (10.0 μ L, 54.6 μ mol, 3 eq.) were dissolved in DCM (3 mL). The reaction was stirred at room temperature for 16 h and monitored by TLC. Upon full consumption of the starting material, the sat. NaHCO₃ (10 mL) was added to quench the reaction. Then the reaction mixture was extracted by DCM (3 X 20 mL). All the organic solvent were combined and washed by sat. NaHCO₃ (2 X 30 mL) and brine (2 X 30 mL). All the organic solvent were collected and dried over MgSO₄. The mixture was then filtered and concentrated in *vacuo* affording the yellow oil. The residual was purified by flash column chromatography on silica gel (1:19 MeOH/DCM) to afford the compound **12b*** (9.9 mg, quant.) as a light yellow liquid.

¹H NMR (400 MHz, CDCl₃): δ 7.90 – 7.70 (m, 2H), 7.64 – 6.87 (m, 12H), 5.05 (s, 2H), 4.58 (d, J = 27.5 Hz, 2H), 4.03 – 3.14 (m, 8H), 2.92 (d, J = 6.4 Hz, 3H), 2.15 (d, J = 14.2 Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃): δ 136.6-125.8, 67.0, 50.6, 49.9, 35.9, 34.1, 29.9, 21.8.; HRMS (ESI+) m/z [M+H]⁺ calcd. for C₂₄¹³C₆H₃₅O₅N₄⁺: 537.2803; found 537.2810.

<u>6.9 Synthesis of benzyl (2-(N-(2-(4-((N-methylpropionamido)methyl)benzamido)ethyl)</u> benzamido)ethyl)carbamate (12c)

(2-(*N*-(2-(4-((methylamino)methyl)benzamido)ethyl)benzamido)ethyl)carbamate **6** (4.8 mg, 9.9 μ mol, 1 eq.), propionic acid (2 μ L, 29.7 μ mol, 3 eq.), HBTU (5.6 mg, 14.8 μ mol, 1.5 eq.), HOBT (1.6 mg, 11.9 μ mol, 1.2 eq.), DIPEA (5.0 μ L, 29.7 μ mol, 3 eq.) were dissolved in DCM (3 mL). The reaction was stirred at room temperature for 16 h and monitored by TLC. Upon full consumption of the starting material, the sat. NaHCO₃ (10 mL) was added to quench the reaction. Then the reaction mixture was extracted by DCM (3 X 20 mL). All the organic solvent were combined and washed by sat. NaHCO₃ (2 X 30 mL) and brine (2 X 30 mL). All the organic solvent were collected and dried over MgSO₄. The mixture was then filtered and concentrated in *vacuo* affording the yellow oil. The residual was purified by flash column chromatography on silica gel (1:19 MeOH/DCM) to afford the compound **12c** (4.2 mg, 78.0 %) as a light yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.80 (dd, J = 18.4, 7.7 Hz, 2H), 7.51 – 6.96 (m, 12H), 5.05 (s, 2H), 4.58 (d, J = 29.9 Hz, 2H), 3.96 – 3.15 (m, 8H), 2.92 (d, J = 16.9 Hz, 3H), 2.37 (dd, J = 19.9, 7.3 Hz, 2H), 1.17 (dt, J = 18.3, 7.3 Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃): δ 136.5, 136.2, 129.7, 128.8, 128.7, 128.3, 128.2, 127.6, 126.5, 77.5, 77.2, 76.8, 66.9, 59.7, 50.7, 39.9, 30.0, 29.6.; HRMS (ESI+) m/z [M+H]⁺ calcd. for C₃₁H₃₇O₅N₄⁺: 545.2758; found 545.2756

<u>6.10 Synthesis of benzyl (2-(N-(2-(4-((N-methylpropionamido)methyl)benzamido)ethyl)</u> benzamido)ethyl)carbamate (phenyl-¹³C₆) (12c*)

(2-(*N*-(2-(4-((methylamino)methyl)benzamido)ethyl)benzamido)ethyl)carbamate (phenyl- $^{13}C_6$) **6*** (9 mg, 18.2 µmol, 1 eq.), propionic acid (3 µL, 54.6 µmol, 3 eq.), HBTU (10.4 mg, 27.3 µmol, 1.5 eq.), HOBT (3.0 mg, 21.8 µmol, 1.2 eq.), DIPEA (10.0 µL, 54.6 µmol, 3 eq.) were dissolved in DCM (3 mL). The reaction was stirred at room temperature for 16 h and monitored by TLC. Upon full consumption of the starting material, the sat. NaHCO₃ (10 mL) was added to quench the reaction. Then the reaction mixture was extracted by DCM (3 X 20 mL). All the organic solvent were combined and washed by sat. NaHCO₃ (2 X 30 mL) and brine (2 X 30 mL). All the organic solvent were collected and dried over MgSO₄. The mixture was then filtered and concentrated in *vacuo* affording the yellow oil. The residual was purified by flash column chromatography on silica gel (1:19 MeOH/DCM) to afford the compound **12c*** (9.9 mg, 98.8 %) as a light yellow liquid.

¹H NMR (400 MHz, CDCl₃): δ 7.79 (s, 2H), 7.42 – 7.05 (m, 12H), 5.05 (s, 2H), 4.59 (d, J = 28.4 Hz, 2H), 4.00 – 3.17 (m, 8H), 2.92 (d, J = 14.5 Hz, 3H), 2.47 – 2.32 (m, 2H), 1.19 (t, J = 7.6 Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃): δ 136.6-125.9, 67.0, 50.8, 49.9, 35.6, 34.9, 29.9, 26.8.; HRMS (ESI+) m/z [M+H]⁺ calcd. for C₂₅¹³C₆H₃₇O₅N₄⁺:551.2959; found 551.2963.

<u>6.11 Synthesis of benzyl (2-(N-(2-(4-((N-methylbutyramido)methyl)benzamido)ethyl)</u> benzamido) ethyl)carbamate (12d)

(2-(*N*-(2-(4-((methylamino)methyl)benzamido)ethyl)benzamido)ethyl)carbamate **6** (4.8 mg, 9.9 μ mol, 1 eq.), butyric acid (2 μ L, 29.7 μ mol, 3 eq.), HBTU (5.6 mg, 14.8 μ mol, 1.5 eq.), HOBT (1.6 mg, 11.9 μ mol, 1.2 eq.), DIPEA (5.0 μ L, 29.7 μ mol, 3 eq.) were dissolved in DCM (3 mL). The reaction was stirred at room temperature for 16 h and monitored by TLC. Upon full consumption of the starting material, the sat. NaHCO₃ (10 mL) was added to quench the reaction. Then the reaction mixture was extracted by DCM (3 X 20 mL). All the organic solvent were combined and washed by sat. NaHCO₃ (2 X 30 mL) and brine (2 X 30 mL). All the organic solvent were collected and dried over MgSO₄. The mixture was then filtered and concentrated in *vacuo* affording the yellow oil. The residual was purified by flash column chromatography on silica gel (1:19 MeOH/DCM) to afford the compound **12d** (5.3 mg, 96.0 %) as a light yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.67 (m, 2H), 7.44 – 7.05 (m, 12H), 5.05 (s, 2H), 4.58 (d, J = 27.0 Hz, 2H), 3.98 – 3.18 (m, 8H), 2.91 (d, J = 9.8 Hz, 3H), 2.33 (dt, J = 19.9, 7.5 Hz, 2H), 1.69 (tq, J = 15.3, 7.8 Hz, 3H), 0.96 (dt, J = 26.5, 7.3 Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃): δ 136.5, 136.0, 129.7, 128.8, 128.7, 128.3, 128.2, 127.6, 126.5, 67.0, 50.7, 49.9, 35.5, 35.1, 18.7, 14.1.; HRMS (ESI+) m/z [M+H]⁺ calcd. for C₃₂H₃₉O₅N₄⁺: 559.2915; found 559.2911

6.12 Synthesis of benzyl (2-(N-(2-(4-((N-methylbutyramido)methyl)benzamido)ethyl) benzamido)ethyl)carbamate (phenyl-¹³C₆) (12d*)

(2-(N-(2-(4-((methylamino)methyl)benzamido)ethyl)benzamido)ethyl)carbamate (phenyl-¹³C₆)**6*** (4.5 mg, 9.1 µmol, 1 eq.), butyric acid (2 µL, 27.3 µmol, 3 eq.), HBTU (5.2 mg, 13.6 µmol, 1.5 eq.), HOBT (1.5 mg, 10.9 μ mol, 1.2 eq.), DIPEA (5.0 μ L, 27.3 μ mol, 3 eq.) were dissolved in DCM (3 mL). The reaction was stirred at room temperature for 16 h and monitored by TLC. Upon full consumption of the starting material, the sat. NaHCO₃ (10 mL) was added to quench the reaction. Then the reaction mixture was extracted by DCM (3 X 20 mL). All the organic solvent were combined and washed by sat. NaHCO₃ (2 X 30 mL) and brine (2 X 30 mL). All the organic solvent were collected and dried over MgSO₄. The mixture was then filtered and concentrated in *vacuo* affording the yellow oil. The residual was purified by flash column chromatography on silica gel (1:19 MeOH/DCM) to afford the compound **12d*** (3.8 mg, 74.0 %) as a light yellow liquid.

¹H NMR (400 MHz, CDCl₃): δ 7.80 (dd, J = 19.7, 7.8 Hz, 2H), 7.58 – 6.91 (m, 12H), 5.05 (s, 2H), 4.59 (d, J = 26.5 Hz, 2H), 3.96 – 3.22 (m, 8H), 2.91 (d, J = 9.5 Hz, 3H), 2.33 (dt, J = 20.1, 7.5 Hz, 2H), 1.71 (dp, J = 14.4, 7.3 Hz, 2H), 0.96 (dt, J = 26.4, 7.4 Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃): δ 136.6-125.8, 67.0, 50.8, 50.0, 35.5, 35.2, 18.8, 14.1. HRMS (ESI+) m/z [M+H]⁺ calcd. for C₂₆¹³C₆H₃₉O₅N₄⁺: 565.3116; found 565.3121.

6.13 Synthesis of benzyl (2-(N-(2-(4-((N-methylpentanamido)methyl)benzamido)ethyl) benzamido)ethyl)carbamate (12e)

(2-(*N*-(2-(4-((methylamino)methyl)benzamido)ethyl)benzamido)ethyl)carbamate **6** (7.2 mg, 14.8 μ mol, 1 eq.), valeric acid (3 μ L, 44.5 μ mol, 3 eq.), HBTU (8.4 mg, 22.2 μ mol, 1.5 eq.), HOBT (2.4 mg, 17.8 μ mol, 1.2 eq.), DIPEA (8.0 μ L, 44.5 μ mol, 3 eq.) were dissolved in DCM (3 mL). The reaction was stirred at room temperature for 16 h and monitored by TLC. Upon full consumption of the starting material, the sat. NaHCO₃ (10 mL) was added to quench the reaction. Then the reaction mixture was extracted by DCM (3 X 20 mL). All the organic solvent were combined and washed by sat. NaHCO₃ (2 X 30 mL) and brine (2 X 30 mL). All the organic solvent were collected and dried over MgSO₄. The mixture was then filtered and concentrated in *vacuo* affording the yellow oil. The residual was purified by flash column chromatography on silica gel (1:19 MeOH/DCM) to afford the compound **12e** (2.6 mg, 30.6 %) as a light yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 2H), 7.48 – 7.02 (m, 12H), 5.05 (s, 2H), 4.61 (s, 2H), 4.04 – 3.07 (m, 8H), 2.92 (s, 3H), 2.47 (s, 4H), 2.39 (s, 3H), 1.66 (p, *J* = 6.9, 6.5 Hz, 3H), 0.92 (d, *J* = 7.5 Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃): δ 136.5, 136.0, 129.8, 129.7, 128.9, 128.8, 128.7, 128.6, 128.5, 128.3, 128.2, 127.7, 126.8, 126.5, 67.0, 50.8, 49.9, 45.1, 35.2, 33.3, 28.5, 27.5, 22.7, 14.0.; HRMS (ESI+) *m*/*z* [M+H]⁺ calcd. for C₃₃H₄₁O₅N₄⁺: 573.3071; found 573.3075

<u>6.14 Synthesis of benzyl (2-(N-(2-(4-((N-methylpentanamido)methyl)benzamido)ethyl)</u> benzamido)ethyl)carbamate (phenyl-¹³C₆) (12e^{*})

(2-(*N*-(2-(4-((methylamino)methyl)benzamido)ethyl)benzamido)ethyl)carbamate (phenyl- $^{13}C_6$) **6*** (4.5 mg, 9.1 µmol, 1 eq.), valeric acid (2 µL, 27.3 µmol, 3 eq.), HBTU (5.2 mg, 13.6 µmol, 1.5 eq.), HOBT (1.5 mg, 10.9 µmol, 1.2 eq.), DIPEA (5.0 µL, 27.3 µmol, 3 eq.) were dissolved in DCM (3 mL). The reaction was stirred at room temperature for 16 h and monitored by TLC. Upon full consumption of the starting material, the sat. NaHCO₃ (10 mL) was added to quench the reaction. Then the reaction mixture was extracted by DCM (3 X 20 mL). All the organic solvent were combined and washed by sat. NaHCO₃ (2 X 30 mL) and brine (2 X 30 mL). All the organic solvent were collected and dried over MgSO₄. The mixture was then filtered and concentrated in *vacuo* affording the yellow oil. The residual was purified by flash column chromatography on silica gel (1:19 MeOH/DCM) to afford the compound **12e*** (4.7 mg, 89.3 %) as a light yellow liquid.

¹H NMR (400 MHz, CDCl₃): δ 7.80 (dd, J = 19.4, 7.8 Hz, 2H), 7.43 – 6.98 (m, 12H), 5.05 (s, 2H), 4.58 (d, J = 25.9 Hz, 2H), 4.00 – 3.19 (m, 8H), 2.91 (d, J = 8.2 Hz, 3H), 2.35 (dt, J = 19.9, 7.5 Hz, 2H), 1.66 (dq, J = 14.8, 7.2 Hz, 5H), 1.36 (ddt, J = 29.4, 15.0, 7.5 Hz, 2H), 0.91 (dt, J = 24.5, 7.4 Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃): δ 136.6-125.9, 67.0, 50.7, 49.9, 43.4, 34.6, 33.3, 27.4, 22.7, 14.0. HRMS (ESI+) m/z [M+H]⁺ calcd. for C₂₇¹³C₆H₄₁O₅N₄⁺: 579.3272; found 579.3269.

6.15 Synthesis of benzyl (2-(N-(2-(4-((2-hydroxy-N-methylpropanamido)methyl) benzamido)ethyl)benzamido)ethyl)carbamate (12f)

(2-(*N*-(2-(4-((methylamino)methyl)benzamido)ethyl)benzamido)ethyl)carbamate **6** (7.2 mg, 14.8 μ mol, 1 eq.), sodium lactate (5 mg, 44.5 μ mol, 3 eq.), HBTU (8.4 mg, 22.2 μ mol, 1.5 eq.), HOBT (2.4 mg, 17.8 μ mol, 1.2 eq.), DIPEA (8.0 μ L, 44.5 μ mol, 3 eq.) were dissolved in DCM (3 mL). The reaction was stirred at room temperature for 16 h and monitored by TLC. Upon full consumption of the starting material, the sat. NaHCO₃ (10 mL) was added to quench the reaction. Then the reaction mixture was extracted by DCM (3 X 20 mL). All the organic solvent were combined and washed by sat. NaHCO₃ (2 X 30 mL) and brine (2 X 30 mL). All the organic solvent were collected and dried over MgSO₄. The mixture was then filtered and concentrated in *vacuo* affording the yellow oil. The residual was purified by flash column chromatography on silica gel (1:19 MeOH/DCM) to afford the compound **12f** (6.9 mg, 83.1 %) as a light yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.73 (m, 2H), 7.46 – 7.09 (m, 12H), 5.01 (d, *J* = 35.3 Hz, 2H), 4.75 – 4.54 (m, 2H), 4.55 – 4.37 (m, 1H), 3.98 – 3.18 (m, 8H), 2.90 (d, *J* = 18.4 Hz, 3H), 1.45 (d, *J* = 4.7 Hz, 1H), 1.35 (dd, *J* = 13.1, 6.7 Hz, 2H).; ¹³C NMR (101 MHz, CDCl₃): δ 175.7, 136.5, 135.9, 133.5, 129.8, 128.7, 128.4, 128.2, 127.8, 126.9, 126.5, 67.0, 64.6, 64.5, 52.2, 51.4, 50.0, 45.1, 40.1, 39.6, 34.3, 34.2, 29.8, 28.5, 22.0, 21.1. HRMS (ESI+) *m/z* [M+H]⁺ calcd. for C₃₁H₃₇O₆N₄⁺: 561.2708; found 561.2710.

<u>6.16 Synthesis of benzyl (2-(N-(2-(4-((2-hydroxy-N-methylpropanamido)methyl)</u> benzamido)ethyl)benzamido)ethyl)carbamate (phenyl-¹³C₆) (12f*)

(2-(*N*-(2-(4-((methylamino)methyl)benzamido)ethyl)benzamido)ethyl)carbamate (phenyl- $^{13}C_6$) **6*** (4.5 mg, 9.1 µmol, 1 eq.), sodium lactate (3.1 mg, 27.3 µmol, 3 eq.), HBTU (5.2 mg, 13.6 µmol, 1.5 eq.), HOBT (1.5 mg, 10.9 µmol, 1.2 eq.), DIPEA (5.0 µL, 27.3 µmol, 3 eq.) were dissolved in DCM (3 mL). The reaction was stirred at room temperature for 16 h and monitored by TLC. Upon full consumption of the starting material, the sat. NaHCO₃ (10 mL) was added to quench the reaction. Then the reaction mixture was extracted by DCM (3 X 20 mL). All the organic solvent were combined and washed by sat. NaHCO₃ (2 X 30 mL) and brine (2 X 30 mL). All the organic solvent were collected and dried over MgSO₄. The mixture was then filtered and concentrated in *vacuo* affording the yellow oil. The residual was purified by flash column chromatography on silica gel (1:19 MeOH/DCM) to afford the compound **12f*** (1.2 mg, 23.3 %) as a light yellow liquid.

¹H NMR (601 MHz, CDCl₃) δ 7.89 – 7.74 (m, 2H), 7.54 – 6.95 (m, 12H), 5.05 (s, 2H), 4.76 – 4.55 (m, 2H), 4.51 (q, *J* = 6.5 Hz, 1H), 3.97 – 3.15 (m, 8H), 2.90 (d, *J* = 29.9 Hz, 3H), 1.35 (dd, *J* = 19.7, 6.6 Hz, 3H).; ¹³C NMR (151 MHz, CDCl₃) δ 175.7, 136.4,-125.9, 67.0, 64.6, 64.5, 52.2, 51.4, 49.9, 45.1, 40.2, 39.7, 34.2, 29.9, 22.0, 21.2. HRMS (ESI+) *m/z* [M+H]⁺ calcd. for C₂₅¹³C₆H₃₇O₆N₄⁺: 567.2909; found 567.2910.

6.17 Synthesis of *N*-(2-aminoethyl)-*N*-(2-(4-((*N*-methylformamido)methyl) benzamido)ethyl)benzamide (3a)

Benzyl (2-(N-(2-(4-((N-methylformamido)methyl)benzamido)ethyl)benzamido)ethyl) carbamate **12a** (5.1 mg, 9.9 µmol) and palladium on carbon (10%, 5.1 mg) were dissolved in MeOH (2 mL), making sure that the catalyst is completely submerged. 2 µL HCl (1 M solution) and 100 µL H₂O were added into reaction mixture. Followed by flushing flask with nitrogen, then hydrogen, a balloon with hydrogen was attached and the reaction mixture was stirred for 5 h. Upon full consumption of the starting material by TLC monitoring, the reaction mixture was filtered through celite and washed through with additional MeOH. Solvent was removed and the residual **3a** (3.5 mg, 92.7%) as a viscous liquid.

¹H NMR (400 MHz, MeOD): δ 8.25 (d, *J* = 53.9 Hz, 1H), 7.81 (dt, *J* = 36.6, 10.5 Hz, 2H), 7.54 – 7.19 (m, 7H), 4.58 (d, *J* = 10.4 Hz, 2H), 3.89 – 3.33 (m, 8H), 2.84 (d, *J* = 68.7 Hz, 3H).; ¹³C NMR (151 MHz, MeOD): δ 175.0, 165.3, 165.2, 141.5, 137.7, 130.7, 130.4, 130.0, 129.7, 129.2, 129.0, 128.8, 127.8, 127.5, 54.0, 53.1, 50.2, 48.3, 46.1, 40.9, 40.2, 39.1, 39.0, 34.8, 30.8, 29.8. HRMS (ESI+) *m/z* [M+H]⁺ calcd. for C₂₁H₂₇O₃N₄⁺: 383.2078; found 383.2077.

6.18 Synthesis of *N*-(2-aminoethyl)-*N*-(2-(4-((*N*-methylformamido)methyl)benzamido) ethyl) benzamide (phenyl-¹³C₆) (3a*)

Benzyl (2-(N-(2-(4-((N-methylformamido)methyl)benzamido)ethyl)benzamido)ethyl) carbamate (phenyl-¹³C₆) **12a*** (9.5 mg, 18.2 µmol) and palladium on carbon (10%, 9.5 mg) were dissolved in MeOH (2 mL), making sure that the catalyst is completely submerged. 2 µL HCl (1 M solution) and 100 µL H₂O were added into reaction mixture. Followed by flushing flask with nitrogen, then hydrogen, a balloon with hydrogen was attached and the reaction mixture was stirred for 5 h. Upon full consumption of the starting material by TLC monitoring, the reaction mixture was filtered through celite and washed through with additional MeOH. Solvent was removed and the residual **3a*** (6.2 mg, 87.8 %) as a viscous liquid.

¹H NMR (601 MHz, MeOD) δ 8.25 (d, J = 82.0 Hz, 1H), 7.80 (ddd, J = 56.6, 20.9, 9.0 Hz, 2H), 7.58 – 7.15 (m, 7H), 4.58 (dd, J = 15.6, 5.7 Hz, 2H), 3.88 – 3.35 (m, 8H), 3.04 – 2.69 (m, 3H).; ¹³C NMR (151 MHz, MeOD): δ 174.8, 165.3, 165.2, 141.5, 138.1-127.0, 54.0, 53.0, 50.3, 48.3, 46.1, 40.8, 40.2, 39.1, 39.0, 34.8, 30.8. 29.8.HRMS (ESI+) m/z [M+H]⁺ calcd. for C₁₅¹³C₆H₂₇O₃N₄⁺: 389.2279; found 389.2278.

<u>6.19 Synthesis of N-(2-aminoethyl)-N-(2-(4-((N-methylacetamido)methyl)benzamido)</u> <u>ethyl) benzamide (3b)</u>

Benzyl (2-(N-(2-(4-((N-methylacetamido)methyl)benzamido)ethyl)benzamido)ethyl) carbamate **12b** (4.3 mg, 8.1 µmol) and palladium on carbon (10%, 8.1 mg) were dissolved in MeOH (2 mL), making sure that the catalyst is completely submerged. 2 µL HCl (1 M solution) and 100 µL H₂O were added into reaction mixture. Followed by flushing flask with nitrogen, then hydrogen, a balloon with hydrogen was attached and the reaction mixture was stirred for 5 h. Upon full consumption of the starting material by TLC monitoring, the reaction mixture was filtered through celite and washed through with additional MeOH. Solvent was removed and the residual **3b** (3.2 mg, quant.) as a viscous liquid.

¹H NMR (400 MHz, MeOD): δ 7.77 (d, J = 28.9 Hz, 2H), 7.59 – 7.17 (m, 7H), 4.67 (d, J = 19.5 Hz, 2H), 3.84 – 3.37 (m, 6H), 3.11 (s, 1H), 2.98 (d, J = 34.4 Hz, 3H), 2.78 (s, 1H), 2.16 (d, J = 14.9 Hz, 3H).; ¹³C NMR (151 MHz, MeOD): δ 173.7, 130.8, 129.7, 129.1, 128.8, 128.7, 127.9, 127.8, 127.5, 54.9, 52.5, 51.4, 50.5, 47.7, 46.1, 40.6, 40.0, 39.1, 39.0, 36.4, 34.3, 21.6, 21.3. HRMS (ESI+) m/z [M+H]⁺ calcd. for C₂₂H₂₉O₃N₄⁺: 397.2234; found 397.2233

<u>6.20 Synthesis of N-(2-aminoethyl)-N-(2-(4-((N-methylacetamido)methyl)benzamido)</u> ethyl)benzamide (phenyl-¹³C₆) (3b*)

Benzyl (2-(N-(2-(4-((N-methylformamido)methyl)benzamido)ethyl)benzamido)ethyl) carbamate (phenyl-¹³C₆) **12b*** (9.9 mg, 18.2 µmol) and palladium on carbon (10%, 9.9 mg) were dissolved in MeOH (2 mL), making sure that the catalyst is completely submerged. 2 µL HCl (1 M solution) and 100 µL H₂O were added into reaction mixture. Followed by flushing flask with nitrogen, then hydrogen, a balloon with hydrogen was attached and the reaction mixture was stirred for 5 h. Upon full consumption of the starting material by TLC monitoring, the reaction mixture was filtered through celite and washed through with additional MeOH. Solvent was removed and the residual $3b^*$ (3.9 mg, 52.5 %) as a viscous liquid.

¹H NMR (601 MHz, MeOD): δ 7.93 – 7.70 (m, 2H), 7.60 – 7.12 (m, 7H), 4.67 (d, J = 32.4 Hz, 2H), 3.86 – 3.36 (m, 6H), 3.06 (s, 1H), 3.04 – 2.90 (m, 3H), 2.76 (s, 1H), 2.16 (d, J = 22.8 Hz, 3H).;¹³C NMR (151 MHz, MeOD): δ 173.7, 138.1-127.0, 54.9, 52.8, 51.4, 50.4, 49.4, 46.1, 40.7, 40.0, 39.1, 39.0, 36.4, 34.3, 21.6, 21.3. HRMS (ESI+) m/z [M+H]⁺ calcd. for C₁₆¹³C₆H₂₉O₃N₄⁺: 403.2435; found 403.2436.

<u>6.21 Synthesis of N-(2-aminoethyl)-N-(2-(4-((N-methylpropionamido)methyl)</u> benzamido)ethyl)benzamide (3c)

Benzyl (2-(*N*-(2-(4-((*N*-methylpropionamido)methyl)benzamido)ethyl)benzamido)ethyl) carbamate **12c** (4.2 mg, 7.7 µmol) and palladium on carbon (10%, 4.2 mg) were dissolved in MeOH (2 mL), making sure that the catalyst is completely submerged. 2 µL HCl (1 M solution) and 100 µL H₂O were added into reaction mixture. Followed by flushing flask with nitrogen, then hydrogen, a balloon with hydrogen was attached and the reaction mixture was stirred for 5 h. Upon full consumption of the starting material by TLC monitoring, the reaction mixture was filtered through celite and washed through with additional MeOH. Solvent was removed and the residual **3c** (3.1 mg, quant.) as a viscous liquid.

¹H NMR (400 MHz, MeOD): δ 7.76 (d, J = 26.4 Hz, 2H), 7.47 – 7.26 (m, 7H), 4.66 (d, J = 18.1 Hz, 2H), 3.87 – 3.32 (m, 6H), 3.00 (s, 3H), 2.94 (s, 1H), 2.74 (s, 1H), 2.46 (dq, J = 15.0, 7.6 Hz, 2H), 1.12 (dt, J = 20.9, 7.4 Hz, 3H).; ¹³C NMR (151 MHz, MeOD): δ 176.7, 175.1, 130.7, 129.7, 129.0, 128.7, 127.8, 127.7, 127.5, 54.0, 53.0 51.6, 50.3, 46.1, 40.8, 40.1, 39.1, 35.6, 34.6, 27.5, 27.2, 9.9, 9.7. HRMS (ESI+) m/z [M+H]⁺ calcd. for C₂₃H₃₁O₃N₄⁺: 411.2391; found 411.2389.

<u>6.22 Synthesis of N-(2-aminoethyl)-N-(2-(4-((N-methylpropionamido)methyl)benzamido)</u> ethyl)benzamide (phenyl-¹³C₆) (3c*)

Benzyl (2-(*N*-(2-(4-((*N*-methylpropionamido)methyl)benzamido)ethyl)benzamido)ethyl) carbamate (phenyl-¹³C₆) **12c*** (14.9 mg, 27.1 µmol) and palladium on carbon (10%, 14.9 mg) were dissolved in MeOH (2 mL), making sure that the catalyst is completely submerged. 2 µL HCl (1 M solution) and 100 µL H₂O were added into reaction mixture. Followed by flushing flask with nitrogen, then hydrogen, a balloon with hydrogen was attached and the reaction mixture was stirred for 5 h. Upon full consumption of the starting material by TLC monitoring, the reaction mixture was filtered through celite and washed through with additional MeOH. Solvent was removed and the residual **3c*** (3.0 mg, 26.6 %) as a viscous liquid.

¹H NMR (601 MHz, MeOD) δ 7.80 (ddd, J = 53.5, 27.5, 6.9 Hz, 2H), 7.61 – 7.13 (m, 7H), 4.67 (d, J = 24.9 Hz, 2H), 3.85 – 3.33 (m, 6H), 3.01 (d, J = 8.6 Hz, 3H), 2.95 (d, J = 6.3 Hz, 1H), 2.76 (d, J = 7.4 Hz, 1H), 2.54 – 2.37 (m, 2H), 1.13 (dt, J = 32.8, 7.3 Hz, 3H).; ¹³C NMR (151 MHz, MeOD): δ 176.7, 174.8, 138.1-127.0, 54.0, 53.0, 51.6, 50.3, 46.1, 40.8, 40.2, 39.0, 35.6, 34.6, 30.7, 27.5, 27.2, 9.9, 9.7. HRMS (ESI+) m/z [M+H]⁺ calcd. for C₁₇¹³C₆H₃₁O₃N₄⁺: 417.2592; found 417.2593

<u>6.23 Synthesis of N-(2-aminoethyl)-N-(2-(4-((N-methylbutyramido)methyl)benzamido)</u> <u>ethyl)benzamide (3d)</u>

Benzyl (2-(N-(2-(4-((N-methylbutyramido)methyl)benzamido)ethyl)benzamido)ethyl) carbamate **12d** (6.1 mg, 10.9 µmol) and palladium on carbon (10%, 6.1 mg) were dissolved in MeOH (2 mL), making sure that the catalyst is completely submerged. 2 µL HCl (1 M solution) and 100 µL H₂O were added into reaction mixture. Followed by flushing flask with nitrogen,

then hydrogen, a balloon with hydrogen was attached and the reaction mixture was stirred for 5 h. Upon full consumption of the starting material by TLC monitoring, the reaction mixture was filtered through celite and washed through with additional MeOH. Solvent was removed and the residual 3d (3.2 mg, 69.0%) as a viscous liquid.

¹H NMR (400 MHz, MeOD): δ 7.76 (d, J = 26.4 Hz, 2H), 7.47 – 7.26 (m, 7H), 4.66 (d, J = 18.1 Hz, 2H), 3.87 – 3.32 (m, 6H), 3.00 (s, 3H), 2.94 (s, 1H), 2.74 (s, 1H), 2.46 (dq, J = 15.0, 7.6 Hz, 2H), 1.12 (dt, J = 20.9, 7.4 Hz, 3H).; ¹³C NMR (151 MHz, MeOD): δ 175.9, 175.1, 130.7, 129.7, 129.0, 128.8, 128.7, 127.9, 127.7, 127.5, 54.1, 52.9, 51.6, 50.3, 46.1, 40.8, 40.1, 39.1, 39.0, 36.2, 35.9, 34.6, 19.9, 19.7, 14.2. HRMS (ESI+) m/z [M+H]⁺ calcd. for C₂₄H₃₃O₃N₄⁺: 425.2547; found 425.4544

<u>6.24 Synthesis of N-(2-aminoethyl)-N-(2-(4-((N-methylbutyramido)methyl)benzamido)</u> ethyl)benzamide (phenyl-¹³C₆) (3d*)

Benzyl (2-(N-(2-(4-((N-methylbutyramido)methyl)benzamido)ethyl)benzamido)ethyl) carbamate (phenyl-¹³C₆) **12d*** (3.8 mg, 6.7 µmol) and palladium on carbon (10%, 3.8 mg) were dissolved in MeOH (2 mL), making sure that the catalyst is completely submerged. 2 µL HCl (1 M solution) and 100 µL H₂O were added into reaction mixture. Followed by flushing flask with nitrogen, then hydrogen, a balloon with hydrogen was attached and the reaction mixture was stirred for 5 h. Upon full consumption of the starting material by TLC monitoring, the reaction mixture was filtered through celite and washed through with additional MeOH. Solvent was removed and the residual **3d*** (3.0 mg, quant.) as a viscous liquid.

¹H NMR (601 MHz, MeOD): δ 7.90 – 7.67 (m, 2H), 7.57 – 7.10 (m, 7H), 4.68 (d, *J* = 34.8 Hz, 2H), 3.84 – 3.39 (m, 6H), 3.18 – 2.97 (m, 3H), 2.95 (s, 1H), 2.79 (s, 1H), 2.42 (d, *J* = 37.8 Hz, 2H), 1.77 – 1.57 (m, 2H), 1.03 – 0.87 (m, 3H).; ¹³C NMR (151 MHz, MeOD): δ 176.1, 175.9, 138.1-127.0, 54.1, 51.6, 50.5, 47.5, 46.1, 40.5, 39.9, 39.2, 36.2, 35.9, 34.6, 26.7, 19.9, 19.7, 14.2. HRMS (ESI+) *m/z* [M+H]⁺ calcd. for C₁₈¹³C₆H₃₃O₃N₄⁺: 431.2748; found 431.2749

<u>6.25 Synthesis of N-(2-aminoethyl)-N-(2-(4-((N-methylpentanamido)methyl)benzamido)</u> <u>ethyl)benzamide (3e)</u>

Benzyl (2-(N-(2-(4-((N-methylpentanamido)methyl)benzamido)ethyl)benzamido)ethyl) carbamate **12e** (9.6 mg, 16.8 µmol) and palladium on carbon (10%, 9.6 mg) were dissolved in MeOH (2 mL), making sure that the catalyst is completely submerged. 2 µL HCl (1 M solution) and 100 µL H₂O were added into reaction mixture. Followed by flushing flask with nitrogen, then hydrogen, a balloon with hydrogen was attached and the reaction mixture was stirred for 5 h. Upon full consumption of the starting material by TLC monitoring, the reaction mixture was filtered through celite and washed through with additional MeOH. Solvent was removed and the residual **3e** (7.4 mg, quant.) as a viscous liquid.

NMR (601 MHz, MeOD): δ 8.03 – 7.63 (m, 2H), 7.54 – 7.17 (m, 7H), 4.61 (d, J = 51.2 Hz, 2H), 4.07 – 3.31 (m, 8H), 2.99 (d, J = 47.6 Hz, 3H), 2.45 (dt, J = 38.5, 7.5 Hz, 2H), 1.61 (dt, J = 31.7, 7.7 Hz, 2H), 1.36 – 1.26 (m, 2H), 1.06 – 0.85 (m, 3H).; ¹³C NMR (151 MHz, MeOD): δ 176.1, 175.8, 169.8, 143.0, 142.7, 136.7, 135.8, 134.0, 131.1, 130.2, 129.7 129.1, 128.8, 128.4, 128.1, 127.7, 54.2, 51.6, 51.0, 45.5, 39.3, 36.8, 35.9, 34.7, 34.0, 33.8, 30.7, 29.2, 28.8, 28.7, 28.5, 23.5, 23.4, 21.4, 14.2. HRMS (ESI+) m/z [M+H]⁺ calcd. for C₂₅H₃₅O₃N₄⁺: 439.2704; found 439.2704

<u>6.26 Synthesis of N-(2-aminoethyl)-N-(2-(4-((N-methylpentanamido)methyl)benzamido)</u> <u>ethyl)benzamide (phenyl-¹³C₆) (3e*)</u>

Benzyl (2-(N-(2-(4-((N-methylpentanamido)methyl)benzamido)ethyl)benzamido)ethyl) carbamate (phenyl-¹³C₆) **12e*** (4.7 mg, 8.1 µmol) and palladium on carbon (10%, 4.7 mg) were dissolved in MeOH (2 mL), making sure that the catalyst is completely submerged. 2 µL HCl

(1 M solution) and 100 μ L H₂O were added into reaction mixture. Followed by flushing flask with nitrogen, then hydrogen, a balloon with hydrogen was attached and the reaction mixture was stirred for 5 h. Upon full consumption of the starting material by TLC monitoring, the reaction mixture was filtered through celite and washed through with additional MeOH. Solvent was removed and the residual **3e*** (2.8 mg, quant.) as a viscous liquid.

¹H NMR (601 MHz, MeOD): δ 7.80 (ddd, J = 54.3, 29.9, 7.7 Hz, 2H), 7.61 – 7.06 (m, 7H), 4.76 – 4.58 (m, 2H), 3.89 – 3.31 (m, 6H), 3.02 (d, J = 10.2 Hz, 3H), 2.95 (d, J = 9.7 Hz, 1H), 2.75 (t, J = 7.3 Hz, 1H), 2.44 (dt, J = 39.7, 7.6 Hz, 2H), 1.68 – 1.52 (m, 2H), 1.46 – 1.26 (m, 2H), 0.93 (dt, J = 46.0, 7.4 Hz, 3H).; ¹³C NMR (151 MHz, MeOD): δ 176.3, 176.0, 142.9, 138.1-127.0, 54.2, 53.0, 51.6, 50.3, 46.1, 40.8, 40.2, 39.1, 39.0, 35.9, 34.6, 34.0, 33.8, 30.7, 28.7, 28.5, 23.5, 23.4, 14.2. HRMS (ESI+) m/z [M+H]⁺ calcd. for C₁₉¹³C₆H₃₅O₃N₄⁺: 445.2905; found 445.2902

<u>6.27 Synthesis of N-(2-aminoethyl)-N-(2-(4-((2-hydroxy-N-methylpropanamido)methyl)</u> benzamido)ethyl)benzamide (3f)

Benzyl (2-(*N*-(2-(4-((2-hydroxy-*N*-methylpropanamido)methyl)benzamido)ethyl)benzamido) ethyl)carbamate **12f** (6.9 mg, 12.3 µmol) and palladium on carbon (10%, 6.9 mg) were dissolved in MeOH (2 mL), making sure that the catalyst is completely submerged. 2 µL HCl (1 M solution) and 100 µL H₂O were added into reaction mixture. Followed by flushing flask with nitrogen, then hydrogen, a balloon with hydrogen was attached and the reaction mixture was stirred for 5 h. Upon full consumption of the starting material by TLC monitoring, the reaction mixture was filtered through celite and washed through with additional MeOH. Solvent was removed and the residual **3e** (4.5 mg, 85.7 %) as a viscous liquid.

¹H NMR (400 MHz, MeOD) δ 7.78 (d, J = 26.1 Hz, 2H), 7.48 – 7.26 (m, 7H), 4.66 (s, 2H), 3.86 – 3.38 (m, 7H), 3.10 (d, J = 46.6 Hz, 3H), 2.88 (d, J = 13.3 Hz, 1H), 2.81 (s, 1H), 1.36 (d, J = 6.6 Hz, 3H).; ¹³C NMR (151 MHz, MeOD): δ 176.6, 175.4, 142.6, 130.8, 129.7, 129.0, 128.9, 128.8, 128.1, 127.9, 127.5, 66.3, 65.9, 53.3, 52.0, 50.6, 47.2, 46.1, 40.4, 39.9, 39.2, 35.1,

34.4, 28.7, 21.0, 20.5. HRMS (ESI+) m/z [M+H]⁺ calcd. for C₂₃H₃₁O₄N₄⁺: 427.2340; found 427.2341

<u>6.28 Synthesis of N-(2-aminoethyl)-N-(2-(4-((2-hydroxy-N-methylpropanamido)methyl)</u> benzamido)ethyl)benzamide (phenyl-¹³C₆) (3f*)

Benzyl (2-(N-(2-(4-((2-hydroxy-N-methylpropanamido)methyl)benzamido)ethyl)benzamido) ethyl)carbamate (phenyl-¹³C₆) **12f*** (1.2 mg, 2.1 µmol) and palladium on carbon (10%, 1.2 mg) were dissolved in MeOH (2 mL), making sure that the catalyst is completely submerged. 2 µL HCl (1 M solution) and 100 µL H₂O were added into reaction mixture. Followed by flushing flask with nitrogen, then hydrogen, a balloon with hydrogen was attached and the reaction mixture was stirred for 5 h. Upon full consumption of the starting material by TLC monitoring, the reaction mixture was filtered through celite and washed through with additional MeOH. Solvent was removed and the residual **3f*** (1.0 mg, quant.) as a viscous liquid.

¹H NMR (601 MHz, MeOD): δ 7.92 – 7.64 (m, 2H), 7.61 – 7.12 (m, 7H), 4.61 (d, *J* = 51.0 Hz, 2H), 3.91 – 3.33 (m, 6H), 3.12 – 2.98 (m, 3H), 2.91 (s, 1H), 2.77 (s, 1H), 1.35 (dd, *J* = 19.3, 6.5 Hz, 3H).; ¹³C NMR (151 MHz, MeOD): δ 176.8, 176.6, 138.1-127.0, 66.3, 65.9, 53.3, 52.0, 50.4, 49.4, 49.3, 49.1, 49.0, 48.9, 48.7, 48.6, 47.9, 46.1, 40.7, 40.0, 39.1, 35.1, 34.4, 30.8, 21.0, 20.5. HRMS (ESI+) *m/z* [M+H]⁺ calcd. for C₁₇¹³C₆H₃₁O₄N₄⁺: 433.2541; found 433.2543

6.29 Synthesis of methyl (E)-5-(5-benzoyl-1-(4-(((tert-butoxycarbonyl)(methyl)amino) methyl)phenyl)-1,9-dioxo-10-oxa-2,5,8-triazatridec-12-en-13-yl)-2-nitrobenzoate (8)

Methyl (*E*)-5-(3-(((2-(N-(2-aminoethyl)benzamido)ethyl)carbamoyl)oxy)prop-1-en-1-yl)-2nitrobenzoate 7 (18.6 mg, 39.4 μmol, 1 eq.), 4-(((tert-butoxycarbonyl)(methyl)amino)

methyl)benzoic acid **5** (15.7 mg, 59.1 μ mol, 1.5 eq.), HBTU (22.4 mg, 59.1, 1.5 eq.), HOBT (6.4 mg, 47.3 μ mol, 1.2 eq.), DIPEA (21.0 μ L, 118.3 μ mol, 3 eq.) were dissolved in DCM (3 mL). The reaction was stirred at room temperature for 16 h and monitored by TLC. Upon full consumption of the starting material, the sat. NaHCO₃ (10 mL) was added to quench the reaction. Then the reaction mixture was extracted by DCM (3 X 20 mL). All the organic solvent were combined and washed by sat. NaHCO₃ (2 X 30 mL) and brine (2 X 30 mL). All the organic solvent were collected and dried over MgSO₄. The mixture was then filtered and concentrated in *vacuo* affording the yellow oil. The residual was purified by flash column chromatography on silica gel (1:19 MeOH/DCM) to afford the compound **11** (15.8 mg, 55.8 %) as a light yellow liquid.

¹H NMR (400 MHz, CD₃Cl): δ 7.90 (s, 1H), 7.78 (s, 2H), 7.67 (s, 1H), 7.54 (d, *J* = 10.1 Hz, 1H), 7.29 (d, *J* = 37.5 Hz, 7H), 6.65 (d, *J* = 16.4 Hz, 1H), 6.42 (s, 1H), 5.41 (s, 1H), 4.72 (s, 2H), 4.44 (s, 2H), 3.92 (s, 3H), 3.83 (d, *J* = 26.5 Hz, 3H), 3.52 (d, *J* = 34.0 Hz, 4H), 3.32 (s, 1H), 2.81 (s, 3H), 1.45 (s, 9H).; ¹³C NMR (101 MHz, CD₃Cl): δ 173.8, 167.9, 166.2, 156.1, 146.6, 141.8, 136.0, 133.0, 131.5, 130.0, 129.8, 129.2, 128.8, 127.5, 126.5, 124.8, 124.4, 80.1, 77.5, 77.4, 77.2, 76.8, 64.7, 61.4, 53.5, 50.0, 45.1, 39.7, 39.2, 34.3, 28.6. HRMS (ESI+) *m/z* [M+H]⁺ calcd. for C₃₇H₄₄O₁₀N₅⁺: 718.3083; found 718.3082

6.30 Synthesis of (*E*)-5-(5-benzoyl-1-(4-(((tert-butoxycarbonyl)(methyl)amino)methyl) phenyl)-1,9-dioxo-10-oxa-2,5,8-triazatridec-12-en-13-yl)-2-nitrobenzoic acid (9)

Methyl (E)-5-(5-benzoyl-1-(4-(((tert-butoxycarbonyl)(methyl)amino)methyl)phenyl)-1,9dioxo-10-oxa-2,5,8-triazatridec-12-en-13-yl)-2-nitrobenzoate **8** was dissolved in MeOH (2 mL). 2M LiOH solution (200 μ L) and H₂O (1 mL) were added into the reaction mixture. The reaction was stirred for 30 min and monitored by TLC. Upon full consumption of the starting material, 5 M HCl was used to neutralize the mixture until the solution has turn to clear from turbid yielding **9**. After solvent was removed under reduced pressure, the residual was redissolved in DMF and directly used for conjugation to magnetic beads.

7. NMR spectra

8. References

(1) Jorup-Rönström, C.; Håkanson, A.; Sandell, S.; Edvinsson, O.; Midtvedt, T.; Persson, A. K.; Norin, E. Fecal transplant against relapsing Clostridium difficile-associated diarrhea in 32 patients. *Scand J Gastroenterol* **2012**, *47* (5), 548-552. DOI: 10.3109/00365521.2012.672587.

(2) Hu, Y. O. O.; Hugerth, L. W.; Bengtsson, C.; Alisjahbana, A.; Seifert, M.; Kamal, A.; Sjöling, Å.; Midtvedt, T.; Norin, E.; Du, J.; et al. Bacteriophages Synergize with the Gut Microbial Community To Combat. *mSystems* **2018**, *3* (5). DOI: 10.1128/mSystems.00119-18.

(3) McKay, M. J.; Castaneda, M.; Catania, S.; Charles, K. A.; Shanahan, E.; Clarke, S. J.; Engel, A.; Varelis, P.; Molloy, M. P. Quantification of short-chain fatty acids in human stool samples by LC-MS/MS following derivatization with aniline analogues. *J Chromatogr B Analyt Technol Biomed Life Sci* **2023**, *1217*, 123618. DOI: 10.1016/j.jchromb.2023.123618.

(4) Han, J.; Lin, K.; Sequeira, C.; Borchers, C. H. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry. *Anal Chim Acta* **2015**, *854*, 86-94. DOI: 10.1016/j.aca.2014.11.015.

(5) Lin, W.; Conway, L. P.; Vujasinovic, M.; Löhr, J. M.; Globisch, D. Chemoselective and Highly Sensitive Quantification of Gut Microbiome and Human Metabolites. *Angew Chem Int Ed Engl* **2021**, 60 (43), 23232-23240. DOI: 10.1002/anie.202107101.

(6) Thoma, G.; Streiff, M. B.; Katopodis, A. G.; Duthaler, R. O.; Voelcker, N. H.; Ehrhardt, C.; Masson, C. Non-covalent polyvalent ligands by self-assembly of small glycodendrimers: a novel concept for the inhibition of polyvalent carbohydrate-protein interactions in vitro and in vivo. *Chemistry* **2005**, *12* (1), 99-117. DOI: 10.1002/chem.200500901.