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Catalyst preparation 

The 20% ZnZrO catalyst was prepared by the co-precipitation method. 298.2 g 

Zn(NO3)2·6H2O, 1720.0 g Zr(NO3)4·5H2O, and 8 L deionized water were added to the 

reaction kettle, and the temperature was increased to 70°C while stirring. The prepared 

solution containing 865.8 g (NH4)2CO3 and 3 L deionized water was added by a peristaltic 

pump at a rate of 15-20 mL/min to the Zn, Zr nitrate aqueous solution with stirring during 

the process. After the addition of (NH4)2CO3, the mixed solution continued to be aged at 

70°C with constant stirring for 4 h. The sample was cooled to room temperature and then 

filtered and washed thoroughly with deionized water. The washed sample was dried at 

110°C and then calcinated at 500°C in static air for 4h, with a calcination temperature 

increase rate of 5°C/min. 

ZSM-5 use a commercial catalyst with a Si/Al ratio of 27. nT-ZSM-5 was prepared by 

silylation reaction. Raw zeolite, tetraethyl orthosilicate (TEOS), and hexane were mixed in 

the ratio of 1 g: 2.2 mL: 10 mL, and then the mixture was stirred at room temperature for 

4 h. After stirring, the samples were filtered without washing. The filtered samples were 

dried at 110°C and then calcinated at 500°C in static air for 4h, with a calcination 

temperature increase rate of 5°C/min. Mg-modified 3T-ZSM-5 was prepared using the 

impregnation method. 0.053, 0.105, and 0.211 g of Mg(NO3)2·6H2O were mixed with 2 mL 

of deionized water and 1 g of 3T-ZSM-5 uniformly by grinding and ultrasonication, 

respectively. The sample was then dried at 110°C and then calcinated at 500°C in static air 

for 4h, with a calcination temperature increase rate of 5°C/min. The samples were 0.5 wt% 

Mg-3T-ZSM-5, 1 wt% Mg-3T-ZSM-5 and 2 wt% Mg-3T-ZSM-5, respectively. 

The modified zeolites in the experiment to investigate the effect of modified elements 

on the catalytic performance of zeolites were prepared by impregnation on zeolites with 

a Si/Al ratio of 40. Zn(NO3)2·6H2O, Mg(NO3)2·6H2O, H3PO4 (85%), or Co(NO3)2·6H2O were 

dissolved in an appropriate amount of deionized water and then ZSM-5 was added. The 

sample was stirred at 80°C for 3 h, dried at 110°C, warmed at 10°C/min, and calcinated at 

550°C for 4 h. The loading of Zn, Mg, P or Co were 1 , 3 and 5 wt%, respectively. 



Catalyst evaluation 

The CO2 hydrogenation to aromatics reaction was carried out in a tubular fixed bed 

continuous flow reactor and the catalyst activity was tested by gas chromatography 

attached to the fixed bed. Before activity testing, all catalysts were sieved into 40-80 mesh 

particles by grinding, mixing, compacting, and crushing. The reactions were carried out at 

1.0~3.0 MPa, 300~360°C, V(H2)/V(CO2)/V(Ar) = 72/24/4, m(ZZO): m(ZSM-5) = 1:1~3:1, and 

GHSV = 2400 ~ 7200 mL g-1 h-1. When there is no special indication, the mass ratio of ZZO 

to ZSM-5 is 2:1. The reacted gases were held at 180°C and analyzed directly in a gas 

chromatograph (Agilent GC-7890B). CO2, CO, and Ar were separated by a TDX-01 packed 

column and analyzed by a TCD detector. Hydrocarbon species were separated by a PONA 

capillary column and analyzed by an FID detector. 

The activity of the m-xylene isomerization reaction was tested using the same reactor 

and gas chromatography. The reaction was conducted at atmospheric pressure and a 

temperature of 320°C. M-xylene was bubbled in a bubbler cooled with an ice-water bath 

and carried into the reactor by Ar. The Ar carrier gas flow rate was set at 6000 mL g-1 h-1. 

The activity of the p-xylene isomerization reaction was tested using the same reactor 

and gas chromatography. The reaction was carried out under the following conditions: 

pressure of 0.1~1.0 MPa, temperature of 320°C, and Ar or CO2 and H2 mixture as the 

carrier gas with a GHSV of 14400~24000 mL g-1 h-1. p-Xylene was bubbled at room 

temperature in a bubbler using Ar or CO2 and H2 mixture as the carrier gas and then 

carried into the reactor for the reaction. 

The CO2 conversion (denoted as X(CO2)), the carbon-based selectivity of the 

hydrocarbon species (denoted as S(product)), the proportion of p-xylene in xylene 

(denoted as P(PX)), and the conversion of m-xylene and p-xylene (denoted as X(PX) and 

X(MX)) were calculated using the normalization method. The calculation equations are as 

follows. 

X(COଶ)=
𝑓஼ை𝐴஼ை ൅ 𝑖 ∑𝑛𝑓஼೙ு೘𝐴஼೙ு೘

𝑓஼ைమ𝐴஼ைమ ൅ 𝑓஼ை𝐴஼ை ൅ 𝑖 ∑𝑛𝑓஼೙ு೘𝐴஼೙ு೘
ൈ 100% 



𝑓: relative mole correction factor 

𝐴: peak area on chromatographic spectra 

𝑖 ൌ
𝑓େୌరି்஼஽𝐴େୌరି்஼஽
𝑓େୌరିிூ஽𝐴େୌరିிூ஽

 

𝑖: internal normalization conversion coefficient 

SሺC୬H୫ሻ ൌ
𝑛𝑓஼೙ு೘𝐴஼೙ு೘
∑𝑛𝑓஼೙ு೘𝐴஼೙ு೘

ൈ 100% 

SሺCOሻ ൌ
𝑓஼ை𝐴஼ை

𝑓஼ை𝐴஼ை ൅ 𝑖 ∑𝑛𝑓஼೙ு೘𝐴஼೙ு೘
ൈ 100% 

PሺPXሻ ൌ
𝑓p-xylene𝐴p-xylene

𝑓p-xylene𝐴p-xylene ൅ 𝑓m-xylene𝐴m-xylene ൅ 𝑓o-xylene𝐴o-xylene
ൈ 100% 

X(PX)=
∑𝑓஼೙ு೘𝐴஼೙ு೘ െ 𝑓p-xylene𝐴p-xylene

∑𝑓஼೙ு೘𝐴஼೙ு೘
ൈ 100% 

X(MX)=
∑𝑓஼೙ு೘𝐴஼೙ு೘ െ 𝑓m-xylene𝐴m-xylene

∑𝑓஼೙ு೘𝐴஼೙ு೘
ൈ 100% 

Catalyst characterization 

The powder X-ray diffraction was performed to analyze the crystal structure of the 

samples on a Rigaku Smartlab diffractometer. Diffractometer with CuKα radiation source 

worked at 40kV and 200 mA at room temperature. The scan rate was 10°/min. 

Scanning electron microscopy was used to characterize the morphology of the catalyst 

on a JSM-7800F microscope. 

Ar adsorption was performed on Autosorb iQ (Quantachrome Instruments) at −186 °C 

to measure the pore size distribution of the catalysts. The NL-DFT method was used to 

determine the pore volume. 

The acid amount and strength of zeolites were tested by temperature-programmed 

desorption of ammonia (NH3-TPD) on a chemisorption analyzer (Micromeritics Autochem 

Ⅱ 2920) coupled with a HIDEN mass spectrometer. Typically, 100 mg zeolite was 

pretreated at 450°C for 120 minutes with a heating rate of 10°C/min and a pretreatment 

gas of helium gas flow rate of 30 mL/min. The catalyst was then cooled to 100 °C and the 



gas was switched to 10 V% NH3/He at 30 mL/min to adsorb NH3 for 30 min. After the NH3 

adsorption was completed, the gas was switched to He for 60 min at a flow rate of 30 

mL/min to remove the physically adsorbed NH3. After the desorption was completed, the 

zeolite was heated to 800 °C at a rate of 10 °C/min, and the signal was recorded by mass 

spectrometry. 

The external surface acid amount of the zeolite was determined by 2,6-di-tert-

butylpyridine (DTBPy) adsorbed Fourier transform infrared spectroscopy. IR was 

performed using a TENSOR27 spectrometer. The samples were pressed into a wafer and 

then processed at 450 °C (10 °C/min ramp-up) for 1 h at 10-2 Pa. The samples were then 

cooled to 150 °C and allowed to adsorb DTBPy for 15 min. The samples were then 

processed under a high vacuum for 1 h to remove the physically adsorbed DTBPy and the 

samples were scanned for IR spectra. 

The solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) spectra 

were measured on a Bruker AVANCE NEO 400 MHz equipped with a 4.0 mm probe. For 

29Si MAS NMR, the spinning rate is 8 kHz with a recycle delay of 5 s. For 1H MAS NMR, the 

spinning rate is 14 kHz. 

  



 
 

 
 
 

  

Figure S1. CO selectivity and hydrocarbon distribution of CO2 hydrogenation on ZZO/nT-
ZSM-5 corresponding to Figure 1a in the main text. Reaction conditions: 320°C, 2.0 MPa,
CO2: H2 of 1:3, GHSV of 4800 mL g-1 h-1. 

Figure S2. CO selectivity and hydrocarbon distribution of CO2 hydrogenation on 
ZZO/Modified-ZSM-5 corresponding to Figure 1b in the main text. Reaction conditions: 
320°C, 4.0 MPa, CO2: H2 of 1:3, GHSV of 7200 mL g-1 h-1. The contents of modified 
elements are 5 wt% Zn, 3 wt% Co, 5 wt% P and 3 wt% Mg, respectively. 



 

 

 
  

Figure S3. CO2 conversion, PX selectivity, CO selectivity, and hydrocarbon distribution of
CO2 hydrogenation on ZZO/Modified-ZSM-5 with different element content, (a) Zn, (b)
Co, (c) P and (d) Mg. Reaction conditions: 320°C, 4.0 MPa, CO2: H2 of 1:3, GHSV of 7200 
mL g-1 h-1. 

(a) 

(b) 

(c) 

(d) 



 
 
 

 

  

Figure S4. CO selectivity and hydrocarbon distribution of CO2 hydrogenation on
ZZO/x%Mg-nT-ZSM-5 corresponding to Figure 1c in the main text. Reaction conditions:
320°C, 2.0 MPa, CO2: H2 of 1:3, 4800 mL g-1 h-1. 

Figure S5. CO2 conversion, PX selectivity, CO selectivity, and hydrocarbon distribution
of CO2 hydrogenation on ZZO/3T-ZSM-5 with different temperature. Reaction
conditions: 2.0 MPa, CO2: H2 of 1:3, GHSV of 4800 mL g-1 h-1. 



 
 

 

 
  

Figure S6. CO2 conversion, PX selectivity, CO selectivity, and hydrocarbon distribution 
of CO2 hydrogenation on ZZO/3T-ZSM-5 with different GHSV. Reaction conditions: 
320°C, 2.0 MPa, CO2: H2 of 1:3. 

Figure S7. CO2 conversion, PX selectivity, CO selectivity, and hydrocarbon distribution 
of CO2 hydrogenation on ZZO/3T-ZSM-5 with different pressure. Reaction conditions: 
320°C, CO2: H2 of 1:3, GHSV of 4800 mL g-1 h-1. 



 

Figure S8. CO2 conversion, PX selectivity, CO selectivity, and hydrocarbon 
distribution of CO2 hydrogenation on ZZO/2T-ZSM-5 with different ZZO: ZSM-5 ratio. 
Reaction conditions: 320°C, 2.0 MPa, CO2: H2 of 1:3, GHSV of 4800 mL g-1 h-1 
(calculated by ZZO), ZSM-5 with Si/Al ratio of 40. 

Figure S9. SEM images of ZnZrO (a), ZSM-5 (b), ZZO/ZSM-5 (c), 1T-ZSM-5 (d), 2T-ZSM-
5 (e), 3T-ZSM-5 (f), 0.5Mg-3T-ZSM-5 (g), 1Mg-3T-ZSM-5 (h), and 2Mg-3T-ZSM-5(i). 



 

 
 

Figure S10. XRD patterns of ZZO, ZZO/ZSM-5, ZSM-5, nT-ZSM-5, and xMg-3T-ZSM-5. 

Figure S11. Detailed XRD patterns of 3T-ZSM-5 and Mg modified 3T-ZSM-5. 



 

 
 
 
 

Figure S12. Pyridine FTIR of ZSM-5, nT-ZSM-5 and xMg-nT-ZSM-5. 

Figure S13. 2,6-di-tert-butylpyridine FTIR of ZSM-5, nT-ZSM-5, and 2Mg-3T-ZSM-5. 



 
 

Figure S14. Benzene, toluene, ethylbenzene, xylene, (BTEX) and C9+ aromatics 
percentage in all aromatics of CO2 hydrogenation on ZZO/nT-ZSM-5. Reaction 
conditions: 320°C, 2.0 MPa, CO2: H2 of 1:3, GHSV of 4800 mL g-1 h-1. 

Figure S15. 1H NMR of ZSM-5 series in detail. 



 
 

 

 
 

  

Figure S16. 29Si NMR of 3T-ZSM-5 and xMg-3T-ZSM-5 after normalization. 

Figure S17. NL-DFT calculation base on Ar adsorption-desorption isotherms (a) and Ar 
adsorption-desorption isotherms (b) of different catalysts. 



 
 

  

Figure S18. PX isomerization conversion on 3T-ZSM-5 with different GHSV. Reaction 
conditions: 320°C, 1.0 MPa. 

Figure S19. PX isomerization conversion on 3T-ZSM-5 with different GHSV. Reaction 
conditions: 320°C, Ar of 24000 mL g-1 h-1 



 
 

 
Figure S21. Stability test of ZZO/1%Mg-3T-ZSM-5 catalyst. Reaction condition: 320°C, 2.0 
MPa, CO2: H2 of 1:3, GHSV of 4800 mL g-1 h-1. 

 
 
 
 

Figure S20. CO selectivity and hydrocarbon distribution of CO2 hydrogenation on catalysts
with different mixing method corresponding to Figure 3c in the main text. Reaction 
conditions: 320°C, 2.0 MPa, CO2: H2 of 1:3, GHSV of 4800 mL g-1 h-1. 



 

 
 
Figure S22. XRD patterns of fresh ZZO/3T-ZSM-5 and used ZZO/1%Mg-3T-ZSM-5 (a). SEM 
images of fresh 1%Mg-3T-ZSM-5 (b) and used ZZO/1%Mg-3T-ZSM-5 (c). 
  

(a) 



Table S1. ICP results of 3T-ZSM-5 and xMg-3T-ZSM-5 

Catalyst 
Weight 

(g) 

Mass concentration (mg/L) Mg mass 
content (%) Mg Al Si 

3T-ZSM-5 #1 0.023 134.8 14310 475700 0.01 

3T-ZSM-5 #2 0.0237 128.7 13600 451900 0.01 

0.5Mg-3T-ZSM-5 #1 0.0242 5804 14320 487200 0.54 

0.5Mg-3T-ZSM-5 #2 0.0266 5294 13190 446000 0.54 

1Mg-3T-ZSM-5 #1 0.0223 10340 12450 440900 1.07 

1Mg-3T-ZSM-5 #2 0.0222 10540 12740 448300 1.07 

2Mg-3T-ZSM-5 #1 0.0218 19370 11960 422700 2.09 

2Mg-3T-ZSM-5 #2 0.0263 20120 12450 430900 2.13 

 
Table S2. Content of Si(3Si,1Al) and Si(4Si) calculated from the 29Si-NMR. 
 

Zeolites Si(3Si, 1Al) (%) Si(4Si) (%) 

3T-ZSM-5 23.4  76.6  
0.5Mg-3T-ZSM-5 22.2  77.8  
1Mg-3T-ZSM-5 14.7  85.3  
2Mg-3T-ZSM-5 14.1  85.9  

 
Table S3. Pore size calculates by NL-DFT. 
 

Zeolites Pore size (nm) 

ZSM-5 0.552 
3T-ZSM-5 0.552 

0.5Mg-3T-ZSM-5 0.522 
2Mg-3T-ZSM-5 0.522 

 
Table S4. Catalytic performance and STY of PX of ZZO/ZSM-5 series. 

ZZO/zeolites 
X(CO2) 

(%) 
S(CO) 

(%) 
S(PX) 
(%) 

P(PX) 
(%) 

STY(PX) 
mg/gcat/h 

ZSM-5 7.6  37.7  4.7  23.5  1.5  

1T-ZSM-5 7.3  34.8  13.3  42.5  4.3  

2T-ZSM-5 6.7  34.2  22.0  65.3  6.6  

3T-ZSM-5 7.0  35.2  25.0  76.3  7.7  

0.5Mg-3T-ZSM-5 6.5  32.7  27.0  81.4  8.1  

1Mg-3T-ZSM-5 6.6  32.1  27.6  84.2  8.4  

2Mg-3T-ZSM-5 5.6  27.0  27.2  85.7  7.7  

Reaction condition: 320 °C, 2 MPa, 4800 mL/gcat/h 



  

Equation S1. 
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