Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2023

Electronic Supporting Information

Homologous RuO₂-Ru heterostructures for tandem catalytic upgrading of ethanol

Pei Jing^{a,c}, Haiyang Zhao^b, Wenxiang Zhang^c, Gang Liu^{a,c*}

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry,

College of Chemistry, Jilin University, Changchun, 130012, China

^b Jilin Yunsheng Technology Co., Ltd, Changchun 130000, China

^c Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun, 130021, China

Corresponding author: lgang@jlu.edu.cn

Tel: +86-431-88499140 Fax: +86-431-85168420

Experimental section:

Synthesis of biomass-derived porous carbon

The biomass-derived porous carbon support was synthesized via a modified hardtemplate method. Firstly, aluminum nitrate nonahydrate (48 g), citric acid (13.5 g), and sucrose (15.6 g) were mixed together in a three-neck flask, in which 200 mL of deionized water was added to form a homogeneous mixture. Then, 8.7 mL of phosphoric acid (85%) was added dropwise into the above solution. After standing for 0.5 h, a dilute alkali aqueous solution (10 wt% ammonia) was used to slowly adjust the pH value of the solution to 5.1. Afterward, the as-made mixture was heated at 80 °C in the open air to remove the water and other volatiles. The resultant solid was ground into black powder, treated at 300 °C in muffle for 10 minutes, and then calcined at 800 °C under an Ar flow for 6 h. The biomass-derived porous carbon (denoted as C) was obtained after etching of AIPO component by excess 4 M HNO₃.

Synthesis of catalysts

The RuO₂-Ru/C catalysts were prepared by an impregnation method using C as the support. Firstly, different amounts of the RuCl₃·3H₂O were dissolved in a certain amount of deionized water under continuous stirring. Next, the C support was added and dispersed by stirring for 3 h under room temperature to ensure uniform distribution. The obtained mixture was dried at 80 °C using a water bath under stirring. The resulting material was calcinated at 400 °C for 4 h in Ar atmosphere. The RuO₂-Ru/C samples synthesized in this work were donated as x wt%RuO₂-Ru/C (x = 0.2, 0.5, 1.0 and 2.0), where x is the Ru loading in weight percent (x = [Ru/C]wt × 100%).

The actual Ru contents for 0.2 wt%RuO₂-Ru/C, 0.5 wt%RuO₂-Ru/C, 1.0 wt%RuO₂-Ru/C and 2.0 wt%RuO₂-Ru/C are 0.15 wt%, 0.4 wt%, 0.75 wt% and 1.5 wt%, respectively.

Pt/C (H₂PtCl₆·6H₂O as a metal precursor, calcined in Ar at 300 °C for 2h), Pd/C (PdCl₂ as a metal precursor, calcined in Ar at 300 °C for 2h), and Cu/C (Cu(NO₃)₂·3H₂O as a metal precursor, calcined in Ar at 450 °C for 4h) were synthesized following a similar procedure to RuO₂-Ru/C.

Catalyst Evaluation

The catalytic test was carried out using a fixed-bed reactor. In detail, a given amount of catalyst (1.0 g) was loaded into the tubular reactor. Subsequently, the ethanol and carrier gas nitrogen (N₂) was fed from the top of the reactor. The reaction was carried out under the following conditions: 523 K, 2 MPa, LHSV = $3.6 \text{ mL} \cdot \text{h}^{-1} \cdot \text{g}_{cat}^{-1}$ and N₂ flowing rate = $35 \text{ mL} \cdot \text{min}^{-1}$. The liquid products were analyzed by a Gas chromatograph (GC) with a flame ionization detector (FID) and a SE-54 column (30 m, 0.25 mm inner diameter).

The ethanol conversion, selectivity and yield of products were calculated as follows: *Ethanol conversion* (%)

$$= \frac{x \mod of \ carbon \ in \ all \ products}{x \mod of \ carbon \ in \ (all \ products + unreacted \ ethanol)} \times 100\%$$

Selectivity (%) = $\frac{x \mod of \ carbon \ in \ the \ target \ product}{x \mod of \ carbon \ in \ all \ products} \times 100\%$

yield (%) = Ethanol conversion × Selectivity

Characterizations

The crystal phases were examined by XRD using a Rigaku X-ray diffractometer with Cu K α radiation (λ = 0.15418 nm), operated at 40 kV and 40 mA. N₂-

adsorption/desorption isotherms were measured at 77 K using a Micromeritics ASAP 2460 analyzer. TEM and HAADF-STEM images were obtained on a JEOL JEM-2100F instrument with an operating voltage of 200 kV. X-ray photoelectron spectroscopy characterization was conducted on a Thermo Nexsa instrument with an Al K α source (1486.6 eV). Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis was performed with a Agilent 725 instrument. Hydrogen-temperature programmed desorption (H₂-TPR) performed using a ChemBET Pulsar TPR/TPD instrument. Before detection, the samples were pretreated under N₂ flow at 300 °C for 30 min. After cooling to 30 °C, the flowing gas was switched to a 5 vol% H₂/Ar and the sample was heated to 800 °C with a ramp of 10 °C/min.

Fig. S1 XRD patterns of the carbon support and 1.0 wt% $\rm RuO_2\text{-}Ru/C.$

Fig. S2 N₂ adsorption-desorption isotherms of 1.0 wt% RuO₂-Ru/C.

Fig. S3 BJH pore size distribution of 1.0 wt% RuO₂-Ru/C.

Fig. S4 XRD patterns of 1.0 wt% Pt/C, 1.0 wt% Pd/C, 1.0 wt% Cu/C and 1.0 wt% RuO₂-Ru/C.

Fig. S5 XRD patterns of RuO₂-Ru/C with different Ru loadings.

Fig. S6 H₂-TPR profiles of carbon support and RuO₂-Ru/C with different Ru loadings.

The H₂-TPR profiles of RuO₂-Ru/C catalysts with Ru loading of 0.5-2.0 wt% exhibit a predominant peak at 180-350 °C, corresponding to the reduction of RuO₂ to metallic Ru. The reduction peak gradually shifts to relatively low temperature with the Ru content increasing, probably because the Ru species with low loading has a stronger interaction with support. For 0.2 wt%RuO₂-Ru/C, the reduction peak located at 120 °C, which is lower than the RuO₂-Ru/C catalysts with Ru loading of 0.5-2.0 wt%, mainly due to the small particle size. In addition, considering the H₂ consumption and Ru loading, we can conclude that the ratio of RuO₂ to Ru increased with Ru loading from 0.2 to 1.0 wt %, but it declined as Ru loading was raised to 2.0 wt%.

Fig. S7 XRD patterns of 1.0 wt% RuO_2 -Ru/C before reaction (a) and after the initial change (b) and long-term reaction (c).

Fig. S8 TEM and HRTEM images of used RuO₂-Ru/C.