Supporting information

The intercalation of tetrachlorobenzoquinone mediated by Nmethylpyrrolidone into V_2O_5 as cathode for aqueous zinc-ion battery[†]

Experimental Section

Materials

Vanadium pentoxide (V₂O₅) and N-methylpyrrolidone (NMP) were purchased from Shanghai Aladdin Biochemical Technology Co. Ltd. Tetrachlorop-benzoquinone (TCB) was purchased from Shanghai Bide Pharmaceutical Technology Co. Ltd. Glass fiber membrane (GF/D grade) was provided by Whatman company. Zinc foil (diameter: 15 mm, thickness: 0.3 mm) was purchased from Dongguan Keloude Experimental Materials Technology Co. Ltd. Titanium foil (diameter: 15 mm, thickness: 0.1 mm) was purchased from Guangzhou Haiyuan Metal Products Co. Ltd. Conductive carbon black (Super P Li) was purchased from Guangdong Candlelight New Energy Technology Co. Ltd. Polyvinylidene fluoride (PVDF) was purchased from Wuyu Chemical Industry Co. Ltd. Zinc trifluoromethylsulfonate (Zn(CF₃SO₃)₂) was purchased from Shanghai McLean Biochemical Technology Co. Ltd.

Synthesis of s-NMP-V₂O₅ and s-NMP-TCB-V₂O₅

The s-NMP-TCB-V₂O₅ was synthesized by one-step solvothermal method. 0.3 g of V₂O₅ and 0.1 g of TCB were added into solvent that mixed by 15 ml of NMP and 10 ml of deionized water. This suspension was ultrasonic treated for half an hour, then

sealed in a 50 mL autoclave and kept at 140 °C for 24 hours. The product is collected by centrifugal precipitation and washed by deionized water and dichloromethane for several times, finally dried at 80 °C for 12 hours. Following the same conditions, s-NMP-V₂O₅ is prepared without adding TCB.

Characterizations

The crystal structure of the sample was obtained by the radiation X-ray diffractometer (XRD, Japan Science, SmartLab3), and the Fourier infrared spectrum (FTIR) came from the infrared spectrometer (ThermoFisher Nicolet iS-10). Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) mapping images of the samples were obtained by J Hitachi S-4800 instrument equipped with an EDS (AMETEK) analyzer at an accelerated voltage of 3 kV. X-ray photoelectron spectroscopy (XPS) analysis was performed on the Thermo ESCALAB 250 X-ray photoelectron spectrometer. Electron paramagnetic resonance (EPR) spectroscopy was performed using an EPR (BRUKE EMXPLUS) with a central field of 3600 G and a scanning width of 100G. Nitrogen (N₂) adsorption-desorption curves were measured a 3Flex three-station universal gas adsorbent (Micromeritics, USA). bv Thermogravimetric (TG) curves were measured from 50 °C to 800 °C in N₂ atmosphere by TGA/SDTA851E (Mettler Toledo). All cyclic voltammetric tests (CV) were obtained using CHI760E electrochemical workstation (Chenhua, Shanghai, China). The constant current charge/discharge (GCD) test with voltage range of 0.1V to 1.6 V was conducted on LAND CT2001A (5 V/5 mA).

Battery fabrication

Samples (V₂O₅ or s-NMP-V₂O₅ or s-NMP-TCB-V₂O₅) are mixed with Super P Li and PVDF at the ratio of 6:3:1, then NMP is added and fully milled, the resulting slurry is coated on titanium foil, and dried in vacuum at 80 °C for 12 hours. The average mass loading is kept in the range of 1.3-1.7 mg cm⁻². The CR2032 button battery is used, and the assembly process is in air atmosphere (Zinc foil as anode; glass fiber as separator), with 3 M Zn(CF₃SO₃)₂ as aqueous electrolyte. All fabricated batteries were stood at room temperature for 12 hours before the electrochemical test.

Fig. S1 HRTEM image of the interplanar spacing for the V₂O₅ corresponding.

Fig. S2 HRTEM image of the interplanar spacing for the s-NMP-V₂O₅ corresponding.

Fig. S3 HRTEM image of the interplanar spacing for the s-NMP-TCB-V₂O₅ corresponding.

Fig. S4 N 1s regions of high-resolution XPS spectra for NMP and s-NMP-TCB-V₂O₅.

Fig. S6 High-resolution XPS spectra of (a) V 2p and (b) O 1s for V₂O₅, s-NMP-V₂O₅ and s-NMP-TCB-V₂O₅.

Fig. S7 EFP spectrum of V₂O₅, s-NMP-V₂O₅ and s-NMP-TCB-V₂O₅.

Fig. S8 SEM images of (a) commercial V₂O₅, (b) s-NMP-V₂O₅ and (c) s-NMP-TCB-V₂O₅; (d) SEM-EDS elemental mapping of s-NMP-TCB-V₂O₅ on (e) N and (f) Cl elements.

Fig. S9 N_2 physisorption isotherms and pore size distribution (inset) of (a) commercial V_2O_5 , (b) s-NMP- V_2O_5 and (c) s-NMP-TCB- V_2O_5 .

Fig. S10 SEM-EDS mapping images of s-NMP-TCB-V₂O₅ for (a) V, (b) C and (c) O elements.

Fig. S11 (a) CV curves of s-NMP-TCB-V₂O₅ at various sweep rates; (b) cycle performance comparison of s-NMP-TCB-V₂O₅ and s-TCB-V₂O₅ at 0.5 A g⁻¹.

Fig. S12 Rate performance of TCB at different current densities.

Fig. S13 (a) Rate performance of V₂O₅ at different current densities. (b) Constant current charge and discharge test of V₂O₅ at 0.5A g⁻¹ current density. (c) Long-cycle test of V₂O₅ at 3A g⁻¹ current density.

Fig. S14 XPS analysis of s-NMP-TCB-V₂O₅ at initial, discharge (0.1 V) and charge state (1.3 V) in ZIBs for (a) V 2p and (b) O 1s.

materials for rechargeable zine batteries corresponding to Fig. 2e.									
Material	Electrolyte	Voltage Range	Capacity (Current density)	Capacity retention @current density (Cycle number)	Reference				
(1, 2, 3- BQ)-VO	3 M Zn(CF ₃ SO ₃) ₂	0.1-1.6 V	$\begin{array}{c} 446 \text{ mA h } g^{-1} \\ (0.2 \text{ A } g^{-1}) \end{array}$	85.4%@5 A g ⁻¹ (1800 cycles)	S1				
MgVOH /PANI	3 M Zn(CF ₃ SO ₃) ₂	0.2-1.6 V	412 mA h g ⁻¹ (0.1 A g ⁻¹)	88%@4 A g ⁻¹ (1000 cycles)	S2				

Table. S1 Comparison of electrochemical performance of new organic-inorganic combined cathode

 materials for rechargeable zinc batteries corresponding to Fig. 2e.

VOH- PPy (PSA)	3 M Zn(CF ₃ SO ₃) ₂	0.2-1.5 V	422 mA h g^{-1} (0.1 A g^{-1})	53.9%@10 A g ⁻¹ (5000 cycles)	S3
PEDOT/ V ₂ O ₅	3 M Zn(CF ₃ SO ₃) ₂	0.2-1.6 V	247 mA h g^{-1} (0.2 A g^{-1})	88%@10 A g ⁻¹ (700 cycles)	S4
PAVO	3 M Zn(CF ₃ SO ₃) ₂	0.2-1.6 V	350 mA h g ⁻¹ (0.1 A g ⁻¹)	90%@1 A g ⁻¹ (900 cycles)	85
PANI10 0-V ₂ O ₅	3 M Zn(CF ₃ SO ₃) ₂	0.4-1.4V	$\begin{array}{c} 348 \text{ mA h } g^{-1} \\ (0.5 \text{ A } g^{-1}) \end{array}$	90%@5 A g ⁻¹ (2000 cycles)	S6
V ₂ O ₅ - DETA	3 M Zn(CF ₃ SO ₃) ₂	0.1–1.5 V	180 mA h g ⁻¹ (0.5 A g ⁻¹)	92.1%@4 A g ⁻¹ (1400 cycles)	S7
s-NMP- TCB- V ₂ O ₅	3 M Zn(CF ₃ SO ₃) ₂	0.1–1.6 V	$\begin{array}{c} \text{452 mA h } g^{-1} \\ \text{(0.5 A } g^{-1}) \end{array}$	85.6%@3 A g ⁻¹ (1500 cycles)	This work

References:

S1 K. Li, Y. Gong and J. H. Lin, Chem. Eng. J., 2023, 452, 139621.

- S2 Z. Feng, Y. Zhao, J. Sun, Y. Liu, H. Jiang and C. Meng, *Nanoscale*, 2022, 14, 8776-8788.
- S3 Z. Feng, J. Sun, Y. Liu, H. Jiang, M. Cui, T. Hu and Y. Zhang, *ACS Appl. Mater. Interfaces*, 2021, 13, 61154-61165.
- S4 B. Wang, S. Dai, Z. Zhu, L. Hu, Z. Su, Y. Jin and L. Huang, Nanoscale, 2022, 14, 12013-12021.
- S5 R Li, F Xing, T Li, H. Zhang, J. Yan, Q. Zheng and X. Li, *Energy Storage Materials*, 2021, 38, 590-598.
- S6 S. Chen, K. Li, K. S. Hui and J. Zhang, Adv. Funct. Mater., 2020, 30, 2003890.
- S7 J. Zhang, S. Liu, S. Zhou, H. Liu, R. Ding, S. Wei and X. Lu, ACS Sustain. Chem. Eng., 2022, 10, 10243-10251.