Construction of a micro-nano reactor assembled by TiO₂/N-C ultrathin sheets for photocatalytic H₂ evolution

Yu Wang,^{†a} Wenwen Zhan,^{†a} Lei Yang,^b Jianwei Zhao,^b Liming Sun,^{*a} Xiaojun Wang^a

and Xiguang Han*a

^a Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials,

Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu

Normal University, Xuzhou, 221116, China

^b Shenzhen HUASUAN Technology Co., Ltd, Shenzhen, 518055, China

1. Experimental Detail

1.1 Preparation of NH₂-MIL-125 hexahedron

The NH₂-MIL-125 hexahedron is synthesized using tetraisopropyl titanate (TIPT) as the Ti salt and 2-aminoterephthalic acid as the organic linker by a simple hydrothermal method at 150 °C for 24 h. After the autoclave cooled to room temperature naturally, samples were collected by centrifugation, thoroughly washed with ethanol 3-4 times, and dried at 60 °C.

1.2 Preparation of TiO₂/N-C HHUS

We use as-prepared NH₂-MIL-125 hexahedron as the precursor. Typically, 10 mg NH_2 -MIL-125 was add to 10 mL C₂H₅OH. The suspension was transferred to a Teflonlined autoclave and heated at 200 °C for 10 h to obtain the MOFs@TiO₂ HHUS. After the autoclave cooled to room temperature naturally, the MOFs@TiO₂ HHUS were collected by centrifugation, thoroughly washed with distilled water 3-4 times, and dried at 60 °C. Finally, TiO₂/N-C HHUS was synthesized via calcination of the MOFs@TiO₂ HHUS at 550 °C for 2 h in Ar gas atmosphere with heating rate of 5 °C·min⁻¹.

1.3 Preparation of TiO₂/N-C HHS

First, 10 mg of as-prepared NH₂-MIL-125 was added to 10 mL C₂H₅OH and 95 μL of deionized water. The suspension was then transferred to a teflon-lined autoclave and heated at 200 °C for 6 hours to obtain the MOFs@TiO₂ HHS. After the autoclave cooled to room temperature naturally, samples were collected by centrifugation, thoroughly washed with distilled water 3-4 times, and dried at 60 °C. Finally, TiO₂/N-C HHS was synthesized via calcination of the MOFs@TiO₂ HHS at 550 °C for 2 h in Ar gas atmosphere with heating rate of 5 °C•min⁻¹.

1.4 Preparation of TiO₂/N-C FH

First, 10mg of as-prepared NH₂-MIL-125 was added to 10 mL C₂H₅OH and 105 μ L of deionized water. The suspension was then transferred to a teflon-lined autoclave and heated at 200 °C for 6 hours to obtain the MOFs@TiO₂ FH. After the autoclave cooled to room temperature naturally, the MOFs@TiO₂ FH were collected by centrifugation, thoroughly washed with distilled water 3-4 times, and dried at 60 °C. Finally, TiO₂/N-C FH was synthesized via calcination of the MOFs@TiO₂ FH at 550 °C for 2 h in Ar gas atmosphere with heating rate of 5 °C·min⁻¹.

1.5 Preparation of TiO₂ HHUS

The as-prepared MOFs@TiO₂ HHUS were calcined for 2 h under O₂ gas atmosphere of 5 °C·min⁻¹ to synthesize TiO₂ HHUS.

1.6 Preparation of TiO₂/N-C cube

TiO₂/N-C was synthesized by calcination of NH₂-MIL-125 under Ar gas atmosphere of 5 °C \cdot min⁻¹ for 2h.

1.7 Characterization

The composition and phase of the as-prepared products were acquired by the powder X-ray diffraction (XRD) pattern using a Panalytical X-pert diffractometer with CuKα radiation. The morphology and crystal structure of as-prepared products were observed by scanning electron microscopy (SEM, SU8100), and high-resolution transmission electron microscopy (HRTEM, FEI Tecnai-F20) with an acceleration voltage of 200 kV. All TEM samples were prepared from depositing a drop of diluted suspensions in ethanol on a carbon film coated copper grid. PHI QUANTUM2000 photoelectron spectrometer (XPS) was using to characterize the surface compositions of product. The surface areas of these samples were measured by the Brunauer-Emmett-Teller (BET) method using nitrogen adsorption and desorption isotherms on a Micrometrics ASAP 2020 system.

1.8 Photoelectric measurement

Photoelectrochemical measurements were performed in a homemade three electrode quartz cell with a PAR VMP3 Multi Potentiostat apparatus. A Pt plate was used as the counter electrode, and Hg/HgCl₂ electrode was used as the reference electrode. The working electrode was prepared on fluorine-doped tin oxide (FTO) glass that was cleaned by ultrasonication in a mixture of ethanol and acetone for 10 min and dried at 60 °C. Typically, 10 mg of the sample powder was ultrasonicated in 0.2 mL of ethanol to disperse it evenly to get a slurry. The slurry was spread onto FTO glass,

whose side part was previously protected using Scotch tape. After air drying, the Scotch tape was unstuck. Then, the working electrode was further dried at 150 °C for 2 h to improve adhesion. The exposed area of the working electrode was 2.5cm². The electrochemical impedance spectroscopy (EIS) measurement was carried out using a CHI-760E workstation, in the three electrode cell the electrolyte were 0.025M KH₂PO₄ and 0.025M Na₂HPO₄ standard buffer solution (25°C, pHs = 6.864) without an additive under open circuit potential conditions. The visible light irradiation source was a 300 W Xe are lamp system. The cathodic polarization curves were obtained using the linear sweep voltammetry (LSV) technique with a scan rate of 100 mV s⁻¹. Photocurrent densities of the samples were measured at 0.2 V versus Hg/Hg₂Cl₂ under non-illuminated (i.e. dark) and illuminated (i.e. light) conditions.

1.9 Photocatalytic activity test

The photocatalytic reaction was carried out in a gas-closed system with a reactor made of quartz. A 300 W xenon lamp was used as a light source. The distance between the lamp and the reactor is 3 cm. In a typical experiment, the photocatalyst (5 mg) was added into the aqueous solution (8 mL) containing triethanolamine (TEOA) (8 vol%). The mixture was sonicated for 5 min to form a homogeneous suspension. Then, N₂ was bubbled in the suspension for 30 min. After the gas-closed system was vacuumed, the suspension was irradiated. The amounts of hydrogen produced were measured with a gas chromatograph (GC-7900, China, molecular sieve 5A, TCD) using N₂ as a carrier gas.

1.10 Calculation details

All theoretical calculations were carried out in the Cambridge Sequential Total Energy Package (CASTEP) code,¹ based on plane-wave pseudopotential method.² The exchange-correlation effects were described by the local density approximation (LDA).³ The electron-ion interactions were treated by ultrasoft pseudopotential.⁴ Γ and 2×2×1 points were used as a Morkhost-Pack mesh⁵ of k-points for geometry optimization and calculating electronic properties. The self-consistent convergence accuracy, the convergence criterion for the force between atoms, and the maximum displacement were set at 2×10⁻⁵ eV/atom, 5.0×10⁻² eV/Å, and 2×10⁻³ Å, respectively. The cutoff energy was set to 300 eV.

 $5\times 3\sqrt{3}$ single graphite (001) layer containing 60 carbon atoms were used to match a (3×3) two TiO₂ molecule layers stoichiometric TiO₂ (001) surface slab containing 18 Ti and 36 O atoms with one bottom molecule layer fixed at the bulk position (11.77×12.02×18.90 Å³), forming the graphite (001)/TiO₂ (001)-2TO interface. The graphite (001)/TiO₂ (001)-3TO interface was formed by $5\times 3\sqrt{3}$ single graphite (001) layer containing 60 carbon atoms and a (3×3) three TiO₂ molecule layers stoichiometric TiO₂ (001) surface slab containing 27 Ti and 54 O atoms with two bottom molecule layers fixed at the bulk position (11.77×12.02×21.24 Å³). The graphite (001)/TiO₂ (001)-4TO interface was formed by $5\times 3\sqrt{3}$ single graphite (001) layer containing 60 carbon atoms and a (3×3) four TiO₂ molecule layers stoichiometric TiO₂ (001) surface slab containing 36 Ti and 72 O atoms with three bottom molecule layers fixed at the bulk position (11.77×12.02×23.54 Å³).

The formation energies of graphite (001)/TiO₂ (001) interface with different

number of TiO_2 molecular layers were calculated as

$$E_f = E_{interface} - E_{graphite} - E_{TiO_2}$$

where $E_{interface}$, $E_{graphite}$ and E_{TiO_2} represented the total energy of the graphite (001)/TiO₂ (001) interface, graphite (001) surface and TiO₂ (001) surface with different number of TiO₂ molecule layers, respectively.

2. Experimental Results

Figure S1 XRD patterns of NH₂-MIL-125 hexahedron (a), TiO₂ fragments (b), MOFs@TiO₂ HHS

(c), and MOFs@TiO₂ HHUS (d).

Figure S2 SEM images of NH₂-MIL-125 (a), the products of NH₂-MIL-125 in H₂O (b), MOFs@TiO₂ FH (c), MOFs@TiO₂ HHS-1 (d), MOFs@TiO₂ HHS-2 (e), and MOFs@TiO₂ HHUS (f).

The experimental results showed that the NH₂-MIL-125 hexahedron (Figure S1a) with smooth surface (Figure S2a) would be etched into anatase TiO₂ fragments (Figure S2b and Figure S1b) by H₂O after hydrothermal reaction at 200 °C for 10 hours. When H₂O in the hydrothermal reaction was replaced with the mixture of ethanol and H₂O, it was found that the etching degree of NH₂-MIL-125 was obviously weakened under the same reaction conditions (200 °C, 10h). With the increase of ethanol proportion in the mixture, part of NH₂-MIL-125 was converted into anatase TiO₂ (Figure S1c), and then obtained MOFs@TiO₂ frame (hollow hexahedron without bottom surfaces, MOFs@TiO₂ FH, Figure S2c) and MOFs@TiO₂ hollow hexahedron (MOFs@TiO₂ HHS-1, Figure S2d) and MOFs@TiO₂ HHS-2 (Figure S2e). Through further observation and comparison of Figure S2d and S2e, it was found that increasing the ethanol proportion would make the nanosheets formed by etching on the surface of

MOFs@TiO₂ HHS-2 tend to be larger and thinner than that on the surface of MOFs@TiO₂ HHS-1. After substituting the mixture of ethanol and H₂O by pure ethanol, the obtained alcoholysis product was still MOFs@TiO₂ hollow hexahedron (MOFs@TiO₂ HHUS, Figure S1d). Different from MOFs@TiO₂ HHS, the nanosheets on the surface of MOFs@TiO₂ HHUS continued to become large and thin (Figure S2f). The thickness and size of nanosheets subunits of the MOFs@TiO₂ hollow hexahedron could be achieved by adjusting the ethanol/H₂O rate in the solvent, which could be attributed to the slower alcoholysis rate of NH₂-MIL-125 in ethanol than that in H₂O.

Figure S3 (a) Illustration of the formation process of monodisperse MOFs@TiO₂ HHUS; (b_1 - e_1 , b_2 - e_2) SEM images of the products of NH₂-MIL-125 in ethanol at 200 °C for different reacted time; (b_3 - e_3) TEM images of the products of NH₂-MIL-125 in ethanol at 200 °C for different reacted time.

Figure S4 XRD patterns of the products of NH_2 -MIL-125 in ethanol at 200 °C for different reacted time.

The time-dependent evolution of NH₂-MIL-125 alcoholysis process were elucidated by power X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The formation process of MOFs@TiO₂ HHUS was reasonable illustrated in Figure S3a. The NH₂-MIL-125 precursor with solid hexahedron morphologies had been synthesized by simple solvothermal method (Figure S3b₁-b₃, Figure S4a). After alcoholysis in ethanol at 200 °C for 5h, the product retained well the size and hexahedron morphology (Figure S3c₁-c₃). But the surface of this product became rough and was decorated with ultra-thin nanosheets, which mainly attributed to the incomplete alcoholysis of NH₂-MIL-125 and partially transformation into anatase TiO₂ phase (Figure S4b). In addition, the hexahedron with core-shell structure was formed during this period of time. With the increase of reacted time to 8 h, the core in the middle of hexahedron decreased gradually (Figure S3d₁-d₃), and the anatase TiO₂ phase was more obvious (Figure S4c). The inner core disappeared, forming the MOFs@TiO₂ hollow hexahedron structure assembled by ultra-thin nanosheets (Figure S3e₁-e₃, Figure S4d). Based on the above data, it was shown that the alcoholysis of NH₂-MIL-125 produced anatase TiO₂, and the process of alcoholysis began with the surface of NH₂-MIL-125 hexahedron and then extended to its interior. Finally, MOFs@TiO₂ hollow hexahedron assembled by ultra-thin nanosheets was achieved.

Figure S5 (a) XRD patterns of TiO₂/N-C HHUS, (b) SEM image of TiO₂/N-C HHUS, (c) Raman spectrum of TiO₂/N-C HHUS, (d) N₂ adsorption/desorption isotherms and pore size distribution of TiO₂/N-C HHUS.

Figure S6. HRTEM images of TiO₂/N-C HHUS.

Figure S7 (a) XRD patterns of TiO₂/N-C HHS, (b) SEM image of TiO₂/N-C HHS, (c) TEM image of a single TiO₂/N-C HHS, (d) magnified TEM image of a single TiO₂/N-C HHS, (e) particle size distribution diagram of nanosheets subunits of TiO₂/N-C HHS, (f) magnified TEM of TiO₂/N-C HHS, (g) the corresponding SAED pattern, (h) HRTEM image of TiO₂/N-C HHS, (i-m) the STEM image and EDX elemental mapping of Ti, O, C and N, N₂ adsorption/desorption isotherms (n) and pore size distribution (o) of TiO₂/N-C HHS.

XRD pattern of the calcined product of MOFs@TiO₂ HHS was shown in Figure S7a. It can be found that all diffraction peaks could be indexed to be anatase TiO₂ (PDF No. 00-001-0562), indicating that all residua NH2-MIL-125 in MOFs@TiO2 HHS have been converted into anatase TiO₂. SEM image (Figure S7b) showed that this calcined product retained the hollow hexahedron structure of the MOFs@TiO₂ HHS precursor. The detailed morphological and structural features of the calcined product of MOFs@TiO₂ HHS were further characterized by TEM. Figure S7c verified the hollow hexahedron structure of the calcined product of MOFs@TiO2 HHS. From the magnified TEM (Figure S7d), it could be seen that the hollow hexahedron was composed of many nanosheets. The particle size distribution diagram (Figure S7e) showed that the length and thinckness of these nanosheet subunits were concentrated at 45-50 nm and 7-8 nm, respectively. The interface between TiO₂ and carbon layer can be clearly seen in the local magnified TEM of nanosheet subunit (Figure S7f). The selected-area electron diffraction (SAED) patterns (Figure S7g) confirmed the existence of anatase TiO2 in the nanosheets subunits. In the high-resolution TEM (HRTEM) image (Figure S7h), the crystal plane with the *d*-spacing of 0.373 nm could be ascribed to anatase TiO_2 (100) plane. The structure and composition of the calcined product of MOFs@TiO₂ HHS were further study by scanning transmission electron microscopy (STEM) and elemental mapping. As Figure S7i-m shown, in addition to Ti, O and C elements, N elements were also uniformly distributed in the calcined hollow hexahedron structure. It is preliminarily inferred that these N elements were doped in the carbon layer. Based on the above characterization results, it could be concluded that

the calcined product of MOFs@TiO₂ HHS was hollow hexahedron assembled by TiO₂ nanosheets uniformly coated with N-doped carbon layer (TiO₂/N-C HHS). The N₂ adsorption/desorption isotherms (Figure S7n) and pore size distribution (Figure S7o) showed that the surface area of TiO₂/N-C HHS was 162.9 m²/g and the pore size distribution belongs to mesoporous range.

Figure S8 Raman spectrum of TiO₂/N-C HHS.

Figure S9 (a) XRD patterns of TiO_2/N -C FH, (b) the STEM image of TiO_2/N -C FH, (c-f) EDX elemental mapping of Ti, O, C and N.

Figure S10 (a) XRD patterns of TiO_2/N -C cube, (b) the STEM image of TiO_2/N -C cube, (c-f) EDX elemental mapping of Ti, O, C and N.

Figure S11. Comparison in O 1s XPS spectra between TiO₂/N-C HHUS and TiO₂ HHUS.

Figure S12 (a) XRD patterns of TiO_2 HHUS, (b) the STEM image of TiO_2 HHUS, (c-f) EDX elemental mapping of Ti and O.

Figure S13 (a) XRD patterns of TiO₂/N-C HCUS after five-cycle catalytic reaction, (b) SEM image of TiO₂/N-C HCUS after five-cycle catalytic reaction, (c,d) TEM image of TiO₂/N-C HCUS after five-cycle catalytic reaction, (e) the corresponding SAED pattern.

References

- 1. G. H. Du, Q. Chen, P. D. Han, Y. Yu and L. M. Peng, Potassium titanate nanowires: Structure, growth, and optical properties. *Phys. Rev. B* 2003, **67**, 035323.
- S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refon and M. C. Payne, First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567.
- D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method. *Phys. Rev. Lett.* 1980, 45, 566.

- 4. A. M. Rappe, K. M. Rabe, E. Kaxiras and J. D. Joannopoulos, Optimized pseudopotentials. *Phys. Rev. B* 1990, **41**, 1227.
- H. J. Monkhorst and J. Pack, Special points for Brillouin-zone integrations. *Phys. Rev. B*, 1976, 13, 5188.