Palladium-Catalyzed Intramolecular Oxypalladation-Initiated Cascade: Solvent-Dependent Chemodivergent Approach to Functionalized Benzazepines and Tetrahydroquinolines

Anish Gupta,^a Tanvi Jandial,^a Muthu Karuppasamy,^a Nattamai Bhuvanesh,^b Subbiah Nagarajan,^c C. Uma Maheswari,^d and Vellaisamy Sridharan^{*a}

^aDepartment of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, J&K, India.

^bDepartment of Chemistry, Texas A & M University, College Station, Texas 77843, United States. ^cDepartment of Chemistry, National Institute of Technology, Warangal, Warangal-506004, Telangana, India. ^dDepartment of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.

Supporting Information

Table of	of Contents	
1	General Information	S2
2	General Procedure for the Synthesis of Enones S3	S2
3	General Procedure for the Synthesis of tert-Butyl 2-iodobenzoates S5	S5
4	General Procedure for the Synthesis of Compounds 1a-f, 1h-j and 10	S6
5	General Procedure for the Synthesis of Compounds 1g and 1k-n	S9
6	General Procedure for the Synthesis of Benzo[b]isochromeno[4,3-e]azepin-5(7H)-	S11
	ones 2a-n	
7	General Procedure for the Synthesis of 3-(Quinolin-3(2H)-ylidene)isobenzofuran-	S15
	1(3 <i>H</i>)-ones 3a-n and 5	
8	Optimization of the Reaction Conditions	S20
9	Control Experiments	S21
10	Crystallographic Data of Compound 2a	S21
11	¹ H and ¹³ C NMR Spectra of all the New Compounds	S24
12	NOESY Spectrum of Compound 3b	S78

1. General Information

All reagents and solvents used in the experiment were obtained from commercial suppliers (Alfa Aesar, Sigma, Merck etc.) and were used without further purification. The reactions were carried out in oven dried glassware. The reactions were monitored by thin layer chromatography using Merck silica gel 60 F254 and visualized by UV detection or using molecular iodine or *p*-anisaldehyde stain. Silica gel (230-400 mesh) was used for flash column chromatography. Melting points were recorded on a melting point apparatus in capillaries and are uncorrected.¹H and ¹³C{¹H}-NMR spectra were recorded in CDCl₃ at room temperature on a BruckerAC-400 or 500 spectrometers operating at 400 or 500 MHz for ¹H and 101 or 126 MHz for ¹³C{¹H}. Chemical shifts (δ) are expressed in ppm using TMS as an internal standard and coupling constants (*J*) are given in Hz. Infrared (IR) spectra were obtained using an Affinity 1S Spectrophotometer with a diamond ATR accessory for solid and liquid samples, requiring no sample preparation and the major frequencies were reported in cm⁻¹. Elemental analyses were determined at the CAI de Microanálisis Elemental, Universidad Complutense, by using a Leco 932 CHNS combustion microanalyzer.

2. General Procedure for the Synthesis of Enones S3

Compounds **S1** were prepared using the literature procedure reported by our group earlier.^{1,2} To a solution of methyl ketone **S2** (11 mmol, 1.1 equiv) in 10:1 EtOH/H₂O mixture (50 mL) was added NaOH (15 mmol, 1.5 equiv) at 0 °C. After stirring for 10 min., aryl aldehyde **S1** (10 mmol, 1.0 equiv) was added and stirring was continued at 10-15 °C for 5-6 h. After completion of the reaction, the reaction mixture was poured into ice water and acidified with 1.5N HCl. The aqueous suspension was extracted with DCM (2 x 100 mL), washed with water and brine. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography using petroleum ether and ethyl acetate mixture as eluent (90:10, v/v) to deliver the desired products **S3a-f, S3h-k**.

(*E*)-4-Methyl-*N*-(2-(3-oxo-3-phenylprop-1-en-1-yl)phenyl)-*N*-(prop-2-yn-1-yl)benzene sulfonamide (S3a)

¹ P. Vinoth, M. Karuppasamy, B. S. Vachan, I. Muthukrishnan, C. U. Maheswari, S. Nagarajan, V. Pace, A. Roller, N. Bhuvanesh, V. Sridharan, *Org. Lett.*, 2019, **21**, 3465–3469.

² M. Karuppasamy, B. S. Vachan, P. Vinoth, I. Muthukrishnan, S. Nagarajan, L. Ielo, V. Pace, S. Banik, C. U. Maheswari and V. Sridharan, *Org. Lett.*, 2019, **21**, 5784–5788.

(*E*)-4-Methyl-*N*-(2-(3-oxo-3-(*p*-tolyl)prop-1-en-1-yl)phenyl)-*N*-(prop-2-yn-1-yl)benzene sulfonamide (S3b)

Colourless solid (3.43 g, 80%); mp: 131-133 °C; IR (neat): 3250, 2142, 1597, 1410, 1342, 1183, 1158, 1090 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.0 Hz, 2H), 7.87 (d, J = 16.0 Hz, 1H), 7.79 (dd, J = 7.6, 1.6 Hz, 1H), 7.60 (d, J = 8.4 Hz, 2H), 7.43 (td, J = 7.6, 0.8 Hz, 1H), 7.37-7.35 (m, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 7.15 (dd, J = 8.0, 1.2 Hz, 1H), 4.54 (brs, 1H), 4.30 (brs, 1H), 2.44 (s, 3H), 2.32 (s, 3H), 2.18 (t, J = 2.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ ¹³C NMR (101

MHz, CDCl₃) δ 190.4, 144.1, 143.7, 139.7, 138.4, 136.1, 135.6, 135.3, 130.6, 130.5, 129.6, 129.4, 129.4, 128.9, 128.2, 127.6, 124.9, 77.5, 74.3, 41.7, 21.7, 21.5. Anal Calcd for C₂₆H₂₃NO₃S: C, 72.70; H, 5.40; N, 3.26. Found: C, 72.44; H, 5.36; N, 3.18.

(*E*)-*N*-(2-(3-(4-Methoxyphenyl)-3-oxoprop-1-en-1-yl)phenyl)-4-methyl-*N*-(prop-2-yn-1-yl)benzenesulfonamide (S3c)

Colourless solid (3.87 g, 87%); mp: 141-143 °C; IR (neat): 3274, 2174, 1656, 1607, 1594, 1310, 1266, 1117, 1087 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.01-8.04 (m, 2H), 7.86 (d, J = 15.9 Hz, 1H), 7.78 (dd, J = 7.6, 1.2 Hz, 1H), 7.63-7.60 (m, 2H), 7.42 (td, J = 7.6, 0.8 Hz, 1H), 7.39-7.33 (m, 2H), 7.22 (d, J = 7.6, 2H), 7.14 (dd, J = 8.0, 1.2 Hz, 1H), 7.00-6.98 (m, 2H), 4.55 (brs, 1H), 4.30 (brs, 1H), 3.90 (s, 3H), 2.33 (s, 3H), 2.18 (t, J = 2.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 189.2, 163.4, 144.1, 139.3,

138.3, 136.1, 135.6, 131.1, 130.8, 130.5, 130.4, 129.6, 129.4, 128.2, 127.6, 124.8, 113.9, 77.5, 74.3, 55.5, 41.6, 21.5. Anal Calcd for $C_{26}H_{23}NO_4S$: C, 70.09; H, 5.20; N, 3.14. Found: C, 69.87; H, 5.13; N, 3.07.

(*E*)-*N*-(2-(3-(4-Chlorophenyl)-3-oxoprop-1-en-1-yl)phenyl)-4-methyl-*N*-(prop-2-yn-1-yl) benzenesulfonamide (S3d)

Colourless solid (4.01 g, 89%); mp: 154-156 °C; IR (neat): 3235, 2197, 1629, 1340, 1294, 1155, 1089, 1070 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.92 (m, 3H), 7.80 (dd, J = 8.0, 1.6 Hz, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.51-7.47 (m, 2H), 7.45-7.42 (m, 1H), 7.38-7.31 (m, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.08 (dd, J = 8.0, 0.8, 1H), 4.48 (brs, 1H), 4.35 (brs, 1H), 2.36 (s, 3H), 2.16 (t, J = 2.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 190.1, 144.2,

140.9, 139.2, 138.6, 136.2, 135.9, 135.4, 130.8, 130.3, 130.1, 129.6, 129.4, 128.9, 128.2, 127.6, 124.5, 77.3, 74.3, 41.7, 21.6. Anal Calcd for $C_{25}H_{20}CINO_3S$: C, 66.74; H, 4.48; N, 3.11. Found: C, 66.53; H, 4.42; N, 3.10.

(*E*)-4-Methyl-*N*-(2-(3-(naphthalen-2-yl)-3-oxoprop-1-en-1-yl)phenyl)-*N*-(prop-2-yn-1-yl) benzenesulfonamide (S3e)

Yellow solid (4.32 g, 93%); mp: 68-70 °C; IR (neat): 3149, 2207, 1519, 1390, 1254, 1165, 1149, 1070 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.11-8.07 (m, 1H), 8.03 (d, J = 17.2 Hz, 1H), 7.98-7.96 (m, 2H), 7.93 (d, J = 7.9 Hz, 1H), 7.88 (d, J = 7.7 Hz, 1H), 7.63-7.57 (m, 4H), 7.53-7.46 (m, 2H), 7.39 (t, J = 7.8 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 7.8 Hz, 1H), 4.36 (brs, 1H), 2.33 (s, 3H), 2.18 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 191.2, 144.1, 140.3, 138.5, 136.1, 135.5, 135.1, 132.6,

130.6, 130.3, 129.7, 129.6, 129.4, 128.6, 128.4, 128.2, 127.8, 127.7, 126.8, 125.2, 124.7, 77.5, 74.3, 41.7, 21.5. Anal Calcd for $C_{29}H_{23}NO_3S$: C, 74.82; H, 4.98; N, 3.01. Found C, 74.53; H, 4.86; N, 2.92. *Two aromatic carbons merged with others.

(*E*)-4-Methyl-*N*-(2-(3-oxo-3-(thiophen-2-yl)prop-1-en-1-yl)phenyl)-*N*-(prop-2-yn-1-yl) benzenesulfonamide (S3f)

Colourless solid (2.86 g, 68%); mp: 137-139 °C; IR (neat): 3150, 2172, 1507, 1430, 1312, 1209, 1101 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 15.9 Hz, 1H), 7.80 (d, J = 7.6 Hz 1H), 7.67-7.62 (m, 3H), 7.44 (t, J = 7.4 Hz, 1H), 7.40-7.36 (m, 2H), 7.34 (d, J = 16.0 Hz, 1H), 7.28-7.24 (m, 3H), 7.19 (d, J = 7.8 Hz, 1H), 6.62-6.61 (m, 1H), 4.56 (brs, 1H), 4.33 (brs, 1H), 2.35 (s, 3H), 2.21 (t, J = 2.4 Hz, 1H); ¹³C N/M (101 MHz, CDCl₃) δ 182.2 145.2

^{s3f} 2.21 (t, J = 2.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 182.3, 145.2, 144.2, 139.3, 138.5, 135.8, 135.6, 133.9, 132.3, 130.7, 130.6, 129.6, 129.4, 128.3, 128.2, 127.8, 124.4, 77.5, 74.3, 41.7, 21.5. Anal Calcd for C₂₃H₁₉NO₃S₂: C, 65.54; H, 4.54; N, 3.32. Found: C, 65.37; H, 4.43; N, 3.31.

(*E*)-*N*-(4-Chloro-2-(3-oxo-3-(*p*-tolyl)prop-1-en-1-yl)phenyl)-4-methyl-*N*-(prop-2-yn-1-yl)benzenesulfonamide (S3h)

Colourless solid (4.64 g, 90%); mp: 130-132 °C; IR (neat): 3301, 2143, 1713, 1619, 1509, 1309, 1333, 1217, 1106, 1064 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.0, 2H), 7.81-7.86 (m, 2H), 7.61 (d, J = 8.2 Hz, 2H), 7.37-7.32 (m, 4H), 7.25 (d, J = 8.1 Hz, 2H), 7.12 (d, J = 18.5 Hz, 1H), 4.53 (brs, 1H), 4.30 (brs, 1H), 2.46 (s, 3H), 2.33 (s, 3H), 2.22 (t, J = 2.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 189.7, 144.3, 143.9, 138.2,

2.1 HZ, 1H); ¹³C NMR (101 MHZ, CDCl₃) o 189.7, 144.3, 143.9, 138.2, 137.9, 136.7, 135.4, 135.3, 135.0, 131.9, 130.4, 129.7, 129.4, 128.9, 128.1, 127.4, 125.6, 77.4, 74.6, 41.6, 21.7, 21.5. Anal Calcd for $C_{26}H_{22}CINO_3S$: C, 67.31; H, 4.78; N, 3.02. Found: C, 66.98; H, 4.77; N, 2.94.

(*E*)-*N*-(4-Chloro-2-(3-(4-chlorophenyl)-3-oxoprop-1-en-1-yl)phenyl)-4-methyl-*N*-(prop-2-yn-1-yl)benzenesulfonamide (S3i)

Off-white solid (3.12 g, 58%); mp: 151-153 °C; IR (neat): 3210, 2149, 1702, 1623, 1514, 1342, 1325, 1261, 1113, 1063 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.4 Hz, 2H), 7.86 (d, J = 15.9 Hz, 1H), 7.71 (d, J = 2.0 Hz, 1H), 7.61 (d, J = 8.1 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.35-7.31 (m, 2H), 7.27 (d, J = 8.6 Hz, 2H), 7.04 (d, J = 8.5 Hz, 1H), 4.48 (brs, 1H), 4.33 (brs, 1H), 2.37 (s, 3H), 2.20 (t, J = 1.9 Hz, 1H); ¹³C NMR

(101 MHz, CDCl₃) δ 189.3, 144.4, 139.5, 139.3, 137.7, 136.9, 135.9, 135.4, 135.1, 131.4, 130.6, 130.3, 129.7, 129.0, 128.2, 127.5, 125.2, 77.3, 74.6, 41.6, 21.6. Anal Calcd for C₂₅H₁₉Cl₂NO₃S: C, 61.99; H, 3.95; N, 2.89. Found: C, 61.73; H, 3.91; N, 2.81.

(*E*)-*N*-(4-Chloro-2-(3-(furan-2-yl)-3-oxoprop-1-en-1-yl)phenyl)-4-methyl-*N*-(prop-2-yn-1-yl)benzenesulfonamide (S3j)

Colourless solid (3.50 g, 78%); mp: 138-140 °C; IR (neat): 3216, 2132, 1678, 1642, 1532, 1351, 1309, 1297, 1139, 1062 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 15.9 Hz, 1H), 7.74 (d, J = 2.4 Hz, 1H), 7.68-7.67 (m, 1H), 7.63-7.59 (m, 2H), 7.36-7.35 (m, 1H), 7.33 (dd, J = 8.5, 2.4 Hz, 1H), 7.26-7.24 (m, 3H), 7.13 (d, J = 8.5 Hz, 1H), 6.62-6.61 (m, 1H), 4.54 (brs, 1H), 4.28 (brs, 1H), 2.34 (s, 3H), 2.21 (t, J = 2.5 Hz, 1H); ¹³C NMR (101 MHz,

CDCl₃) δ 177.4, 153.3, 146.8, 144.4, 137.7, 137.6, 136.8, 135.4, 135.3, 131.9, 130.6, 129.7, 128.2, 127.5, 124.7, 118.2, 77.2, 74.6, 41.6, 21.5. Anal Calcd for C₂₃H₁₈ClNO₄S: C, 62.80; H, 4.12; N, 3.18. Found: C, 62.71; H, 4.11; N, 3.09. *One aromatic carbon merged with others.

(E)-1-Phenyl-3-(2-(prop-2-yn-1-yloxy)phenyl)prop-2-en-1-one (S3k)

Pale yellow solid (2.12 g, 81%); mp: 69-71 °C; IR (neat): 3312, 2022, 1712, 1623, 1574, 1341, 1307, 1277, 1134, 1100 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 15.8 Hz, 1H), 8.08-8.04 (m, 2H), 7.71-7.66 (m, 2H), 7.60 (t, J = 7.2, 1.3 Hz, 1H), 7.53-7.50 (m, 2H), 7.41 (td, J = 8.5, 1.6 Hz, 1H), 7.07-7.05 (m, 2H), 4.82 (s, 1H), 4.83 (s, 1H), 2.58 (t, J = 2.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 191.0, 156.7, 140.1, 138.4, 132.6, 131.5, 129.5, 128.6, 128.6,

124.5, 123.3, 121.7, 112.8, 78.2, 76.0, 56.2. Anal Calcd for $C_{18}H_{14}O_2$: C, 82.42; H, 5.38. Found: C, 82.21; H, 5.31.

3. General Procedure for the Synthesis of *tert*-Butyl 2-iodobenzoates S5³

To a stirred suspension of MgSO4 (80 mmol, 4.0 equiv) in DCM (100 mL) at room temperature was added H₂SO4 (20 mmol, 1.0 equiv) under N₂ atmosphere. After 15 min., 2-iodobenzoic acid **S4** (20 mmol, 1.0 equiv) and *tert*-butanol (100 mmol, 5.0 equiv) were added, and the resulting mixture was stirred at room temperature for 48 h. After completion of the reaction, the mixture was quenched by using saturated NaHCO₃ solution and extracted with DCM (2 x 140 mL), washed with water and brine. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography using petroleum ether-ethyl acetate mixture as eluent (95:05, v/v) to obtain *tert*-butyl 2-iodobenzoates **S5**.

tert-Butyl 2-iodobenzoate (S5a)³

S3k

tert-Butyl 2-iodo-5-methylbenzoate (S5b)³

Me Colourless liquid; yield: 4.198 g, 66%

³ M. Karuppasamy, P. Vinoth, N. Pradeep, S. Nagarajan, C. U. Maheswari and V. Sridharan, *Org. Biomol. Chem.*, 2020, **18**, 8474–8485. (b) M. Karuppasamy, B. S. Vachan, T. Jandial, S. B. Annes, N. Bhuvanesh, C. U. Maheswari and V. Sridharan, *Adv. Synth. Catal.*, 2020, **362**, 2716–2724.

4. General Procedure for the Synthesis of Compounds 1a-f, h-j and o

To a stirred solution of compound S3 (5 mmol, 1.0 equiv) in DMF (15 mL) were added *tert*butyl 2-iodobenzoate S5 (6 mmol, 1.2 equiv), Pd(OAc)₂ (0.05 mmol, 5 mol%), PPh₃ (0.1 mmol, 10 mol%), CuI (0.05 mmol, 5mol %), and Et₃N (2 mmol, 2.0 equiv) successively. The resulting mixture was stirred at 80 °C for 1-2 h. After the completion of the reaction, as indicated by TLC, the reaction mixture was quenched by pouring into ice-cold water and extracted with ethyl acetate (2×80 mL). The organic layer was washed with water and brine and dried over anhydrous Na₂SO₄. The solvent was evaporated to dryness under reduced pressure and the crude mixture was chromatographed over silica using the petroleum ether and ethyl acetate mixture (85:15 to 80:20, v/ v) as the eluent to access the desired compounds 1a-f, h-j.

tert-Butyl(*E*)-2-(3-((4-methyl-*N*-(2-(3-oxo-3-phenylprop-1-en-1-yl)phenyl)phenyl)sulfo namido)prop-1-yn-1-yl)benzoate (1a)

Off-white solid (1.86 g, 63%); mp: 130-132 °C; IR (neat): 3012, 2154, 1732, 1595, 1482, 1351, 1308, 1295, 1250, 1180, 1161, 1132 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.06-8.01 (m, 3H), 7.84-7.81 (m, 2H), 7.67 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 7.2 Hz, 1H), 7.54-7.50 (m, 2H), 7.45-7.42 (m, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.34-7.31 (m, 2H), 7.26 (d, J = 8.0 Hz, 1H), 7.20 (d, J = 8.1 Hz, 2H), 7.16-7.14 (m, 1H), 4.89 (d, J = 17.6 Hz, 1H), 4.53 (d, J = 16.9 Hz, 1H), 2.32 (s, 3H), 1.52 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ

191.3, 165.0, 143.9, 140.6, 138.8, 137.9, 136.1, 135.9, 134.3, 133.5, 132.7, 131.0, 130.6, 130.4, 130.1, 129.5, 129.3, 128.9, 128.6, 128.3, 128.1, 127.6, 125.0, 122.3, 87.5, 85.1, 81.6, 42.9, 28.1, 21.5. Anal Calcd for $C_{36}H_{33}NO_5S$: C, 73.07; H, 5.62; N, 2.37. Found: C, 72.88; H, 5.58; N, 2.31.

tert-Butyl(*E*)-2-(3-((4-methyl-*N*-(2-(3-oxo-3-(*p*-tolyl)prop-1-en-1-yl)phenyl)phenyl)sulfon amido)prop-1-yn-1-yl)benzoate (1b)

Pale yellow solid (1.72 g, 57%); mp: 176-178 °C; IR (neat): 3021, 2197, 1729, 1634, 1602, 1483, 1350, 1297, 1281, 1182, 1162, 1132 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 16.0 Hz, 1H), 7.93 (d, *J* = 7.9 Hz, 2H), 7.83 (d, *J* = 7.2 Hz, 2H), 7.67 (d, *J* = 7.9 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 1H), 7.38-7.37 (m, 1H), 7.32-7.30 (m, 4H), 7.28-7.26 (m, 2H), 7.20 (d, *J* = 7.9 Hz, 2H), 7.16 (d, *J* = 7.7 Hz, 1H), 4.91 (d, *J* = 16.7 Hz, 1H), 4.52 (d, *J* = 16.7 Hz, 1H), 2.45 (s, 3H), 2.31 (s, 3H), 1.52 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 190.7, 165.1, 143.9, 143.6, 139.9, 138.8,

136.2, 135.9, 135.3, 134.3, 133.5, 131.0, 130.5, 130.4, 130.1, 129.5, 129.3, 129.2, 128.9, 128.3, 128.1, 127.6, 125.1, 122.3, 87.6, 85.0, 81.6, 42.9, 28.1, 21.7, 21.5. Anal Calcd for $C_{37}H_{35}NO_5S$: C, 73.36; H, 5.82; N, 2.31. Found: C, 73.08; H, 5.77; N, 2.29. *Two aromatic carbons merged with others.

tert-Butyl(*E*)-2-(3-((*N*-(2-(3-(4-methoxyphenyl)-3-oxoprop-1-en-1-yl)phenyl)-4-methyl phenyl)sulfonamido)prop-1-yn-1-yl)benzoate (1c)

Light brown solid (1.86 g, 60%); mp: 159-161 °C; IR (neat): 2969, 2313, 1723, 1633, 1597, 1568, 1483, 1360, 1352, 1297, 1253, 1175, 1163 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.02-8.00 (m, 2H), 7.97 (d, J = 16.0 Hz, 1H), 8.80-8.77 (m, 2H), 7.65 (d, J = 8.3 Hz, 2H), 7.40-7.36 (m, 2H), 7,34-7.27 (m, 3H), 7.22 (dd, J = 12.0, 7.9 Hz, 1H), 7.17 (d, J = 8.4 Hz, 2H), 7.13-7.11 (m, 1H), 6.96 (dd, J = 6.9, 1.9 Hz, 2H), 4.88 (d, J = 17.4 Hz, 1H), 4.48 (d, J = 17.8 Hz, 1H), 3.87 (s, 3H), 2.28 (s, 3H), 1.49 (s, 9H); ¹³C

NMR (126 MHz, CDCl₃) δ 189.6, 165.1, 163.4, 143.9, 139.6, 138.8, 136.4, 135.9, 134.4, 133.5, 131.3, 131.1, 130.9, 130.5, 130.6, 130.2, 129.6, 129.3, 128.4, 128.1, 127.7, 125.0, 122.4, 113.9, 87.6, 85.1, 81.7, 55.6, 42.9, 28.2, 21.6. Anal Calcd for C₃₇H₃₅NO₆S: C, 71.48; H, 5.67; N, 2.25. Found: C, 71.29; H, 5.62; N, 2.23.

tert-Butyl(*E*)-2-(3-((*N*-(2-(3-(4-chlorophenyl)-3-oxoprop-1-en-1-yl)phenyl)-4-methylphen yl)sulfonamido)prop-1-yn-1-yl)benzoate (1d)

Light brown solid (1.88 g, 60%); mp: 186-188 °C; IR (neat): 2991, 2249, 1728, 1638, 1593, 1482, 1350, 1297, 1281, 1251, 1176, 1133, 1161 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 16.1 Hz, 1H), 7.96 (d, J = 8.5 Hz, 2H), 7.84-7.81 (m, 2H), 7.67 (d, J = 8.1 Hz. 2H), 7.48 (d, J = 8.5 Hz, 2H), 7.44 (d, J = 7.6 Hz, 1H), 7.39-7.35 (m, 2H), 7.33-7.31 (m, 2H), 7.23-7.21 (m, 3H), 7.13-7.11 (m, 1H), 4.84 (d, J = 17.2 Hz, 1H), 4.55 (d, J = 17.3 Hz, 1H), 2.34 (s, 3H), 1.52 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ

190.4, 164.9, 143.9, 141.2, 139.1, 138.9, 136.2, 136.1, 135.7, 134.2, 133.5, 131.0, 130.8, 130.3, 130.2, 130.1, 129.5, 129.3, 128.9, 128.3, 128.1, 127.6, 124.7, 122.3, 87.4, 85.1, 81.6, 42.9, 28.1, 21.5. Anal Calcd for $C_{36}H_{32}CINO_5S$: C, 69.05; H, 5.15; N, 2.24. Found C, 68.75; H, 5.06; N, 2.19.

tert-Butyl(*E*)-2-(3-((4-methyl-*N*-(2-(3-(naphthalen-2-yl)-3-oxoprop-1-en-1-yl)phenyl)phe nyl)sulfonamido)prop-1-yn-1-yl)benzoate (1e)

Colourless solid (1.79 g, 56%); mp: 150-152 °C; IR (neat): 3109, 2209, 1724, 1631, 1482, 1364, 1281, 1255, 1162, 1133, 1107 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 8.14-8.06 (m, 3H), 7.97-7.89 (m, 3H), 7.82-7.80 (m, 1H), 7.68 (d, J = 8.2 Hz, 2H), 7.63-7.58 (m, 2H), 7.52 (d, J = 16.0 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.39 (t, J = 7.8 Hz, 1H), 7.31-7.27 (m, 3H), 7.19 (d, J = 8.0 Hz, 2H), 7.13-7.11 (m, 1H), 4.88 (d, J = 18.9 Hz, 1H), 4.55 (d, J = 17.4 Hz, 1H), 2.31 (s, 3H), 1.51 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 191.4, 165.0, 143.9, 140.5, 138.8, 136.3, 135.8, 135.5, 135.1,

134.3, 133.4, 132.6, 131.0, 130.7, 130.6, 130.3, 130.1, 129.8, 129.5, 129.3, 128.5, 128.4, 128.3, 128.1, 127.8, 127.7, 126.7, 125.3, 124.8, 122.3, 87.5, 85.1, 81.6, 42.9, 28.1, 21.5. Anal Calcd for $C_{40}H_{35}NO_5S$: C, 74.86; H, 5.50; N, 2.18. Found: C, 74.75; H, 5.53; N, 2.21.

tert-Butyl(*E*)-2-(3-((4-methyl-*N*-(2-(3-oxo-3-(thiophen-2-yl)prop-1-en-1-yl)phenyl)phenyl)sulfonamido)prop-1-yn-1-yl)benzoate (1f)

Light brown solid (1.50 g, 51%); mp: 145-147 °C; IR (neat): 2950, 2231, 1721, 1659, 1652, 1567, 1483, 1463, 1393, 1304, 1281, 1249, 1158, 1132 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 16.0 Hz, 1H), 7.83-7.81 (m, 2H), 7.70-7.66 (m, 3H), 7.44 (t, J = 7.3 Hz, 1H), 7.38-7.35 (m, 3H), 7.33-7.30 (m, 2H), 7.28 (s, 1H), 7.23-7.18 (m, 3H), 6.61-6.60 (m, 1H), 4.93 (d, J = 17.9 Hz, 1H), 4.53 (d, J = 17.4 Hz, 1H), 2.32 (s, 3H), 1.52 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 178.1, 165.1, 153.4, 146.6, 143.9, 139.4, 138.8, 135.9, 135.8, 134.3, 133.4, 131.1, 130.7, 130.5, 130.1,

129.5, 129.3, 128.3, 128.1, 127.7, 124.0, 122.3, 118.0, 112.5, 87.5, 85.1, 81.6, 42.9, 28.1, 21.5. Anal Calcd for $C_{34}H_{31}NO_5S_2$: C, 68.32; H, 5.23; N, 2.34. Found: C, 68.04; H, 5.15; N, 2.31.

tert-Butyl(*E*)-2-(3-((*N*-(4-chloro-2-(3-oxo-3-(*p*-tolyl)prop-1-en-1-yl)phenyl)-4-methylphe nyl)sulfonamido)prop-1-yn-1-yl)benzoate (1h)

Pale yellow solid (1.73 g, 54%); mp: 79-81 °C; IR (neat): 2987, 2209, 1735, 1603, 1562, 1481, 1379, 1268, 1251, 1173, 1157 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.94-7.89 (m, 3H), 7.84-7.78 (m, 2H), 7.71-7.65 (m, 2H), 7.37-7.34 (m, 5H), 7.28-7.25 (m, 2H), 7.21-7.19 (m, 3H), 4.91 (d, J = 15.4 Hz, 1H), 4.48 (d, J = 18.3 Hz, 1H), 2.46 (s, 3H), 2.30 (s, 3H), 1.53 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 189.9, 164.9, 144.1, 143.9, 138.5, 137.9, 137.1, 135.3, 134.3, 133.4, 131.9, 131.1, 130.4, 130.2, 129.6, 129.4, 129.1, 128.9, 128.4, 128.3, 128.2, 127.4, 125.7, 122.3, 87.2, 85.2,

81.6, 42.8, 28.1, 21.7, 21.5. Anal Calcd for $C_{37}H_{34}CINO_5S$: C, 69.42; H, 5.35; N, 2.19. Found: C, 69.23; H, 5.31; N, 2.10.

tert-Butyl(*E*)-2-(3-((*N*-(4-chloro-2-(3-(4-chlorophenyl)-3-oxoprop-1-en-1-yl)phenyl)-4-me thylphenyl)sulfonamido)prop-1-yn-1-yl)benzoate (1i)

Colourless solid (2.04 g, 62%); mp: 135-137 °C; IR (neat): 2979, 2219, 1742, 1739, 1638, 1612, 1593, 1462, 1314, 1107 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.96-7.92 (m, 3H), 7.81-7.79 (m, 1H), 7.75 (d, J = 2.5 Hz, 1H), 7.63-7.62 (m, 2H), 7.46-7.44 (m, 2H), 7.32-7.28 (m, 4H), 7.19-7.17 (m, 3H), 7.12 (dd, J = 7.5, 1.7 Hz, 1H), 4.82 (d, J = 17.2 Hz, 1H), 4.49 (d, J = 17.3 Hz, 1H), 2.30 (s, 3H), 1.50 (s, 9H); ¹³CNMR (126 MHz, CDCl₃) δ 189.7, 164.9, 144.3, 139.7, 139.4, 137.9, 137.4, 135.9, 135.5, 135.4, 134.4, 133.5, 131.6, 131.2, 130.7, 130.4, 130.3, 129.7,

129.1, 128.4, 128.3, 127.5, 125.4, 122.3, 87.1, 85.4, 81.6, 42.9, 28.2, 21.6. Anal Calcd for $C_{36}H_{31}Cl_2NO_5S$: C, 65.45; H, 4.73; N, 2.12. Found: C, 65.38; H, 4.71; N, 2.09.

tert-Butyl(*E*)-2-(3-((*N*-(4-chloro-2-(3-(furan-2-yl)-3-oxoprop-1-en-1-yl)phenyl)-4-methyl phenyl)sulfonamido)prop-1-yn-1-yl)benzoate (1j)

Colourless solid (1.81 g, 59%); mp: 129-131 °C; IR (neat): 2941, 2201, 1721, 1623, 1642, 1536, 1403, 1373, 1307, 1242, 1126 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 15.9 Hz, 1H), 7.83 (d, *J* = 7.4 Hz, 1H), 7.77 (s, 1H), 7.68-7.66 (m, 3H). 7.38-7.33 (m, 4H), 7.29-7.27 (m, 2H), 7.23-7.21 (m, 3H), 6.62-6.61 (m, 1H), 4.92 (d, *J* = 17.3 Hz, 1H), 4.50 (d, *J* = 17.4 Hz, 1H), 2.31 (s, 3H), 1.53 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 177.5, 164.9, 153.3, 146.8, 144.2, 137.9, 137.7, 137.2, 135.5,

135.3, 134.3, 133.4, 131.9, 131.1, 130.6, 130.2, 129.6, 128.3, 128.2, 127.5, 124.8, 122.2, 118.2, 112.7, 87.2, 85.3, 81.6, 42.8, 28.1, 21.5. Anal Calcd for $C_{34}H_{30}CINO_6S$: C, 66.28; H, 4.91; N, 2.27. Found: C, 65.99; H, 4.90; N, 2.22.

tert-Butyl (E/Z)-2-(3-(2-(3-oxo-3-phenylprop-1-en-1-yl)phenoxy)prop-1-yn-1-yl)benzoate (10)

Trans:cis = 1:0.19; Yellow viscous liquid (1.37 g, 63%); IR (neat): 3042, 2139, 1741, 1560, 1402, 1348, 1308, 1215, 1260, 1163, 1133 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 15.8 Hz, *trans*, 1H), 8.05 (dd, J = 7.2, 1.6 Hz, *trans*, 2H), 7.95 (dd, J = 7.4, 1.5 Hz, *cis*, 2H), 7.89 (dd, J = 7.3, 1.3 Hz, *trans*, 1H), 7.87 (d, J = 1.8 Hz, *cis*, 1H), 7.76 (d, J = 15.8 Hz, *trans*, 1H), 7.67 (d, J = 7.7, 1.4 Hz, *trans*, 1H), 7.57-7.52 (m, *trans*, 2H), 7.50 (dd, J = 8.1, 2.0 Hz, *cis*, 2H), 7.46 (d, J = 1.2 Hz, *trans*, 1H), 7.44-

7.43 (m, *cis*, 2H), 7.42-7.31 (m, *trans* & *cis*, 8H), 7.22 (d, J = 8.2 Hz, *trans* & *cis*, 2H), 7.08-7.05 (m, *trans* & *cis* 2H), 6.81 (t, J = 7.6 Hz, *cis*, 1H), 6.67 (d, J = 12.7 Hz, *cis*, 1H), 5.10 (s, *trans*, 2H), 4.95 (s, *cis*, 2H), 1.61 (s, *cis*, 9 H), 1.58 (s, *trans*, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 194.6, 191.1, 165.4, 157.1, 155.3, 140.4, 138.5, 137.4, 135.6, 134.5, 134.4, 134.0, 133.9, 132.8, 132.6, 131.6, 131.2, 131.1, 130.9, 130.8, 130.2, 130.1, 130.0, 129.9, 128.9, 128.6, 128.6, 128.4, 128.4, 128.3, 126.8, 125.5, 124.5, 123.3, 122.2, 122.5, 121.6, 120.9, 113.0, 112.3, 88.3, 87.9, 86.6, 86.2, 81.9, 81.8, 57.3, 57.1, 29.7, 28.2. Anal Calcd for C₂₉H₂₆O₄: C, 79.43; H, 5.98. Found: C, 79.34; H, 5.95. * Four aromatic carbons merged with others.

5. General Procedure for the Synthesis of Compounds 1g and 1k-n

To a stirred solution of compound **S1** (5 mmol, 1.0 equiv) in Et₃N (40 mL) were added *tert*butyl 2-iodobenzoate **S5** (6 mmol, 1.2 equiv), $PdCl_2(PPh_3)_2$ (0.25 mmol, 5 mol%) and CuI (0.25 mmol, 5 mol%) and the resulting mixture was stirred at 60 °C for 1-2 h. After completion of the reaction, as indicated by TLC, the reaction mixture was diluted with water and extracted with ethyl acetate (2 × 80 mL). The extract was washed with water and brine and dried over anhydrous Na₂SO₄. The solvent was evaporated to dryness under reduced pressure. The crude product obtained was taken to the next step without further purification.

A mixture of crude product S6 and Wittig ylide S7 (7.5 mmol, 1.5 equiv) in toluene (40 mL) was heated at 90 °C for 4-7 h. After cooling, the solvent was evaporated to dryness and the residue was treated with ether. The solidified OPPh₃ was removed by filtration and the filtrate was concentrated to afford the crude product. The crude was purified by flash column chromatography eluting with petroleum ether-ethyl acetate mixture (85:15, v/v) to obtain compounds 1g, 1k-n.

tert-Butyl(*E*)-2-(3-((4-methyl-*N*-(2-(3-oxobut-1-en-1-yl)phenyl)phenyl)sulfonamido)prop -1-yn-1-yl)benzoate (1g)

Yellow viscous liquid (2.06 g, 78%); IR (neat): 2994, 2213, 1593, 1476, 1358, 1307, 1278, 1239, 1171 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 16.6 Hz, 1H), 7.84 (d, J = 6.9 Hz, 1H), 7.75 (d, J = 7.7 Hz, 1 H), 7.66 (d, J = 8.0 Hz, 2H), 7.57-7.52 (m, 1H), 7.36-7.32 (m, 3H), 7.24 (d, J = 8.1 Hz, 2H), 7.15-7.14 (m, 2H), 6.62 (d, J = 16.6 Hz, 1H), 4.80 (d, J = 16.7 Hz, 1H), 4.64 (d, J = 16.3 Hz, 1H), 2.39 (s, 3H), 2.34 (s, 3H), 1.54 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 199.1, 164.9, 144.1, 139.6, 138.7, 135.8,

135.7, 134.2, 133.5, 131.1, 130.8, 130.2, 129.9, 129.6, 129.5, 129.4, 128.2, 127.3, 127.2, 122.2, 87.4, 85.0, 81.6, 43.1, 28.1, 26.6, 21.6. Anal Calcd for $C_{31}H_{31}NO_5S$: C, 70.30; H, 5.90; N, 2.64. Found: C, 70.03; H, 5.81; N, 2.55.

+s

t-BuO

1a

tert-Butyl(*E*)-2-(3-((*N*-(4-chloro-2-(3-oxobut-1-en-1-yl)phenyl)-4-methylphenyl)sulfonam ido)prop-1-yn-1-yl)benzoate (1k)

Colourless solid (1.79g, 73%); mp: 111-113 °C; IR (neat): 2986, 1703, 1673, 1597, 1475, 1362, 1345, 1274, 1243, 1214, 1156, 1132, 1087 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.88-7.84 (m, 2H), 7.70 (d, J = 2.0 Hz, 1H), 7.65 (d, J = 8.1 Hz, 2H), 7.40-7.35 (m, 2H), 7.30 (dd, J = 8.6, 2.2 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 7.4 Hz, 1H), 7.13 (d, J = 8.6 Hz, 1H), 6.59 (d, J = 16.5 Hz, 1H), 4.77 (brs, 1H), 4.62 (brs, 1H), 2.39 (s, 3H), 2.34 (s, 3H), 1.54 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ

198.5, 164.8, 144.3, 138.1, 137.7, 137.1, 135.4, 135.4, 134.2, 133.5, 131.2, 131.1, 130.6, 130.3, 130.2, 129.7, 128.3, 128.2, 127.2, 122.1, 87.0, 85.3, 81.6, 42.9, 28.1, 26.9, 21.6. Anal Calcd for $C_{31}H_{30}CINO_5S$: C, 66.01; H, 5.36; N, 2.48. Found: C, 65.74; H, 5.31; N, 2.44.

tert-Butyl(*E*)-5-methyl-2-(3-((4-methyl-*N*-(2-(3-oxobut-1-en-1-yl)phenyl)phenyl)sulfona mido)prop-1-yn-1-yl)benzoate (11)

Colourless solid (1.81 g, 67%); mp: 152-154 °C; IR (neat): 2991, 2223, 1562, 1457, 1362, 1302, 1269, 1257, 1161 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 16.6 Hz, 1H), 7.75 (d, J = 7.7 Hz, 1H), 7.68-7.63 (m, 3H), 7.41 (t, J = 7.4 Hz, 1H), 7.34 (t, J = 7.7 Hz, 1H), 7.25 (d, J = 7.6 Hz, 2H), 7.18-7.12 (m, 2H), 7.03 (d, J = 7.8 Hz, 1H), 6.62 (d, J = 16.6 Hz, 1H), 4.77 (d, J = 15.9 Hz, 1H), 4.64 (d, J = 16.1 Hz, 1H), 2.40 (s, 3H), 2.36 (s, 3H), 2.34 (s, 3H), 1.53 (s, 9H): ¹³C NMR (101 MHz,

CDCl₃) δ 199.1, 165.2, 144.0, 139.7, 138.8, 138.6, 135.9, 135.8, 134.1, 133.4, 131.9, 130.8, 130.7, 129.9, 129.6, 129.5, 129.3, 128.2, 127.2, 119.2, 86.4, 85.1, 81.5, 43.1, 28.1, 26.5, 21.6, 21.3. Anal Calcd for C₃₂H₃₃NO₅S: C, 70.69; H, 6.12; N, 2.58. Found: C, 70.44; H, 6.06; N, 2.53.

tert-Butyl(*E*)-2-(3-((*N*-(4-chloro-2-(3-oxobut-1-en-1-yl)phenyl)-4-methylphenyl)sulfona mido)prop-1-yn-1-yl)-5-methylbenzoate (1m)

Colourless solid (2.10 g, 73%); mp: 123-125 °C; IR (neat): 2993, 2313, 1703, 1670, 1363, 1346, 1303, 1275, 1242, 1216, 1158, 1145, 1086 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, J = 16.6 Hz, 1H), 7.66 (d, J = 2.5 Hz, 1H), 7.62 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 1.4 Hz, 1H), 7.26 (dd, J = 8.5, 2.4 Hz, 1H), 7.22 (dd, J = 8.4, 1.0 Hz, 2H), 7.16-7.14 (m, 1H), 7.04 (d, J = 8.5 Hz, 1H), 7.03 (d, J = 7.9 Hz, 1H), 6.55 (d, J = 16.6 Hz, 1H), 4.73 (d, J = 16.4 Hz, 1H), 4.56 (d, J = 16.9 Hz, 1H),

2.36 (s, 3H), 2.34 (s, 3H), 2.30 (s, 3H), 1.50 (s, 9H); ¹³CNMR (126 MHz, CDCl₃) δ 220.2, 198.6, 165.1, 144.3, 138.8, 138.2, 137.8, 137.2, 135.5, 135.4, 134.2, 133.5, 132.0, 131.3, 130.8, 130.7, 130.2, 129.7, 128.3, 127.2, 119.2, 86.1, 85.5, 81.6, 43.1, 28.2, 26.9, 21.6, 21.4. Anal Calcd for C₃₂H₃₂ClNO₅S: C, 66.48; H, 5.58; N, 2.42. Found C, 66.26; H, 5.52; N, 2.30.* One aromatic carbon merged with others.

tert-Butyl(*E*)-2-(3-(*N*-(2-(3-oxobut-1-en-1-yl)phenyl)methylsulfonamido)prop-1-yn-1-yl) benzoate (1n)

Colourless solid (1.70 g, 75%); mp: 103-105 °C; IR (neat): 2989, 2319, 1797, 1759, 1693, 1678, 1662, 1469, 1120, 1103 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 7.8 Hz, 1H), 8.00 (d, J = 16.5 Hz, 1H), 7.93 (d, J = 7.7 Hz, 1H), 7.78 (d, J = 6.9 Hz, 1H), 7.51-7.38 (m, 5H), 6.69 (d, J = 16.5 Hz, 1H), 5.07 (brs, 1H), 4.31 (brs, 1H), 3.30 (s, 3H), 2.42 (s, 3H), 1.61 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 198.9, 164.8, 139.4, 139.3, 135.3, 134.5, 133.3, 131.5, 131.2, 130.4, 129.7, 129.5, 128.4, 127.5, 122.5, 88.1,

85.2, 81.6, 42.7, 39.8, 28.2, 26.9. Anal Calcd for $C_{25}H_{27}NO_5S$: C, 66.21; H, 6.00; N, 3.09. Found: C, 65.94; H, 5.96; N, 3.01. *One aromatic carbon merged with others.

6. General Procedure for the Synthesis of Benzo[b]isochromeno[4,3-e]azepin-5(7H)-ones 2a-n

To a solution of compound 1 (0.5 mmol, 1.0 equiv) in dioxane (6 mL) was added PdCl₂ (0.1 mmol, 10 mol%) and the resulting mixture was stirred at room temperature for 1-7 h under N₂ atmosphere. After completion of the reaction, as indicated by TLC, the reaction mixture was diluted with water and the aqueous suspension was extracted with EtOAc (2 x 20 mL), washed with water and brine. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography using petroleum ether and ethyl acetate mixture as eluent (85:15 to 80:20, v/v) to obtain the desired products **2**.

13-(2-Oxo-2-phenylethyl)-8-tosyl-8,13-dihydrobenzo[b]isochromeno[4,3-e]azepin-5(7H)-one (2a)

Colourless solid (0.248 g, 93%); mp: 202-204 °C; IR (neat): 2970, 1761, 1738, 1674, 1596, 1481, 1449, 1339, 1248, 1158, 1130 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, J = 7.7 Hz, 1H), 8.05 (d, J = 7.5 Hz, 2H), 7.98 (d, J = 8.2 Hz, 1H), 7.94 (d, J = 8.2 Hz, 2H), 7.86 (t, J = 8.0 Hz, 1H), 7.60-7.57 (m, 2H), 7.53 (t, J = 7.9 Hz, 1H), 7.48-7.42 (m, 4H), 7.28-7.18 (m, 2H), 7.00 (d, J = 7.6 Hz, 1H), 5.32 (d, J = 8.6 Hz, 1H), 5.24 (d, J = 17.8Hz, 1H), 4.75 (dd, J = 18.6, 9.6 Hz, 1H), 4.18 (d, J = 17.8 Hz, 1H), 3.39 (dd, J =

18.6, 1.8 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.2, 161.3, 149.9, 144.4, 140.9, 139.2, 138.4, 137.1, 136.4, 135.6, 133.4, 132.4, 130.4, 130.3, 128.9, 128.6, 128.5, 128.3, 127.2, 125.4, 122.4, 120.8, 113.7, 50.7, 45.2, 36.4, 21.7. Anal Calcd for C₃₂H₂₅NO₅S: C, 71.76; H, 4.70; N, 2.62. Found: C, 71.45; H, 4.65; N, 2.60. *One aromatic carbon merged with others.

13-(2-Oxo-2-(*p*-tolyl)ethyl)-8-tosyl-8,13-dihydrobenzo[*b*]isochromeno[4,3-*e*]azepin-5(7*H*) -one (2b)

Colourless solid (0.28 g, 87%); mp: 243-245 °C; IR (neat): 2964, 1752, 1725, 1645, 1584, 1494, 1427, 1326, 1259, 1161 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 7.7 Hz, 1H), 7.99 (d, J = 8.2 Hz, 1H), 7.95-7.92 (m, 4H), 7.86 (t, J = 7.6 Hz, 1H), 7.59-7.55 (m, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.24-7.22 (m, 4H), 6.99 (d, J = 7.6 Hz, 1H), 5.32 (d, J = 8.9 Hz, 1H), 5.23 (d, J = 17.9 Hz, 1H), 4.71 (dd, J = 18.4, 9.7 Hz, 1H), 4.17 (d, J = 17.8 Hz, 1H), 3.35 (d, J = 18.4 Hz, 1H), 2.53 (s, 3H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 161.3, 149.9, 144.4, 144.2, 140.9,

139.2, 138.4, 137.1, 135.6, 133.9, 132.4, 130.4, 130.3, 129.3, 128.8, 128.6, 128.5, 128.3, 127.2, 125.3, 122.4, 120.8, 113.8, 50.7, 44.9, 36.5, 29.7, 21.7. Anal Calcd for $C_{33}H_{27}NO_5S$: C, 72.11; H, 4.95; N, 2.55. Found: C, 71.88; H, 4.84; N, 2.51.

13-(2-(4-Methoxyphenyl)-2-oxoethyl)-8-tosyl-8,13-dihydrobenzo[*b*]isochromeno[4,3-*e*] azepin-5(7*H*)-one (2c)

Light brown solid (0.270 g, 96%); mp: 244-246 °C; IR (neat): 2971, 1723, 1670, 1600, 1339, 1307, 1257, 1182, 1158, 1138, 1106 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 7.8 Hz, 1H), 8.04-8.02 (m, 3H), 7.93 (d, J = 8.2 Hz, 2H), 7.86 (t, J = 8.0 Hz, 1H), 7.58-7.55 (m, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.25-7.17 (m, 2H), 6.99 (d, J = 7.5 Hz, 1H), 6.90 (d, J = 8.8 Hz, 2H), 5.31 (d, J = 8.6 Hz, 1H), 5.23 (d, J = 17.8 Hz, 1H), 4.69 (dd, J = 18.2, 9.6 Hz, 1H), 4.17 (d, J = 17.8 Hz, 1H), 3.83 (s, 3H), 3.31 (d, J = 18.2 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.7, 163.7, 161.3, 149.8,

139.2, 138.4, 137.2, 135.6, 132.4, 130.8, 130.4, 130.3, 129.6, 128.8, 128.5, 128.3, 127.19, 125.3, 122.5, 120.8, 113.8, 113.7, 55.5, 50.7, 44.7, 36.7, 21.7. Anal Calcd for $C_{33}H_{27}NO_6S$: C, 70.07; H, 4.81; N, 2.48. Found: C, 69.87; H, 4.72; N, 2.43. *Two aromatic carbons merged with others.

13-(2-(4-Chlorophenyl)-2-oxoethyl)-8-tosyl-8,13-dihydrobenzo[*b*]isochromeno[4,3-*e*]aze pin-5(7*H*)-one (2d)

Pale yellow solid (0.236 g, 83%); mp: 163-167 °C; IR (neat): 2990, 1769, 1747, 1672, 1600, 1473, 1454, 1364, 1249, 780 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 7.8 Hz, 1H), 7.99-7.91 (m, 5H), 7.88 (td, J = 8.2, 1.0 Hz, 1H), 7.60-7.54 (m, 2H), 7.47 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 8.6 Hz, 2H), 7.24-7.20 (m, 2H), 6.98 (d, J = 7.4 Hz, 1H), 5.29-5.21 (m, 2H), 4.73 (dd, J = 18.5, 9.8 Hz, 1H), 4.61 (d, J = 17.6 Hz, 1H), 3.33 (dd, J = 18.4, 1.9 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.3, 161.2, 149.9, 144.5, 140.6, 139.9, 139.2, 138.3, 137.0, 135.6, 134.8, 132.4, 130.4, 129.9, 128.9, 128.5, 128.4, 127.2, 125.4, 122.3, 120.8, 113.5, 50.6, 44.9, 36.7,

21.7. Anal Calcd for $C_{32}H_{24}CINO_5S$: C, 67.42; H, 4.24; N, 2.46. Found C, 67.13; H, 4.21; N, 2.37.* Two aromatic carbons merged with others.

13-(2-(Naphthalen-1-yl)-2-oxoethyl)-8-tosyl-8,13-dihydrobenzo[b]isochromeno[4,3-e]aze pin-5(7H)-one (2e)

Colourless solid (0.195 g, 67%); mp: 251-253 °C; IR (neat): 2983, 1778, 1743, 1670, 1544, 1473, 1469, 1323, 1256, 1167, 1141 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.59 (s, 1H), 8.33 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.06-8.03 (m, 2H), 7.95-7.91 (m, 3H), 7.86 (td, *J* = 7.4, 1.4 Hz, 1H), 7.82 (d, *J* = 8.8 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.56-7.53 (m, 2H), 7.52 (t, *J* = 2.0 Hz, 1H), 7.47 (td, *J* = 8.1, 1.2 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.20-7.13 (m, 2H), 7.00 (dd, *J* = 7.6, 1.4 Hz, 1H), 5.31 (dd, *J* = 9.5, 1.6 Hz, 1H), 5.23 (d, *J* = 17.8 Hz, 1H), 4.86 (dd, *J* = 18.1, 9.8 Hz, 1H), 4.17

(d, J = 17.8 Hz, 1H), 3.42 (dd, J = 18.1, 2.3 Hz, 1H), 2.49 (s, 3H); ¹³CNMR (126 MHz, CDCl₃) δ 198.7, 161.4, 150.0, 144.5,140.7, 139.4, 138.4, 137.2, 135.8, 135.7, 133.9, 132.7, 132.4, 131.2, 130.5, 130.4, 130.1, 128.9, 128.6, 128.6, 128.4, 127.6, 127.3, 126.7, 125.5, 123.9, 122.5, 120.9, 113.7, 50.8, 45.1, 37.3, 21.7. Anal Calcd for C₃₆H₂₇NO₅S: C, 73.83; H, 4.65; N, 2.39. Found: C, 73.68; H, 4.55; N, 2.32.

13-(2-Oxo-2-(thiophen-2-yl)ethyl)-8-tosyl-8,13-dihydrobenzo[b]isochromeno[4,3-e]azepi n-5(7H)-one (2f)

Light brown solid (0.189 g, 70%); mp: 145-147 °C; IR (neat): 3092, 2992, 1752, 1745, 1681, 1598, 1469, 1321, 1251, 1173, 1141 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.33 (dd, J = 7.9, 1.1 Hz, 1H), 8.05 (d, J = 8.3 Hz, 1H), 7.90 (d, J = 8.3 Hz, 2H), 7.87-7.84 (m, 2H), 7.58-7.57 (m, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.47 (dd, J = 7.3, 2.0 Hz, 1H), 7.44 (d, J = 8.2 Hz,

2H), 7.21-7.15 (m, 2H), 7.04 (t, J = 4.1 Hz, 1H), 6.97 (dd, J = 7.3, 1.5 Hz, 1H), 5.33-5.17 (m, 2H), 4.58 (dd, J = 17.8, 9.9 Hz, 1H), 4.13 (d, J = 17.8 Hz, 1H), 3.32 (dd, J = 17.7, 2.2 Hz, 1H), 2.50 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 191.5, 161.3, 150.0, 144.5, 143.9, 140.5, 139.3, 138.4, 137.1, 135.7, 134.4, 133.8, 132.3, 130.5, 130.4, 129.0, 128.6, 128.5, 128.4, 127.3, 125.4, 122.5, 120.9, 113.5, 93.2, 50.7, 45.5, 37.1, 29.8, 21.8. Anal Calcd for C₃₀H₂₃NO₅S₂: C, 66.53; H, 4.28; N, 2.59. Found: C, 66.41; H, 4.25; N, 2.56.

13-(2-Oxopropyl)-8-tosyl-8,13-dihydrobenzo[b]isochromeno[4,3-e]azepin-5(7H)-one (2g)

Colourless solid (0.195 g, 83%); mp: 231-233 °C; IR (neat): 2965, 1713, 1694, 1581, 1462, 1449, 1339, 1228, 1150, 1130 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 7.8 Hz, 1H), 7.91 (d, J = 8.3 Hz, 2H), 7.87 (d, J = 3.6 Hz, 2H), 7.59-7.55 (m, 1H), 7.48-7.45 (m, 3H), 7.28-7.22 (m, 2H), 7.01 (dd, J = 7.2, 1.3 Hz, 1H), 5.19 (d, J = 17.8 Hz, 1H), 4.96 (dd, J = 10.4, 2.1 Hz, 1H), 4.13 (d, J = 17.8 Hz, 1H), 4.02 (dd, J = 17.8, 10.5 Hz, 1H),

2.92 (dd, J = 17.8, 2.4 Hz, 1H), 2.53 (s, 3H), 2.11 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 207.5, 161.1, 149.8, 144.4, 140.2, 139.2, 138.5, 136.9, 135.5, 132.4, 130.4, 128.9, 128.4, 128.2, 127.1, 125.3, 122.0, 120.8, 113.2, 50.6, 48.9, 36.9. 30.9, 21.7. Anal Calcd for C₂₇H₂₃NO₅S: C, 68.48; H, 4.90; N, 2.96. Found: C, 68.23; H, 4.82; N, 2.92. *One aromatic carbon merged with others.

11-Chloro-13-(2-oxo-2-(*p*-tolyl)ethyl)-8-tosyl-8,13-dihydrobenzo[*b*]isochromeno[4,3-*e*]az epin-5(7*H*)-one (2h)

Colourless solid (0.186 g, 64%); mp: 292-294 °C; IR (neat): 2971, 1724, 1722, 1632, 1591, 1482, 1427, 1305, 1259, 1125 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.33 (d, J = 7.9 Hz, 1H), 7.92-7.89 (m, 3H), 7.86 (d, J = 8.3 Hz, 2H), 7.84-7.81 (m, 1H), 7.56 (d, J = 2.3 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.43 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 7.14 (dd, J = 8.5, 2.4 Hz, 1H), 6.87 (d, J = 8.5 Hz, 1H), 5.28-5.17 (m, 2H), 4.65 (dd, J = 18.7, 9.5 Hz, 1H), 4.09 (d, J = 17.8 Hz, 1H), 3.32 (dd, J = 18.6, 2.0 Hz, 1H), 2.49 (s, 3H), 2.35 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 197.4, 161.2, 149.7, 144.7, 144.5, 142.8, 138.1, 137.8, 136.9, 135.7, 134.1,

133.9, 132.4, 130.5, 130.5, 129.4, 128.9, 128.7, 128.5, 127.2, 126.7, 122.4, 120.9, 113.5, 50.6, 44.9, 36.2, 21.8. Anal Calcd for $C_{33}H_{26}CINO_5S$: C, 67.86; H, 4.49; N, 2.40. Found: C, 67.61; H, 4.44; N, 2.36. *One aromatic carbon merged with others.

11-Chloro-13-(2-(4-chlorophenyl)-2-oxoethyl)-8-tosyl-8,13-dihydrobenzo[b]isochromeno [4,3-e]azepin-5(7H)-one (2i)

Colourless solid (0.235 g, 78%); mp: 269-271 °C; IR (neat): 2962, 1751, 1654, 1573, 1432, 1339, 1357, 1269, 1103 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.98-7.89 (m, 5H), 7.59 (s, 2H), 7.46-7.43 (m, 4H), 7.28 (s, 1H), 7.17 (s, 1H), 6.89 (s, 1H), 5.21 (s, 1H), 4.69 (s, 1H), 4.12 (d, *J* = 16.0 Hz, 1H), 3.68 (s, 1H), 3.34 (d, *J* = 18.2 Hz, 1H), 2.53 (s, 3H). ¹³C NMR could not be run due to the poor solubility of the compound in common NMR solvents. Anal Calcd for C₃₂H₂₃Cl₂NO₅S: C, 63.58; H, 3.84; N, 2.32. Found: C, 63.29; H, 3.77; N, 2.29.

11-Chloro-13-(2-(furan-2-yl)-2-oxoethyl)-8-tosyl-8,13-dihydrobenzo[b]isochromeno[4,3e]azepin-5(7H)-one (2j)

Off-white solid (0.184 g, 66%); mp: 258-260 °C; IR (neat): 2980, 1754, 1731, 1692, 1594, 1476, 1432, 1345, 1209, 1150 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.33 (dd, J = 7.9, 1.1 Hz, 1H), 7.99 (d, J = 8.3 Hz, 1H), 7.88 (d, J = 8.3 Hz, 2H), 7.85 (dd, J = 7.2, 1.2 Hz, 1H), 7.58 (d, J = 1.6 Hz, 1H), 7.55 (d,

J = 7.4 Hz, 1H), 7.48 (d, J = 2.4 Hz, 1H), 7.44 (d, J = 8.3 Hz, 2H), 7.35-7.34 (m, *I*H), 7.15 (dd, J = 8.5, 2.4 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.47-6.46 (m, 1H), 5.28-5.13 (m, 2H), 4.38 (dd, J = 17.9, 10.0 Hz, 1H), 4.09 (d, J = 17.8 Hz, 1H), 3.23 (dd, J = 17.9, 2.4 Hz, 1H), 2.50 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 186.3, 161.1, 151.9, 149.8, 147.5, 144.8, 142.2, 137.9, 137.8, 136.8, 135.8, 134.1, 132.2, 130.6, 130.5, 129.1, 128.6, 127.3, 126.7, 122.4, 120.9, 119.9, 113.0, 112.5, 50.6, 44.5, 36.4, 21.8. Anal Calcd for C₃₀H₂₂ClNO₆S: C, 64.34; H, 3.96; N, 2.50. Found: C, 64.09; H, 3.91; N, 2.55.

10-Chloro-13-(2-oxopropyl)-8-tosyl-8,13-dihydrobenzo[b]isochromeno[4,3-e]azepin-5 (7*H*)-one (2k)

Colourless solid (0.202 g, 80%); mp: 264-266 °C; IR (neat): 2969, 1723, 1687, 1575, 1454, 1450, 1321, 1207, 1149, 1137 cm⁻¹; ¹H NMR (400 MHz CDCl₃) δ 8.26 (d, J = 8.0 Hz, 1H), 7.80-7.70 (m, 4H), 7.49 (t, J = 7.2 Hz, 1H), 7.41-7.37 (m, 3H), 7.11 (dd, J = 8.4, 2.4 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 5.09 (d, J = 17.6 Hz, 1H), 4.83 (d, J = 9.6 Hz, 1H), 4.01 (d, J = 18.0 Hz, 1H), 3.90 (dd, J = 18.4, 10.4 Hz, 1H), 2.84 (dd, J = 18.4.

2.0 Hz, 1H), 2.44 (s, 3H), 2.06 (s, 3H); ¹³C NMR (CDCl₃, 101 MHz) δ 206.9, 161.0, 149.6, 144.7, 142.1, 138.1, 137.6, 136.6, 135.6, 133.9, 132.4, 130.4, 128.9, 128.5, 127.1, 126.6, 121.9, 120.8, 112.9, 50.4, 48.8, 36.3, 30.6, 21.7. Anal Calcd for C₂₇H₂₂ClNO₅S: C, 63.84; H, 4.37; N, 2.76. Found: C, 63.71; H, 4.32; N, 2.65. *One aromatic carbon merged with others.

3-Methyl-13-(2-oxopropyl)-8-tosyl-8,13-dihydrobenzo[*b*]isochromeno[4,3-*e*]azepin-5 (7*H*)-one (2l)

Colourless solid (0.218 g, 90%); mp: 269-271 °C; IR (neat): 2968, 1731, 1714, 1618, 1494, 1345, 1248, 1161, 1113, 1089 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.91 (d, J = 8.1 Hz, 2H), 7.75 (d, J = 8.3 Hz, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.48-7.46 (m, 3H), 7.25-7.22 (m, 2H), 7.00 (d, J = 7.2 Hz, 1H), 5.18 (d, J = 17.8 Hz, 1H), 4.94 (d, J = 9.2 Hz, 1H), 4.12 (d, J = 17.8 Hz, 1H), 4.00 (dd, J = 17.9, 10.6 Hz, 1H), 2.91 (dd, J = 17.8, 1.9 Hz, 1H), 2.53 (s, 3H), 2.50 (s, 3H), 2.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 207.6,

161.4, 148.8, 144.4, 140.3, 139.2, 138.6, 138.5, 136.7, 134.4, 132.4, 130.4, 130.2, 128.8, 128.4, 127.1, 125.3, 122.0, 120.7, 113.2, 50.5, 48.9, 37.0, 30.9, 21.7, 21.1. Anal Calcd for $C_{28}H_{25}NO_5S$: C, 68.98; H, 5.17; N, 2.87. Found: C, 68.77; H, 5.10; N, 2.78.

11-Chloro-3-methyl-13-(2-oxopropyl)-8-tosyl-8,13-dihydrobenzo[*b*]isochromeno[4,3-*e*] azepin-5(7*H*)-one (2m)

Colourless solid (0.229 g, 88%); mp: 182-184 °C; IR (neat): 2970, 1732, 1712, 1344, 1250, 1132, 1160, 1102, 1088 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.12 (s, 1H), 7.85 (d, *J* = 8.3 Hz, 2H) 7.66 (d, *J* = 8.4 Hz, 1H), 7.63 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.46 (d, *J* = 2.5 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.16 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.87 (d, *J* = 8.5 Hz, 1H), 5.13 (d, *J* = 17.7 Hz, 1H), 4.86 (dd, *J* = 10.4, 2.5 Hz, 1H), 4.04 (d, *J* = 17.7 Hz, 1H), 3.94 (dd, *J* = 18.4, 10.5 Hz, 1H), 2.87 (dd, *J* = 18.4, 2.6 Hz, 1H),

2.49 (s, 3H), 2.46 (s, 3H), 2.10 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 207.1, 161.3, 148.7, 144.7, 142.3, 138.9, 138.2, 137.7, 136.9, 134.2, 134.0, 132.4, 130.5, 130.3, 128.9, 127.2, 126.7, 121.9, 120.7, 112.9, 50.4, 48.9, 36.4, 30.7, 21.8, 21.2. Anal Calcd for C₂₈H₂₄ClNO₅S: C, 64.43; H, 4.63; N, 2.68. Found: C, 64.14; H, 4.55; N, 2.66.

8-(Methylsulfonyl)-13-(2-oxopropyl)-8,13-dihydrobenzo[*b*]isochromeno[4,3-*e*]azepin-5(7*H*)-one (2n)

129.3, 128.7, 128.5, 125.9, 122.1, 120.9, 113.2, 49.8, 49.0, 42.1, 37.0, 30.9. Anal Calcd for C₂₁H₁₉NO₅S: C, 63.46; H, 4.82; N, 3.52. Found: C, 63.29; H, 4.71; N, 3.50.

7. General Procedure for the Synthesis of 3-(Quinolin-3(2*H*)-ylidene)isobenzofuran-1(3*H*)-ones 3a-n and 5

To a solution of compound 1 (0.5 mmol, 1.0 equiv) in DMSO (6 mL) was added PdCl₂ (0.1 mmol, 10 mol%) and the resulting mixture was stirred at room temperature for 3-7 h under N₂ atmosphere. After completion of the reaction, as indicated by TLC, the reaction mixture was quenched with ice cold water and the aqueous suspension was extracted with EtOAc (2 x 20 mL), washed with water and brine. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography using petroleum ether and ethyl acetate mixture as eluent (85:15 to 80:20, v/v) to obtain the desired product 3/5.

(*E*)-3-(4-(2-Oxo-2-phenylethyl)-1-tosyl-1,4-dihydroquinolin-3(2*H*)-ylidene)isobenzofura n-1(3*H*)-one (3a)

Colourless solid (0.208 g, 78%); mp: 170-172 °C; IR (neat): 2962, 1768, 1683, 1454, 1355, 1311, 1164, 1158, 1031 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.07 (d, J = 8.0 Hz, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.83 (d, J = 7.4 Hz, 2H), 7.78 (t, J = 7.4 Hz, 1H), 7.63 (d, J = 8.3 Hz, 2H), 7.60-7.59 (m, 1H), 7.55 (t, J = 8.2 Hz, 2H), 7.42 (t, J = 7.8 Hz, 2H), 7.31 (d, J = 7.6 Hz, 1H), 7.25 (d, J = 7.7 Hz, 1H), 7.14 (d, J = 8.5 Hz, 3H), 4.94 (dd, J = 9.1, 3.2 Hz, 1H), 4.85 (d, J = 17.1 Hz, 1H), 4.81 (d, J = 17.0 Hz, 1H), 3.79 (dd,

J = 17.4, 9.1 Hz, 1H), 3.17 (dd, J = 17.4, 3.3 Hz, 1H), 2.20 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.2, 165.9, 143.9, 140.6, 137.2, 137.0, 136.9, 136.4, 134.9, 133.7, 133.3, 129.8, 129.6, 128.8, 128.7, 128.3, 127.8, 127.1, 126.5, 125.8, 125.5, 125.4, 123.2, 120.9, 46.4, 46.1, 34.2, 21.3. Anal Calcd for C₃₂H₂₅NO₅S: C, 71.76; H, 4.70; N, 2.62. Found: C, 71.55; H, 4.65; N, 2.56.

(*E*)-3-(4-(2-Oxo-2-(*p*-tolyl)ethyl)-1-tosyl-1,4-dihydroquinolin-3(2*H*)-ylidene)isobenzofur an-1(3*H*)-one (3b)

Colourless solid (0.238 g, 87%); mp: 149-151 °C; IR (neat): 2997, 1702, 1695, 1634, 1591, 1479, 1401, 1334, 1271, 1169 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.77 (td, J = 8.3, 1.1 Hz, 1H), 7.75 (dd, J = 6.7, 1.8 Hz, 2H), 7.59-7.56 (m, 3H), 7.53 (d, J = 7.3 Hz, 1H), 7.26 (dd, J = 7,7, 1.6 Hz, 1H), 7.23 (dd, J = 7,6, 1.6 Hz, 1H), 7.17 (d, J = 8 Hz, 2 H), 7.10-7.07 (m, 3H), 4.88 (dd, J = 9.3. 3.3 Hz, 1 H), 4.83-4.76 (m, 2H), 3.69 (dd, J = 17.3, 9.1 Hz, 1H), 3.07 (dd, J = 17.4, 3.3 Hz, 1H), 2.35 (s, 3H), 2.13 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.8,

166.1, 144.7, 143.9, 140.6, 138.4, 137.2, 136.9, 135.0, 133.9, 133.3, 129.8, 129.5, 129.3, 128.7, 128.4, 127.7, 127.3, 127.1, 126.5, 125.7, 125.4, 123.3, 120.9, 46.3, 45.9, 34.1, 21.7, 21.3. Anal Calcd for: $C_{33}H_{27}NO_5S$: C, 72.11; H, 4.95; N, 2.55. Found: C, 71.87; H, 4.89; N, 2.48.

(*E*)-3-(4-(2-(4-Methoxyphenyl)-2-oxoethyl)-1-tosyl-1,4-dihydroquinolin-3(2*H*)-ylidene) isobenzofuran-1(3*H*)-one (3c)

Pale yellow solid (0.188 g, 67%); mp: 81-83 °C; IR (neat): 2961, 1732, 1676, 1622, 1548, 1456, 1481, 1365, 1278, 1171 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.77 (dd, J = 8.9, 2.8 Hz, 2H), 7.74 (td, J = 8.1, 1.8 Hz, 1H), 7.58 (d, J = 8.2 Hz, 2H), 7.56-7.51 (m, 2H), 7.25-7.19 (m, 2H), 7.10-7.06 (m, 3H), 6.83 (dd, J = 8.8, 2.4 Hz, 2H), 4.86 (dd, J = 9.1, 3.3 Hz, 1H), 4.84-4.75 (m, 2H), 3.81 (s, 3H), 3.72 (dd, J = 17.0, 9.2 Hz, 1H), 3.04 (dd, J = 17.0, 3.45 Hz, 1H), 2.15 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 196.6, 166.1, 164.0, 144.0, 140.6,

137.1, 137.2, 136.9, 135.1, 133.4, 130.8, 129.8, 129.6, 129.6, 128.8, 127.7, 127.2, 126.5, 125.8, 125.5, 125.4, 123.4, 121.1, 113.9, 55.6, 46.2, 45.9, 34.4, 21.4. Anal Calcd for: $C_{33}H_{27}NO_6S$: C, 70.07; H, 4.81; N, 2.48. Found: C, 69.79; H, 4.80; N, 2.55.

(*E*)-3-(4-(2-(Naphthalen-1-yl)-2-oxoethyl)-1-tosyl-1,4-dihydroquinolin-3(2*H*)-ylidene)iso benzofuran-1(3*H*)-one (3e)

Pale yellow solid (0.198 g, 68%); mp: 98-100 °C; IR (neat): 2964, 1769, 1703, 1657, 1541, 1423, 1311, 1247, 1107 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.31 (s, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.95-7.90 (m, 3H), 7.84-7.77 (m, 4H) 7.66 (d, J = 8.2 Hz, 2H), 7.58-7.56 (m, 3H), 7.53 (d, J = 8.4 Hz, 1H), 7.20 (td, J = 7.8, 1.3 Hz, 1H), 7.14 (d, J = 8.1 Hz, 2H), 7.05 (td, J = 7.9, 1.9 Hz, 1H), 4.95-4.90 (m, 2H), 4.78 (d, J = 17.0 Hz, 1H), 3.99 (dd, J = 17.0, 9.4 Hz, 1H), 3.25 (dd, J = 16.8, 3.5 Hz, 1H), 2.17 (s, 3H); ¹³C

NMR (101 MHz, CDCl₃) δ 198.4, 166.1, 144.0, 140.6, 137.2, 137.1, 136.9, 135.7, 135.1, 133.8, 132.4, 130.7, 129.9, 129.8, 129.7, 129.6, 128.9, 128.8, 128.5, 127.8, 127.7, 127.1, 126.9, 126.5, 125.8, 125.5, 125.2, 123.5, 123.3, 121.1, 46.2, 46.1, 34.9, 21.4. Anal Calcd for: C₃₆H₂₇NO₅S: C, 73.83; H, 4.65; N, 2.39. Found: C, 73.63; H, 4.58; N, 2.44.

(*E*)-3-(4-(2-Oxo-2-(thiophen-2-yl)ethyl)-1-tosyl-1,4-dihydroquinolin-3(2*H*)-ylidene)iso benzofuran-1(3*H*)-one (3f)

Pale yellow solid (0.173 g, 64%); mp: 196-198 °C; IR (neat): 2945, 1787, 1758, 1621, 1479, 1357, 1268, 1191, 1093 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 8.0 Hz, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.79 (t, J = 7.6 Hz, 1H), 7.63-7.56 (m, 5H), 7.25 (d, J = 7.2 Hz, 2H), 7.14-7.12 (m, 4H), 6.48-6.47 (m, 1H), 4.88-4.77 (m, 3H), 3.59 (dd, J = 16.4, 9.2 Hz, 1H), 3.10 (dd, J = 16.8, 4.4 Hz, 1H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.5, 166.0, 152.1, 144.0, 140.7, 137.1, 137.0, 136.9, 135.0, 132.8, 129.8,

129.5, 128.6, 127.8, 127.1, 126.4, 125.7, 125.5, 125.3, 123.4, 120.2, 119.2, 112.6, 45.9, 45.8, 34.5, 21.3. Anal Calcd for C₃₀H₂₃NO₅S₂: C, 66.53; H, 4.28; N, 2.59. Found: C, 66.25; H, 4.21; N, 2.58. *One aromatic carbon merged with others.

(E)-3-(4-(2-Oxopropyl)-1-tosyl-1,4-dihydroquinolin-3(2H)-ylidene)isobenzofuran-1-(3H) -one (3g)

Colourless solid (0.210 g, 89%); mp: 163-165 °C; IR (neat): 2968, 1764, 1716, 1473, 1351, 1276, 1164, 1102, 1091 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.6Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.76 (t, J = 7.5Hz, 1H), 7.65 (d, J = 8.1 Hz, 1H), 7.59-7.55 (m, 3H), 7.32-7.28 (m, 1H), 7.24-7.18 (m, 2H), 7.10 (d, J = 8.0 Hz, 2H), 4.78 (s, 2H), 4.66 (dd, J = 9.0, 2.9 Hz, 1H), 2.93 (dd, J = 17.9, 9.1 Hz, 1H), 2.65 (dd, J = 17.9, 3.1 Hz, 1H), 2.17 (s, 3H), 2.02 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 206.5, 165.9, 143.9, 140.4, 137.2, 136.8, 136.7, 134.9, 133.2, 129.8, 129.5, 128.5, 127.8, 127.1, 126.5, 125.8, 125.6, 125.5, 123.1, 120.6, 51.0, 45.9, 33.5, 30.9, 21.3. Anal Calcd for C₂₇H₂₃NO₅S: C, 68.48; H, 4.90; N, 2.96. Found: C, 68.24; H, 4.89; N, 2.87.

(E)-3-(6-Chloro-4-(2-oxo-2-(p-tolyl)ethyl)-1-tosyl-1,4-dihydroquinolin-3(2H)-ylidene)iso benzofuran-1(3H)-one (3h)

Colourless solid (0.189 g, 65%); mp: 174-176 °C; IR (neat): 2967, 1778, 1770, 1675, 1480, 1475, 1352, 1277, 1161, 1086 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (t, J = 8.2 Hz, 2H), 7.78-7.73 (m, 3H), 7.60-7.55 (m, 4H), 7.33 (d, *J* = 2.2 Hz, 1H), 7.24-7.22 (m, 3H), 7.11 (d, *J* = 8.1 Hz, 2H), 4.90-4.85 (m, 2H), 4.74 (d, J = 16.9 Hz, 1H), 3.67 (dd, J = 17.6, 8.8 Hz, 1H), 3.16 (dd, J = 17.7, 3.4 Hz, 1H), 2.40 (s, 3H), 2.15 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) & 197.1, 165.8, 144.9, 144.1, 140.9, 137.1, 136.5, 135.4, 135.0, 133.7, 131.8, 129.9, 129.6, 129.4, 128.6, 128.4,

127.9, 127.1, 126.9, 125.8, 125.6, 123.2, 119.6, 46.3, 45.7, 33.6, 21.7, 21.3. Anal Calcd for C₃₃H₂₆ClNO₅S: C, 67.86; H, 4.49; N, 2.40. Found: C, 67.55; H, 4.36; N, 2.29. *One aromatic carbon merged with others.

(E)-3-(6-Chloro-4-(2-(4-chlorophenyl)-2-oxoethyl)-1-tosyl-1,4-dihydroquinolin-3(2H)-yli dene)isobenzofuran-1(3H)-one (3i)

Off-white solid (0.220 g, 73%); mp: 164-165 °C; IR (neat): 2969, 1774, 1718, 1614, 1484, 1367, 1268, 1151, 1093 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.94 (t, *J* = 8.3 Hz, 2H), 7.77-7.73 (m, 3H), 7.60 (d, *J* = 8.3 Hz, 2H), 7.55 (t, J = 8.7 Hz, 1H), 7.48 (d, J = 8.7 Hz, 1H), 7.38 (dd, J = 8.5, 2.6 Hz, 2H), 7.27 (d, J = 2.6 Hz, 1H), 7.20 (dd, J = 8.7, 2.4 Hz, 1H), 7.14 (d, J = 8.0 Hz, 2H), 4.86-4.70 (m, 3H), 3.68 (dd, J = 17.7, 9.0 Hz, 1H),3.15 (dd, J = 17.5, 3.7 Hz, 1H), 2.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) & 196.5, 165.8, 144.3, 140.9, 140.4, 137.0, 136.6, 135.5, 135.1,

134.9, 134.5, 131.8, 130.0, 129.7, 129.1, 128.6, 128.0, 127.1, 127.4, 126.7, 125.9, 125.5, 123.1, 119.6, 46.0, 45.9, 33.9, 21.4. Anal Calcd for C₃₂H₂₃Cl₂NO₅S: C, 63.58; H, 3.84; N, 2.32. Found: C, 63.33; H, 3.81; N, 2.30.

(E)-3-(6-Chloro-4-(2-(furan-2-yl)-2-oxoethyl)-1-tosyl-1,4-dihydroquinolin-3(2H)-ylide ne)isobenzofuran-1(3H)-one (3j)

Colourless solid (0.173 g, 62%); mp: 187-189 °C; IR (neat): 2973, 1774, 1762, 1658, 1492, 1348, 1251, 1151, 1056 cm⁻¹; ¹H NMR (500 MHz, CDCl₃ δ 7.95 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.74 (td, J =8.3, 1.2 Hz, 1H), 7.56-7.52 (m, 5H), 7.25 (d, J = 2.4 Hz, 1H), 7.20 (dd, J = 8.7, 2.4 Hz, 1H), 7.12 (dd, J = 8.2, 2.1 Hz, 1H), 7.06 (d, J = 8.0 Hz,

2H), 6.48-6.47 (m, 1H), 4.82 (d, J = 16.8 Hz, 1H), 4.74-4.68 (m, 2H), 3.47 (dd, J = 16.9, 8.7 Hz, 1H), 3.06 (dd, J = 16.9, 4.2 Hz, 1H), 2.11 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 186.1, 165.9, 152.1, 147.5, 144.2, 141.1, 137.1, 136.5, 135.5, 135.1, 134.5, 131.9, 130.1, 129.6, 128.5, 128.0, 127.2, 126.9, 125.9, 125.6, 123.3, 119.1, 118.8, 112.8, 45.9, 45.6, 33.9, 21.4. Anal Calcd for C₃₀H₂₂ClNO₆S: C, 64.34; H, 3.96; N, 2.50. Found: C, 64.01; H, 3.90; N, 2.44.

(*E*)-3-(6-Chloro-4-(2-oxopropyl)-1-tosyl-1,4-dihydroquinolin-3(2*H*)-ylidene)isobenzofur an-1(3*H*)-one (3k)

Off-white solid (0.202 g, 80%); mp: 185-187 °C; IR (neat): 2987, 1778, 1731, 1467, 1361, 1254, 1132, 1102, cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.72 (t, J = 7.5 Hz, 1H), 7.60 (d, J = 8.5 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.24-7.21 (m, 2H), 7.06 (d, J = 8.1 Hz, 2H), 4.81 (d, J = 17.0 Hz, 1H), 4.64 (d, J = 17.0 Hz, 1H), 4.56 (dd, J = 8.7, 2.8 Hz, 1H), 2.83 (dd, J =

18.4, 8.9 Hz, 1H), 2.62 (dd, J = 18.3, 3.1 Hz, 1H), 2.11 (s, 3H), 2.02 (s, 3H); ¹³CNMR (126 MHz, CDCl₃) δ 206.0, 165.8, 144.2, 140.8, 137.1, 136.5, 135.3, 135.1, 134.9, 131.9, 130.1, 129.6, 128.4, 128.0, 127.3, 127.2, 125.9, 125.7, 123.1, 119.3, 51.1, 45.7, 33.0, 30.7, 21.3. Anal Calcd for C₂₇H₂₂ClNO₅S: C, 63.84; H, 4.37; N, 2.76. Found: C, 63.61; H, 4.33; N, 2.71.

(*E*)-6-Methyl-3-(4-(2-oxopropyl)-1-tosyl-1,4-dihydroquinolin-3(2*H*)-ylidene)isobenzofuran-1(3*H*)-one (31)

Colourless solid (0.214 g, 71%); mp: 181-183 °C; IR (neat): 2967, 1763, 1717, 1490, 1353, 1339, 1285, 1159, 1091 cm⁻¹; ¹H NMR (400 MHz, CDC1₃) δ 7.79 (m, 2H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.56 (d, *J* = 7.1 Hz, 3H), 7.29-7.28 (m, 1H), 7.24-7.18 (m, 2H), 7.10 (d, *J* = 7.7 Hz, 2H), 4.76 (s, 2H), 4.63 (d, *J* = 6.9 Hz, 1H), 2.90 (dd, *J* = 17.9, 9.1 Hz, 1H), 2.64 (dd, *J* = 17.6, 1.8 Hz, 1H), 2.50 (s, 3H), 2.18 (s, 3H), 2.01 (s, 3H); ¹³C NMR

(101 MHz, CDCl₃) δ 206.6, 166.1, 143.8, 140.6, 140.5, 136.8, 136.7, 136.1, 134.8, 133.3, 129.5, 128.5, 127.8, 127.1, 126.5, 125.8, 125.7, 125.6, 122.8, 119.3, 51.0, 45.8, 33.5, 30.9, 21.4, 21.3. Anal Calcd for C₂₈H₂₅NO₅S: C, 68.98; H, 5.17; N, 2.87. Found: C, 68.79; H, 5.11; N, 2.76.

(*E*)-3-(6-Chloro-4-(2-oxopropyl)-1-tosyl-1,4-dihydroquinolin-3(2*H*)-ylidene)-6-methyliso benzofuran-1(3*H*)-one (3m)

Colourless solid (0.180 g, 69%); mp: 217-219 °C; IR (neat): 2967, 1734, 1711, 1665, 1491, 1236, 1307, 1275, 1279, 1102 cm⁻¹; ¹H NMR (400 MHz CDCl₃) δ 7.72-7.71 (m, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.60 (d, J = 8.6 Hz, 1H), 7.53-7.49 (m, 3H), 7.24-7.21 (m, 2H), 7.08-7.06 (m, 2H), 4.78 (d, J = 17.0 Hz, 1H), 4.64 (d, J = 17.0 Hz, 1H), 4.56 (dd, J = 8.8, 2.6 Hz, 1H), 2.81 (dd, J = 18.3, 8.8 Hz, 1H), 2.68 (dd, J = 18.3, 8.9 Hz, 1H), 2.81 (dd, J = 18.3, 8.9 Hz, 1H), 2.68 (dd, J = 18.3, 8.9 Hz, 1H), 2.81 (dd, J = 18.3, 8.9 Hz, 1H), 2.81 (dd, J = 18.3, 8.9 Hz, 1H), 2.81 (dd, J = 18.3, 8.9 Hz, 1H), 3.9 Hz, 1H), 3.9 H

18.8, 3.3 Hz, 1H), 2.47 (s, 3H), 2.13 (s, 3H), 2.01 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 206.1, 165.9, 144.1, 140.9, 140.8, 136.5, 136.2, 135.3, 135.0, 134.7, 131.9, 129.6, 128.4, 127.9, 127.3, 127.2, 125.9, 125.9, 122.8, 118.1, 51.1, 45.6, 33.0, 30.7, 21.5, 21.3. Anal Calcd for C₂₈H₂₄ClNO₅S: C, 64.43; H, 4.63; N, 2.68. Found: C, 64.16; H, 4.55; N, 2.59.

(*E*)-3-(4-(2-Oxopropyl)-1-tosyl-1,4-dihydroquinolin-3(2*H*)-ylidene)isobenzofuran-1(3*H*)-one (3n)

Colourless solid (0.142 g, 72%); mp: 181-183 °C; IR (neat): 2974, 1703, 1694, 1489, 1278, 1337, 1230, 1278, 1154, 1102 cm⁻¹; ¹H NMR (400 MHz CDCl₃) δ 8.10 (d, *J* = 7.9 Hz, 1H), 7.96 (d, *J* = 7.6 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.33 (t, *J* = 8.1 Hz, 2H), 7.16 (t, *J* = 7.4 Hz, 1H), 5.06 (d, *J* = 17.1 Hz, 1H), 4.95 (dd, *J* =

9.4, 2.8 Hz, 1H), 4.52 (d, J = 17.3 Hz, 1H), 3.28 (dd, J = 17.7, 9.7 Hz, 1H) 3.19 (s, 3H), 2.89 (dd, J = 17.6, 3.0 Hz, 1H), 2.07 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 206.6, 165.9, 140.1, 137.3, 137.1, 135.2, 133.1, 129.9, 129.3, 128.1, 126.1, 126.0, 125.4, 123.3, 123.1, 121.6, 49.9, 46.6, 40.91, 34.6, 31.0. Anal Calcd for C₂₁H₁₉NO₅S: C, 63.46; H, 4.82; N, 3.52. Found: C, 63.15; H, 4.79; N, 3.44.

(E)-3-(4-(2-Oxo-2-phenylethyl)chroman-3-ylidene)isobenzofuran-1(3H)-one (5)

Colourless solid (0.166 g, 87%); mp: 151-153 °C; IR (neat): 2912, 1753, 1691, 1432, 1313, 1301, 1198, 1132, 1062 cm⁻¹; ¹H NMR (400 MHz CDCl₃) δ 8.27 (d, J = 7.9 Hz, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.87 (d, J = 8.1 Hz, 2H), 7.81 (t, J = 7.6 Hz, 1H), 7.60-7.54 (m, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.29, 7.27 (m, 1H), 7.17 (td, J = 7.7, 1.6 Hz, 1H), 6.96 (d, J = 7.9 Hz

Hz, 2H), 7.81 (t, J = 7.6 Hz, 1H), 7.60-7.54 (m, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.29-7.27 (m, 1H), 7.17 (td, J = 7.7, 1.6 Hz, 1H), 6.96 (d, J = 7.9 Hz, 1H), 6.90 (t, J = 7.6 Hz, 1H), 5.30 (d, J = 14.7 Hz, 1H), 5.16-5.14 (m, 1H), 5.04 (d, J = 14.7 Hz, 1H), 3.85 (dd, J = 17.0, 8.6 Hz, 1H), 3.35 (dd, J = 17.0, 4.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 197.9, 166.2, 154.6, 140.8, 137.5, 136.6, 135.0, 133.6, 129.9, 129.0, 128.7, 128.5, 128.2, 126.1, 125.8, 125.7, 123.7, 122.0, 120.1, 117.6, 64.4, 46.4, 32.8. Anal Calcd for C₂₅H₁₈O₄: C, 78.52; H, 4.74. Found: C, 78.44; H, 4.71.

(*E*)-4-Methyl-*N*-((1-oxo-1*H*-isochromen-3-yl)methyl)-*N*-(2-(3-oxo-3-phenylprop-1-en-1-yl)phenyl)benzenesulfonamide (5)

Colourless solid; mp: 81-83 °C; IR (neat): 2891, 1737, 1725, 1674, 1668, 1482, 1339, 1241, 1163, 1133 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 7.9 Hz, 1H), 7.96 (d, *J* = 7.5 Hz, 2H), 7.88 (d, *J* = 16.1 Hz, 1H), 7.77 (d, *J* = 7.5 Hz, 1H), 7.66-7.57 (m, 4H), 7.52-7.49 (m, 2H), 7.44-7.41 (m, 2H), 7.35-7.31 (m, 2H), 7.27 (d, *J* = 2.5 Hz, 1H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 7.6 Hz, 1H), 6.62 (s, 1H), 4.66-4.59 (m, 2H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.5, 161.6, 151.5, 144.3, 140.2,

139.0, 137.7, 136.4, 135.7, 135.3, 134.8, 132.8, 131.0, 130.5, 129.8, 129.5, 129.4, 128.7, 128.6, 128.5, 127.9, 127.6, 126.0, 124.8, 120.5, 106.3, 53.6, 21.5. Anal Calcd for $C_{32}H_{25}NO_5S$: C, 71.76; H, 4.70; N, 2.62. Found: C, 71.41; H, 4.61; N, 2.55.

8. Optimization of the Reaction Conditions

Table S1. Optimization of the reaction conditions for the chemodivergent syntheses of benzazepine 2a and tetrahydroquinoline $3a^a$

	Ph N Ts	Pd Catalyst Solvent	Ph o N			Ph
	1a Ot-E	lu	Ts 2a	3a		4a O
Entry	Catalyst	Solvent	Time	Yield of 2a	Yield of 3a	Yield of 4a
	(10 mol%)		(h)	(%) ^b	(%) ^b	(%) ^b
1	$Pd(OAc)_2$	MeCN	14	trace	trace	61
2	$Pd(OAc)_2$	Dioxane	48	trace	trace	73
3	$Pd(OAc)_2$	DMSO	14	trace	trace	-
4	$Pd(OAc)_2$	THF	25	trace	trace	60
5	$Pd(OAc)_2$	Toluene	25	trace	trace	74
6	$Pd(OAc)_2$	DCM	25	trace	trace	76
7	$Pd(OAc)_2$	DCE	25	trace	trace	79
8	$Pd(OAc)_2$	DME	25	trace	trace	75
9	$Pd(OAc)_2$	DMF	25	trace	trace	42
10	$Pd(OAc)_2$	EtOH	25	trace	trace	71
11	PdCl ₂	MeCN	2	37	55	-
12	PdCl ₂	Toluene	3	38	33	-
13	PdCl ₂	THF	7	62	trace	-
14	PdCl ₂	DCM	2	87	0	-
15	PdCl ₂	DCE	2	90	trace	-
16°	PdCl ₂	Dioxane	2	93	0	-
17	PdCl ₂	DME	2	81	trace	-
18 ^d	PdCl ₂	DMSO	3	14	78	-
19 ^e	PdCl ₂	DMSO	0.5	18	70	-
20^{f}	PdCl ₂	DMSO	0.5	29	56	-
21 ^g	PdCl ₂	DMSO	2	10	71	-
22 ^h	PdCl ₂	DMSO	6	14	77	
23	PdCl ₂	DMF	4	43	45	-
24	PdCl ₂	EtOH	10	34	38	-
25 ⁱ	PdCl ₂	DMSO	16	trace	trace	-
26	PdCl ₂ (MeCN) ₂	DCM	2	88	trace	-
27	PdCl ₂ (MeCN) ₂	DCE	2	90	0	-
28	PdCl ₂ (MeCN) ₂	Dioxane	2	91	0	-
29	PdCl ₂ (MeCN) ₂	DMSO	3	15	76	-
30 ^j	$Pd(PPh_3)_2Cl_2$	Dioxane	24	-	-	-
31 ^j	Pd(PPh ₃) ₂ Cl ₂	DMSO	24	-	-	-
32 ^j	Pd(OTf) ₂	Dioxane	24	-	-	-
33 ^j	$Pd(OTf)_2$	DMSO	24	-	-	-
34 ^k	$Sc(OTf)_3$	Dioxane	48	-	-	-
35 ^k	Yb(OTf) ₃	Dioxane	48	-	-	-
36 ^k	$Sc(OTf)_3$	DMSO	48	-	-	-
37 ^k	Yb(OTf) ₃	DMSO	48	-	-	-

^aUnless otherwise noted, all reactions were carried out with **1a** (0.5 mmol), catalyst (10 mol%) in 6 mL of solvent at room temperature. ^bIsolated yield. ^cOptimized reaction condition to access **2a**. ^dOptimized reaction condition to access **3a**. ^eReaction was carried out at 50 °C. ^fReaction was carried out at 80 °C. ^gReaction was carried out with 3 mL of solvent. ^hReaction was carried out with 9 mL of solvent. ⁱBipyridine was used as a ligand. ^jNo reaction was observed and starting material was recovered. ^kNo reaction.

9. Control Experiments

10. Crystallographic Data of Compound 2a

Figure S1: Thermal ellipsoids plot of compound 2a. Hydrogen atoms are not shown for clarity.

Data Collection

A Leica MZ 75 microscope was used to identify a suitable colorless block with very well defined faces with dimensions (max, intermediate, and min) $0.205 \times 0.183 \times 0.102 \text{ mm}^3$ from a representative sample of crystals of the same habit. The crystal mounted on a nylon loop was then placed in a cold nitrogen stream (Oxford) maintained at 110 K.

A BRUKER Quest X-ray (fixed-Chi geometry) diffractometer with a PHOTON III detector was employed for crystal screening, unit cell determination, and data collection. The goniometer was controlled using the APEX3 software suite.¹ The sample was optically centered with the aid of a video camera such that no translations were observed as the crystal was rotated through all positions. The X-ray radiation employed was generated from a Mo-IµsX-ray tube (K_{α} = 0.71073Å). 45 data frames were taken at widths of 1°. These reflections were used to determine the unit cell. The unit cell was verified by examination of the *h k l* overlays on several frames of data. No super-cell or erroneous reflections were observed. After careful examination of the unit cell, an extended data collection procedure (7sets) was initiated using omega and phi scans.

Data Reduction, Structure Solution, and Refinement

Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX3.¹The integration method employed a three dimensional profiling algorithm and all data were corrected for Lorentz and polarization factors, as well as for crystal decay effects. Finally, the data was merged and scaled to produce a suitable data set. The absorption correction program SADABS² was employed to correct the data for absorption effects.

Systematic reflection conditions and statistical tests of the data suggested the space group P-1. A solution was obtained readily using XT/XS in APEX3.^{1,3}Half a molecule of ethyl acetate was found solvated per molecule of the compound. Hydrogen atoms were placed in idealized positions and were set riding on the respective parent atoms. All non-hydrogen atoms were refined with anisotropic thermal parameters. Residual electron density peaks near the solvent suggested it sits on a symmetry position and was modeled with PART -1 and half occupancy. Appropriate restraints were used to keep the thermal ellipsoids of the disordered solvent meaningful. Absence of additional symmetry and voids were confirmed using PLATON (ADDSYM).[#]The structure was refined (weighted least squares refinement on F^2) to convergence.^{3,4}

Olex2 was employed for the final data presentation and structure plots.⁴

¹ APEX3 "Program for Data Collection on Area Detectors" BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA

²SADABS, Sheldrick, G.M. "Program for Absorption Correction of Area Detector Frames", BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA.

³Sheldrick, G.M. (2008). ActaCryst. A64, 112-122. Sheldrick, G. M. (2015), ActaCryst. A71, 3-8. Sheldrick, G. M. (2015). ActaCryst. C71, 3-8. XT, XS, BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA.

⁴ Dolomanov, O. V, Bourhis, L. J., Gildea, R. J., Howard, J. A. K., and Puschmann, H. "OLEX2: A Complete Structure Solution, Refinement and Analysis Program", *J. Appl. Cryst.***2009**, *42*, 339-341.

Identification code	2a	
Empirical formula	C34 H29 N O6 S	
Formula weight	579.64	
Temperature	110.00 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.5669(6) Å	= 90.682(2)°.
	b = 11.3682(6) Å	= 99.416(2)°.
	c = 11.9934(6) Å	= 97.172(2)°.
Volume	1409.43(13) Å ³	
Z	2	
Density (calculated)	1.366 Mg/m ³	
Absorption coefficient	0.164 mm ⁻¹	
F(000)	608	
Crystal size	0.205 x 0.183 x 0.102 mm ³	
	1 00 () 00 01 40	
Theta range for data collection	1.806 to 29.914°.	
Index ranges	1.806 to 29.914°. -14<=h<=14, -15<=k<=15,	-16<=1<=16
Index ranges Reflections collected	1.806 to 29.914°. -14<=h<=14, -15<=k<=15, 46933	-16<=1<=16
Index range for data collection Index ranges Reflections collected Independent reflections	1.806 to 29.914°. -14<=h<=14, -15<=k<=15, 46933 8098 [R(int) = 0.0453]	-16<=1<=16
Index range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242°	1.806 to 29.914°. -14<=h<=14, -15<=k<=15, 46933 8098 [R(int) = 0.0453] 99.7 %	-16<=1<=16
Inex range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction	1.806 to 29.914°. -14<=h<=14, -15<=k<=15, 46933 8098 [R(int) = 0.0453] 99.7 % Semi-empirical from equiva	-16<=1<=16
Inex range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission	1.806 to 29.914°. -14<=h<=14, -15<=k<=15, 46933 8098 [R(int) = 0.0453] 99.7 % Semi-empirical from equiva 0.7460 and 0.7191	-16<=1<=16
Inex range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method	1.806 to 29.914°. -14<=h<=14, -15<=k<=15, 46933 8098 [R(int) = 0.0453] 99.7 % Semi-empirical from equiva 0.7460 and 0.7191 Full-matrix least-squares or	-16<=1<=16 alents n F ²
Ineta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters	1.806 to 29.914°. -14<=h<=14, -15<=k<=15, 46933 8098 [R(int) = 0.0453] 99.7 % Semi-empirical from equiva 0.7460 and 0.7191 Full-matrix least-squares or 8098 / 60 / 409	-16<=1<=16 alents n F ²
Ineta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ²	1.806 to 29.914°. -14<=h<=14, -15<=k<=15, 46933 8098 [R(int) = 0.0453] 99.7 % Semi-empirical from equiva 0.7460 and 0.7191 Full-matrix least-squares or 8098 / 60 / 409 1.122	-16<=1<=16 alents n F ²
Ineta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)]	1.806 to 29.914°. -14<=h<=14, -15<=k<=15, 46933 8098 [R(int) = 0.0453] 99.7 % Semi-empirical from equiva 0.7460 and 0.7191 Full-matrix least-squares or 8098 / 60 / 409 1.122 R1 = 0.0436, wR2 = 0.1220	-16<=1<=16 alents n F ²
Ineta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	1.806 to 29.914°. -14<=h<=14, -15<=k<=15, 46933 8098 [R(int) = 0.0453] 99.7 % Semi-empirical from equiva 0.7460 and 0.7191 Full-matrix least-squares or 8098 / 60 / 409 1.122 R1 = 0.0436, wR2 = 0.1220 R1 = 0.0642, wR2 = 0.1292	-16<=1<=16 alents n F ²
Ineta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient	1.806 to 29.914° . $-14 \le h \le 14, -15 \le k \le 15,$ 46933 8098 [R(int) = 0.0453] 99.7 % Semi-empirical from equiva 0.7460 and 0.7191 Full-matrix least-squares or 8098 / 60 / 409 1.122 R1 = 0.0436, wR2 = 0.1220 R1 = 0.0642, wR2 = 0.1292 n/a	-16<=1<=16 alents n F ²

Table S1. Crystal data and structure refinement for compound 2a

11. ¹H and ¹³C NMR Spectra of all the New Compounds

¹H NMR spectra of compound **S3a** (CDCl₃, 400 MHz)

S28

S30

S33

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectra of compound 1m (CDCl₃, 126 MHz)

¹H NMR spectra of compound **2h** (CDCl₃, 500 MHz)

¹H NMR spectra of compound **2m** (CDCl₃, 500 MHz)

¹H NMR spectra of compound **3i** (CDCl₃, 500 MHz)

S73

S74

¹H NMR spectra of compound **5** (CDCl₃, 400 MHz)

12. NOESY Spectrum of Compound 3b (CDCl₃, 400 MHz)