Supporting Information for

Facile access to 2-hydroxy-3-indolinones via copper-catalyzed

oxidative cyclization of 2-arylethynylanilines

Weiqiang Sun^a, Xueli Cui^a, Jing Qu^a, Xiaojia Cai^a, Jinhui Hu^a, Zhuang Xiong^a, Suqin Guo^a, Jun Xu^{a,b} *, Wen-Hua Chen^a * and Jia-Qiang Wu^a *

^a School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China

^b School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China

Email: wyuchemwjq@wyu.edu.cn; whchen@wyu.edu.cn; xujun9@mail.sysu.edu.cn

Table of Contents

1
2
2
5
22
25
25
25
26
28
29
32

1 General information

Unless otherwise noted, commercial reagents were purchased from Adamas, Aladdin, Alfa, Bide, TCI and used without further purification. All reaction were carried out using ovendried glassware and proceeded without special care. Thin layer chromatography (TLC) was carried out using precoated silica gel plates (0.25 mm, F254) and visualization was accomplished under UV light (254 nm).Column chromatography was performed on 200-300 mesh silica gel.

¹H, ¹⁹F and ¹³C NMR was recorded on a Bruker AV 500 MHz in solvents as indicated. Chemical shifts (δ) are given in ppm relative to TMS. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl3: $\delta_H = 7.26$ ppm, $\delta_C =$ 77.16 ppm; d6-DMSO: $\delta_H = 2.50$ ppm, $\delta_C = 39.52$ ppm; d4-MeOD: $\delta_H = 3.31$ ppm, $\delta_C = 49.00$ ppm). The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of the doublet. Coupling constants, J, were reported in the hertz unit (Hz). High-resolution mass spectra (HRMS) were recorded on a Thermo Scientific Q Exactive UHMR ((Ultra-High Mass Range) Hybrid QuadrupoleOrbitrapTM mass spectrometer.

No attempts were made to optimize yields for substrate synthesis.

2. Synthetic Methods for Starting Materials

General Procedure for the Synthetic of Substrates^[1,2]

General procedure for the synthetic of S1:

This step was carried out according to a literature method^[1] with some modifications. To a solution of corresponding 2-iodoanilines (10.0 mmol) in DCM (25 mL) were added respective acid chlorides (12.0 mmol) followed by NEt₃ (15.0 mmol) at room temperature or 0 °C. After complete addition, the reaction was allowed to stir continuously until all the starting material was consumed completely (monitored by TLC, approx. 0.5–1h). After reaction completion, the mixture was added to brine (15 mL) and extracted with DCM (3×30 mL). The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography to afford S1.

General procedure for the synthetic of S2:

To a solution of aryl iodide (10.0 mmol), $PdCl_2(PPh_3)_2$ (0.02 eq.) and CuI (0.04 eq.) in THF (30 mL) at RT under argon. After stirring for 5 minutes, NEt₃ (10.0 mL) was added and ethynylbenzene (1.5 eq.) was added neat and dropwise to the reaction mixture until complete consumption of starting material (monitored by TCL, approx. 4-8h). After completion, the reaction mixture was quenched with water and extracted with ethyl acetate (3 × 20 mL). The organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography to afford S2.

3. Supporting Tables and Schemes

Table S1. Screening of the catalyst

	O N N N	Cataylst, addition	\bigcirc		/
entry	slovent/1.0 mL	catalyst/30 mol%	T/ºC	time/h	yield/%
1	MeCN	Cu(OTf) ₂	60	5	33
2	MeCN	AgOTf	60	5	n.r.
3	MeCN	$Pd(OAc)_2$	60	5	trace
4	MeCN	$Ni(cod)_2$	60	5	n.r.

Table S2. Screening of the ligand

Table S3. Screening of the reaction additive

\bigcirc		30 mol%0 additive (20 n Me	Cu(OTf) ₂ , 30 mol%), MeCf			
	entry	additive	T/ºC	time/ h	yield/%	
	1	K ₂ CO ₃	60	17	n.r.	•
	2	NH ₄ Cl	60	17	n.r.	
	3	Zn(OTf) ₂	60	17	64	
	4	K ₂ HPO ₄	60	17	trace.	_

Table S4. Screening of the reaction solvent

entry	solvent	T/°C	time/ h	yield/%
1	HFIP	60	17	54
2	THF	60	17	trace
3	MeCN/HFIP = 10/1	60	17	70
4	MeCN/HFIP = 20/1	60	17	57
5	MeCN/HFIP = 1/1	60	17	64

 Table S5. Screening of the others reaction conditions

entry	catalyst/30 mol%	gaseous atmosphere	T/ºC	time/ h	yield/%
1	Cu(OTf) ₂	O ₂	60	17	70
2	CuBr	O_2	60	17	trace
3	CuBr ₂	O_2	60	17	trace
4	Cu(OAc) ₂	O_2	60	17	n.r.
5	Cu(OTf) ₂	O_2	80	17	53%
6	Cu(OTf) ₂	O_2	40	17	46%
7	Cu(OTf) ₂	N_2	60	17	n.r.

Scheme S1. Unsuccessful substrates

Scheme S2. Synthesis of diaryl ethylenediones

4. Experimental procedures and characterization data

General Procedure A:

To a 15 mL-schlenk tube charged with a stirring bar was added corresponding 2arylethynylaniline (0.2 mmol), 20 mol% $Zn(OTf)_2$, 30 mol% $Cu(OTf)_2$, and 30 mol% 6, 6'dimethyl-2,2'-bipyridyl and 2.2 mL of MeCN/HFIP (10/1). The schleck tube was evacuated and refilled with O₂ thrice. The reaction mixture was continuously stirred at 60 °C for 17 hours. After the reaction completed, aq. NH₄Cl was added to quench the reaction. After extracting with ethyl acetate, washing with saturated sodium chloride, vacuum concentrating, and purification through the column with PE/EA = 4 : 1 to obtain the product.

General Procedure B:

To a 15 mL-schlenk tube charged with a stirring bar was added corresponding 2arylethynylaniline (0.2 mmol), 20 mol% $Zn(OTf)_2$, 30 mol% $Cu(OTf)_2$, and 30 mol% 6, 6'dimethyl-2,2'-bipyridyl and 2.2 mL of MeCN/HFIP (10/1). The schleck tube was evacuated and refilled with O₂ thrice. The reaction mixture was continuously stirred at 60 °C for 17 hours. After the reaction completed, aq. NH₄Cl was added to quench the reaction. After extracting with ethyl acetate, washing with saturated sodium chloride, vacuum concentrating, and purification through the column with PE/EA = 4: 1 to obtain the product.

1-acetyl-2-hydroxy-2-(p-tolyl)indolin-3-one (2a)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 4/1), **2a** was obtained as a white solid (39.5 mg, 0.140 mmol, 70%). Rf = 0.39 (PE/EA =

4/1).

¹H NMR (500 MHz, DMSO- d_6) δ 8.59 (d, J = 8.4 Hz, 1H), 7.97 (s, 1H), 7.83 (t, J = 7.9 Hz, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.24 – 7.19 (m, 4H), 2.28 (s, 3H), 1.91 (s, 3H). ¹³C NMR (125 MHz, DMSO- d_6) δ 196.2, 169.9, 152.5, 138.3, 138.2, 134.2, 129.6, 125.0, 124.7, 124.7, 120.0, 117.4, 90.1, 24.4, 20.7.

ESI-MS: calculated for C₁₇H₁₅NO₃ [M+H]⁺: 282.1124, found: 282.1120.

1-acetyl-2-hydroxy-2-(4-methoxyphenyl)indolin-3-one (2b)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 8/1), **2b** was obtained as a white solid (42.2 mg, 0.142 mmol, 71%). Rf = 0.625 (PE/EA

= 4/1).

¹H NMR (500 MHz, DMSO- d_6) δ 8.58 (d, J = 8.4 Hz, 1H), 7.95 (s, 1H), 7.84 (td, J = 8.5, 1.4 Hz, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.32 (t, J = 7.4 Hz, 1H), 7.25 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 9.0 Hz, 2H), 3.73 (s, 3H), 1.93 (s, 3H). ¹³C NMR (125 MHz, DMSO- d_6) δ 196.3, 169.9, 159.6, 152.4, 138.2, 128.9, 126.5, 124.8, 124.7, 112.0, 117.4, 114.5, 90.0, 55.2, 24.4.

HRMS (ESI-TOF): calculated for $C_{17}H_{15}NO_4$ [M+Na]⁺: 320.0893, found: 320.0890.

1-acetyl-2-(4-bromophenyl)-2-hydroxyindolin-3-one (2c)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 8/1), **2c** was obtained as a white solid (34.6 mg, 0.10 mmol, 50 %). Rf = 0.14 (PE/EA = 4/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.59 (d, *J* = 8.4 Hz, 1H), 8.16 (s, 1H), 7.88 – 7.84 (m, 1H), 7.73 (d, *J* = 7.4 Hz, 1H), 7.62 (d, *J* = 8.6 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 2H), 1.93 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 195.7, 169.7, 152.6, 138.4, 136.6, 132.1, 127.4, 124.9, 122.3, 119.7, 117.5, 89.7, 24.4.

ESI-MS: calculated for C₁₆H₁₂BrNO₃ [M+H]⁺: 346.0073, found: 346.0074.

1-acetyl-2-(2-aminophenyl)-2-hydroxyindolin-3-one (2d)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 8/1), **2d** was obtained as a white solid (13.1 mg, 0.046 mmol, 23%). Rf = 0.18 (PE/EA

= 4/1).

¹H NMR (500 MHz, Chloroform-d) δ 8.36 (d, J = 8.4 Hz, 1H), 7.53 (d, J = 7.7 Hz, 1H), 7.32 (td, J = 7.0, 1.2 Hz, 1H), 7.27 (td, J = 7.6, 1.0 Hz, 1H), 7.25 – 7.23 (m, 2H), 6.75 (d, J = 8.5 Hz, 2H), 6.54 (s, 1H), 3.89 (s, 2H), 2.11 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 171.9, 147.0, 140.2, 137.5, 130.2, 129.2, 124.6, 124.0, 123.6, 123.5, 120.1, 116.0, 115.0, 110.4, 27.9. HRMS (ESI-TOF): calculated for C16H14N2O3 [M+Na]+: 305.0897, found: 305.0891.

4-(1-acetyl-2-hydroxy-3-oxoindolin-2-yl)benzaldehyde (2e)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 8/1), **2e** was obtained as a white solid (37.8 mg, 0.128 mmol, 64%). Rf = 0.3 (PE/EA

= 4/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 10.01 (s, 1H), 8.61 (d, *J* = 8.4 Hz, 1H), 8.29 (s, 1H), 7.96 (d, *J* = 8.5 Hz, 2H), 7.88 (td, *J* = 7.4, 1.4 Hz, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.59 (d, *J* = 8.1 Hz, 2H), 7.35 (t, *J* = 7.9 Hz, 1H), 1.91 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 195.5, 192.7, 169.6, 152.7, 143.3, 138.6, 136.4, 130.3, 126.0, 124.9, 119.7, 117.6, 89.8, 24.4. ESI-MS: calculated for C₁₇H₁₃NO₄ [M+H]⁺: 296.0917, found: 296.0921.

1-acetyl-2-hydroxy-2-(m-tolyl)indolin-3-one (2f)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 8/1), **2f** was obtained as a white solid (38.1 mg, 0.135 mmol, 67%). Rf = 0.21 (PE/EA

$$= 4/1$$
).

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.60 (d, *J* = 8.4 Hz, 1H), 8.01 (s, 1H), 7.85 (t, *J* = 7.5 Hz, 1H), 7.72 (d, 1H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.28 (t, *J* = 7.9 Hz, 1H), 7.19 (s, 1H), 7.19 (d, *J* = 6.7 Hz, 1H), 7.10 (d, *J* = 7.7 Hz, 1H), 2.29 (s, 3H), 1.92 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 196.1, 169.9, 152.6, 138.4, 138.3, 137.1, 129.5, 129.0, 125.5, 124.8, 124.7, 122.1, 120.0, 117.4, 90.1, 24.4, 21.1.

ESI-MS: calculated for C₁₇H₁₅NO₃ [M+H]⁺: 282.1124, found: 282.1120.

1-acetyl-2-hydroxy-2-(3-methoxyphenyl)indolin-3-one (2g)

The title compound was prepared via the general procedure A with 1.0 equiv. Cu(OTf)₂, after purification by silica gel column chromatography (PE/EA = 4/1), 2g was obtained as a white solid (56%). Rf = 0.375

(PE/EA = 2/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.59 (d, *J* = 8.4 Hz, 1H), 8.06 (s, 1H), 7.85 (t, *J* = 8.4, 7.4, 1.4 Hz, 1H), 7.73 (d, *J* = 7.4 Hz, 1H), 7.35 – 7.29 (m, 2H), 6.98 – 6.95 (m, 2H), 6.78 (d, *J* = 7.9 Hz, 1H), 3.75 (s, 3H), 1.94 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 195.8, 169.9, 159.8, 152.6, 138.8, 138.3, 130.3, 124.8, 124.7, 119.9, 117.4, 116.8, 113.8, 111.4, 89.9, 55.2, 24.4. ESI-MS: calculated for C₁₇H₁₅NO₄ [M+H]⁺: 298.1073, found: 298.1070.

1-acetyl-2-(3-chlorophenyl)-2-hydroxyindolin-3-one (2h)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 8/1), **2h** was obtained as a white solid (40.0 mg, 0.132 mmol, 66%). Rf = 0.14 (PE/EA = 4/1).

¹H NMR (500 MHz, DMSO- d_6) δ 8.59 (d, J = 8.4 Hz, 1H), 8.25 (s, 1H), 7.87 (td, J = 8.6, 7.3, 1.5 Hz, 1H), 7.74 (d, J = 7.6 Hz, 1H), 7.49 – 7.45 (m, 2H), 7.43 (t, J = 7.9 Hz, 1H), 7.34 (td, J = 7.5, 0.8 Hz, 1H), 7.20 (d, J = 7.7 Hz, 1H), 1.94 (s, 3H). ¹³C NMR (125 MHz, DMSO- d_6) δ 195.6, 169.6, 152.6, 139.6, 138.5, 133.9, 131.1, 129.0, 125.3, 124.9, 124.9, 123.6, 119.6, 117.5, 89.4, 24.4.

ESI-MS: calculated for C₁₆H₁₂C1NO₃ [M+H]⁺:302.0578, found: 302.0573.

Methyl 3-(1-acetyl-2-hydroxy-3-oxoindolin-2-yl)benzoate(2i)

The title compound was prepared via the general procedure A with 1.0 equiv. Cu(OTf)₂, after purification by silica gel column

chromatography (PE/EA = 8/1), **2i** was obtained as a white solid (48%). Rf = 0.15 (PE/EA = 4/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.61 (d, *J* = 8.4 Hz, 1H), 8.28 (s, 1H), 8.01 – 7.97 (m, 2H), 7.88 (td, *J* = 8.6, 1.4 Hz, 1H), 7.74 (dd, *J* = 7.4, 1.1 Hz, 1H), 7.59 – 7.56 (m, 2H), 7.36 (td, *J* = 7.6, 0.8 Hz, 1H), 3.84 (s, 3H), 1.90 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 195.8, 169.7, 165.8, 152.7, 138.6, 138.0, 130.5, 129.9, 129.8, 129.7, 125.9, 125.0, 119.7, 117.5, 89.6, 52.4, 24.4.

ESI-MS: calculated for C₁₈H₁₅NO₅ [M+H]⁺: 326.1022, found: 326.1018.

1-acetyl-2-hydroxy-6-methyl-2-(p-tolyl)indolin-3-one (2k)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 8/1), **2k** was obtained as a white solid (73%). Rf = 0.2 (PE/EA = 4/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.44 (s, 1H), 7.95 (s, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.21 (d, *J* = 2.2 Hz, 4H), 7.16 – 7.14 (m, 1H), 2.48 (s, 3H), 2.28 (s, 3H), 1.90 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 195.4, 169.9, 152.8, 149.6, 138.2, 134.4, 129.6, 125.8, 125.0, 124.6, 117.8, 117.6, 90.5, 40.0, 24.4, 22.5, 20.7.

.ESI-MS: calculated for C₁₈H₁₇NO₃ [M+H]⁺: 296.1281, found: 296.1275.

1-acetyl-6-fluoro-2-hydroxy-2-(p-tolyl)indolin-3-one (21)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 4/1), **2l** was obtained as a white solid (48.4 mg, 0.162 mmol, 81%). Rf = 0.375

(PE/EA = 4/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.30 (dd, J = 11.1, 2.3 Hz, 1H), 8.09 (s, 1H), 7.81 (dd, J = 8.5, 6.0 Hz, 1H), 7.26 – 7.20 (m, 4H), 7.17 (td, J = 8.7, 2.3 Hz, 1H), 2.28 (s, 3H), 1.92 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 194.5, 170.2, 168.0 (d, J = 254.0 Hz), 154.1 (d, J = 14.5 Hz), 138.5, 133.9, 129.7, 127.5 (d, J = 12.1 Hz), 125.1, 116.8, 112.6 (d, J = 24.1 Hz), 104.7 (d, J = 29.4 Hz), 90.9, 24.3, 20.7. ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -97.08 (dd, J = 11.1, 7.2 Hz).

ESI-MS: calculated for C₁₇H₁₄FNO₃ [M+H]⁺: 300.1030, found: 300.1025.

1-acetyl-2-hydroxy-5-methyl-2-(p-tolyl)indolin-3-one (2m)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 8/1), **2m** was obtained as a white solid (44.3 mg, 0.150 mmol, 75%). Rf = 0.25 (PE/EA = 4/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.48 (d, *J* = 8.5 Hz, 1H), 7.95 (s, 1H), 7.66 (d, *J* = 8.7 Hz, 1H), 7.5 (S, 1H), 7.20 (s, 4H), 2.35 (s, 3H), 2.28 (s, 3H), 1.89 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 196.2, 169.6, 150.7, 139.0, 138.2, 134.4, 134.2, 129.6, 125.0, 124.2, 120.1, 117.2, 90.3, 24.3, 20.7, 20.2.

HRMS (ESI-TOF): calculated for C₁₈H₁₇NO₃ [M+Na]⁺: 318.1101, found: 318.1100.

1-acetyl-5-bromo-2-hydroxy-2-(p-tolyl)indolin-3-one (2n)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 8/1), **2n** was obtained as a white solid (40.3 mg, 0.112 mmol, 56%). Rf = 0.29

(PE/EA = 4/1).

¹H NMR (500 MHz, DMSO- d_6) δ 8.54 (d, J = 8.9 Hz, 1H), 8.07 (s, 1H), 8.00 (dd, J = 8.9, 2.3 Hz, 1H), 7.87 (d, J = 2.2 Hz, 1H), 7.24 – 7.20 (m, 4H), 2.28 (s, 3H), 1.91 (s, 3H). ¹³C NMR (125 MHz, DMSO- d_6) δ 195.1, 182.8, 169.9, 151.4, 140.4, 138.5, 133.7, 129.7, 126.9, 125.1, 121.9, 119.5, 116.4, 90.4, 24.3, 20.7.

ESI-MS: calculated for C₁₇H₁₄BrNO₃ [M+H]⁺: 361.0029, found: 361.0022.

1-acetyl-5-fluoro-2-hydroxy-2-(p-tolyl)indolin-3-one (20)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 4/1), **20** was obtained as a white solid (29.7 mg, 0.099 mmol, 50%). Rf = 0.55 (PE/EA

= 2/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.62 (dd, *J* = 9.1, 4.3 Hz, 1H), 8.05 (s, 1H), 7.73 (td, *J* = 9.1, 2.9 Hz, 1H), 7.56 (dd, *J* = 7.0, 2.9 Hz, 1H), 7.25 – 7.20 (m, 4H), 2.29 (s, 3H), 1.90 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 195.7, 169.6, 158.6 (d, *J* = 244.3 Hz), 149.1, 138.5, 133.8, 129.7,

125.2 (d, J = 23.9 Hz), 121.3 (d, J = 7.4 Hz), 119.2 (d, J = 7.3 Hz), 110.3 (d, J = 23.2 Hz), 90.6, 24.2, 20.7. ¹⁹F NMR (471 MHz, DMSO- d_6) δ -117.28 (t, J = 9.5 Hz).

ESI-MS: calculated for C₁₇H₁₄FNO₃ [M+H]⁺:300.1030, found: 300.1025.

1-acetyl-2-hydroxy-2-(p-tolyl)-5-(trifluoromethyl)indolin-3-one (2p)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 8/1), **2p** was obtained as a white solid (41%). Rf = 0.33 (PE/EA = 4/1).

¹H NMR (500 MHz, Chloroform-*d*) δ 8.57 (d, J = 8.3 Hz, 1H), 8.10 (s, 1H), 7.74 (s, 1H), 7.56 (d, J = 8.7 Hz, 1H), 7.44 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 7.8 Hz, 2H), 2.41 (s, 3H), 2.27 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 168.4, 141.4, 139.9, 131.5, 129.5, 128.7 (d, J = 3.8 Hz), 126.4 (d, J = 3.5 Hz), 125.4 (d, J = 33.5 Hz), 123.7 (d, J = 272.0 Hz), 119.0, 118.6, 112.3, 98.0, 82.3, 25.1, 21.6. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -62.34.

HRMS (ESI-TOF): calculated for C₁₈H₁₄F₃NO₃ [M+Na]⁺: 372.0818, found: 372.0816.

1-acetyl-2-hydroxy-4-methyl-2-(p-tolyl)indolin-3-one (2q)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 8/1), **2q** was obtained as a white solid (51%). Rf = 0.18 (PE/EA = 4/1).

¹H NMR (500 MHz, DMSO- d_6) δ 8.45 (d, J = 8.4 Hz, 1H), 7.90 (s, 1H), 7.67 (t, J = 7.8 Hz, 1H), 7.23 – 7.19 (m, 4H), 7.10 (d, J = 7.5 Hz, 1H), 2.48 (s, 3H), 2.28 (s, 3H), 1.90 (s, 3H). ¹³C NMR (125 MHz, DMSO- d_6) δ 196.8, 169.8, 153.0, 139.6, 138.2, 137.3, 134.6, 129.6, 126.1, 125.0, 117.6, 114.7, 89.7, 24.5, 20.7, 18.0.

ESI-MS: calculated for C₁₈H₁₇NO₃ [M+H]⁺: 296.1281, found: 296.1282.

1-acetyl-2-hydroxy-2-(1H-indol-5-yl)indolin-3-one (2r)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 8/1), **2r** was obtained as a white solid (52%). Rf = 0.2 (PE/EA = 4/1).

¹H NMR (500 MHz, DMSO- d_6) δ 11.34 (s, 1H), 8.24 (d, J = 8.2 Hz, 1H),

7.72 (s, 1H), 7.59 (d, *J* = 6.9 Hz, 1H), 7.52 (d, *J* = 8.3 Hz, 1H), 7.45 (t, *J* = 2.7 Hz, 1H), 7.31 (td, *J* = 8.3, 7.8, 1.5 Hz, 1H), 7.26 (td, *J* = 7.4, 1.2 Hz, 1H), 7.21 (dd, *J* = 8.3, 1.6 Hz, 1H), 6.69 (s, 1H), 6.53 (s, 1H), 1.98 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 171.6, 141.6, 136.9, 135.8, 129.0, 127.7, 126.6, 124.2, 124.2, 123.4, 122.3, 120.6, 120.2, 115.4, 111.7, 109.9, 101.6, 27.4.

HRMS (ESI-TOF): calculated for C₁₈H₁₄N₂O₃ [M+Na]⁺: 329.0896, found: 329.0898.

1-acetyl-2-hydroxy-2-(thiophen-3-yl)indolin-3-one(2s)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 4/1), **2s** was obtained as a white solid (27.2 mg, 0.100 mmol, 50%). Rf = 0.34 (PE/EA = 2/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.56 (d, *J* = 8.4 Hz, 1H), 7.95 (s, 1H), 7.83 (t, *J* = 7.8 Hz, 1H), 7.72 (d, *J* = 7.5 Hz, 1H), 7.56 (dt, *J* = 8.0, 2.1 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 1H), 6.86 (d, *J* = 4.9 Hz, 1H), 2.00 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 195.5, 169.8, 152.0, 138.7, 138.2, 128.1, 124.7, 124.6, 123.8, 119.8, 117.6, 89.0, 24.2.

HRMS (ESI-TOF): calculated for C₁₄H₁₁NO₃S [M+Na]⁺: 296.0352, found: 296.0352.

1-acetyl-2-(furan-2-yl)-2-hydroxyindolin-3-one (2t)

The title compound was prepared via the general procedure A, after purification by silica gel column chromatography (PE/EA = 4/1), **2t** was obtained as a white solid (26.2 mg, 0.102 mmol, 51%). Rf = 0.14 (PE/EA =

4/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.52 (d, *J* = 8.4 Hz, 1H), 8.20 (s, 1H), 7.82 (ddd, *J* = 8.6, 7.4, 1.5 Hz, 1H), 7.74 (d, *J* = 7.4 Hz, 1H), 7.62 (dd, *J* = 1.7, 0.8 Hz, 1H), 7.31 (td, *J* = 7.5, 0.7 Hz, 1H), 6.69 (dd, *J* = 3.3, 0.8 Hz, 1H), 6.52 (dd, *J* = 3.3, 1.8 Hz, 1H), 2.04 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 194.7, 169.8, 152.3, 149.6, 143.9, 138.5, 124.6, 119.8, 117.6, 111.3, 109.8, 86.8, 23.4.

ESI-MS: calculated for C₁₄H₁₁NO₄ [M+Na]⁺:280.0580, found: 280.0581.

2-hydroxy-2-(4-methoxyphenyl)-3-oxoindoline-1-carbaldehyde (2u)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 4/1), **2u** was obtained as a white solid (53%). Rf = 0.37 (PE/EA = 2/1). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.48 (s, 1H), 8.37 (d, *J* = 8.2 Hz, 1H), 8.07 (s, 1H), 7.89 (td, *J* = 1.2, 8.4 Hz, 1H), 7.76 (d, *J* = 7.5 Hz, 1H), 7.37 (t, *J* = 7.4 Hz, 1H), 7.31 (d, *J* = 8.9 Hz, 2H), 6.96 (d, *J* = 8.9 Hz, 2H), 3.74 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 196.1, 160.7, 159.9, 150.1, 138.5, 128.8, 127.1, 125.4, 125.1, 120.3, 116.4, 114.4, 89.3, 55.3. HRMS (ESI-TOF): calculated for C₁₆H₁₃NO₄ [M+Na]⁺: 306.0737, found: 306.0736.

2-(4-bromophenyl)-2-hydroxy-3-oxoindoline-1-carbaldehyde (2v)

The title compound was prepared via the general procedure **A** with 1.0 equiv. $Cu(OTf)_2$, after purification by silica gel column chromatography (PE/EA = 4/1), **2v** was obtained as a white solid (29.2 mg, 0.088 mmol,

44%). Rf = 0.33 (PE/EA = 4/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.50 (s, 1H), 8.39 (d, *J* = 8.2 Hz, 1H), 8.28 (s, 1H), 7.93 – 7.89 (m, 1H), 7.79 (d, *J* = 7.9 Hz, 1H), 7.63 (d, *J* = 8.6 Hz, 2H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.36 (d, *J* = 8.6 Hz, 2H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 195.5, 160.6, 150.3, 138.7, 132.0, 128.0, 125.5, 125.2, 122.7, 116.6, 89.0.

ESI-MS: calculated for C₁₅H₁₀BrNO₃ [M+Na]⁺: 353.9736, found: 353.9735.

1-heptanoyl-2-hydroxy-2-phenylindolin-3-one (2w)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 16/1), **2w** was obtained as a white solid (30.1 mg, 0.088 mmol, 44%). Rf = 0.47 (PE/EA = 8/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.64 (d, *J* = 8.4 Hz, 1H), 8.05 (s, 1H), 7.85 (ddd, *J* = 8.6, 7.5, 1.4 Hz, 1H), 7.73 – 7.70 (m, 1H), 7.42 – 7.31 (m, 6H), 2.49 – 2.43 (m, 1H), 1.98 (ddd, *J* = 15.7, 8.4, 6.5 Hz, 1H), 1.28 – 1.22 (m, 2H), 1.15 – 1.08 (m, 2H), 1.03 – 0.93 (m, 4H), 0.77 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 196.6, 173.4, 153.2, 138.7, 137.8, 129.4, 129.2, 125.5, 125.2, 125.1, 120.4, 118.0, 90.5, 35.9, 31.2, 28.5, 24.6, 22.3, 14.3.

ESI-MS: calculated for C₂₁H₂₃NO₃ [M+Na]⁺: 360.1570, found: 360.1562.

2-hydroxy-2-phenyl-1-(2-phenylacetyl)indolin-3-one (2x)

The title compound was prepared via the general procedure **A**, after purification by silica gel column chromatography (PE/EA = 4/1), **2v** was obtained as a white solid (16.5 mg, 0.048 mmol, 24%). Rf = 0.17 (PE/EA = 8/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.59 (d, *J* = 8.4 Hz, 1H), 8.29 (s, 1H), 7.85 (ddd, *J* = 8.6, 7.4, 1.4 Hz, 1H), 7.77 – 7.72 (m, 1H), 7.43 (p, *J* = 3.5, 2.8 Hz, 5H), 7.37 – 7.32 (m, 1H), 7.21 – 7.13 (m, 3H), 6.89 (dd, *J* = 7.7, 1.5 Hz, 2H), 3.83 (d, *J* = 15.7 Hz, 1H), 3.34 (s, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 196.3, 171.4, 153.0, 138.8, 137.8, 135.4, 130.0, 129.7, 129.5, 128.5, 126.9, 125.6, 125.4, 125.3, 120.6, 118.0, 90.7, 42.4.

ESI-MS: calculated for C₂₂H₁₇NO₃ [M+Na]⁺: 366.1100, found: 366.1095.

4-methyl-N-(2-(2-oxo-2-(p-tolyl)acetyl)phenyl)benzamid (3a)

The title compound was prepared via the general procedure **B**, after purification by silica gel column chromatography (PE/EA = 8/1), **3a** was obtained as a white solid (59.1 mg, 0.165 mmol, 83%). Rf = 0.475 (PE/EA = 4/1).

¹H NMR (500 MHz, Chloroform-*d*) δ 12.32 (s, 1H), 9.08 (d, J = 8.5 Hz, 1H), 8.01 (d, J = 8.2 Hz, 2H), 7.86 (d, J = 8.1 Hz, 2H), 7.69 (t, J = 7.9 Hz, 1H), 7.65 – 7.59 (m, 1H), 7.33 (d, J = 8.1 Hz, 4H), 7.09 (t, J = 7.6 Hz, 1H), 2.43 (d, J = 5.9 Hz, 6H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 199.6, 192.9, 166.2, 146.6, 143.0, 143.0, 137.2, 134.3, 131.5, 130.4, 130.1, 129.9, 129.6, 127.6, 122.6, 120.8, 118.3, 22.0, 21.6.

ESI-MS: calculated for C₂₃H₁₉NO₃ [M+H]⁺: 358.1437, found: 358.1437.

N-(2-(2-(4-methoxyphenyl)-2-oxoacetyl)phenyl)-4-methylbenzamide (3b)

The title compound was prepared via the general procedure **B**, after purification by silica gel column chromatography (PE/EA = 8/1), **3b** was obtained as a white solid (55.5 mg, 0.149 mmol, 74%). Rf = 0.29 (PE/EA = 4/1).

¹H NMR (500 MHz, Chloroform-*d*) δ 12.33 (s, 1H), 9.06 (d, *J* = 8.5 Hz, 1H), 8.01 (d, *J* = 8.2 Hz, 2H), 7.93 (d, *J* = 8.8 Hz, 2H), 7.68 (t, *J* = 7.9 Hz, 1H), 7.64 (d, *J* = 6.9 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.98 (d, *J* = 8.9 Hz, 2H), 3.88 (s, 3H), 2.42 (s, 3H). ¹³C

NMR (125 MHz, Chloroform-*d*) δ 199.7, 191.8, 166.2, 165.2, 143.0, 142.9, 137.1, 134.3, 132.5, 131.6, 129.6, 127.6, 125.8, 122.6, 120.8, 118.4, 114.6, 55.7, 21.6.

HRMS (ESI-TOF): calculated for C₂₃H₁₉NO₄ [M+Na]⁺: 396.1206, found: 396.1206.

4-methyl-N-(2-(2-oxo-2-(m-tolyl)acetyl)phenyl)benzamide (3c)

The title compound was prepared via the general procedure **B**, after purification by silica gel column chromatography (PE/EA = 16/1), **3c** was obtained as a white solid (40.8 mg, 0.114 mmol, 57 %). Rf = 0.25 (PE/EA = 16/1).

¹H NMR (500 MHz, Chloroform-*d*) δ 12.31 (s, 1H), 9.08 (d, J = 8.5 Hz, 1H), 8.02 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.3 Hz, 2H), 7.72 – 7.67 (m, 1H), 7.62 (dd, J = 8.0, 1.4 Hz, 1H), 7.49 (d, J = 7.5 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.33 (d, J = 8.1 Hz, 2H), 7.12 – 7.08 (m, 1H), 2.43 (s, 3H), 2.42 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 199.5, 193.4, 166.2, 143.0, 143.0, 139.3, 137.3, 136.1, 134.3, 132.8, 131.5, 130.3, 129.6, 129.1, 127.6, 127.4, 122.7, 120.9, 118.3, 21.6, 21.3.

HRMS (ESI-TOF): calculated for C₂₃H₁₉NO₃ [M+Na]⁺: 380.1257, found: 380.1258.

4-methyl-N-(2-(2-oxo-2-(thiophen-3-yl)acetyl)phenyl)benzamide (3d)

The title compound was prepared via the general procedure **B**, after purification by silica gel column chromatography (PE/EA = 8/1), **3d** was obtained as a white solid (36.6 mg, 0.105 mmol, 52%). Rf = 0.42 (PE/EA = 4/1).

¹H NMR (500 MHz, Chloroform-*d*) δ 12.24 (s, 1H), 9.06 (d, J = 8.2 Hz, 1H), 8.19 (dd, J = 2.8, 1.2 Hz, 1H), 8.00 (d, J = 8.2 Hz, 2H), 7.71 –7.68 (m, 2H), 7.66 (dd, J = 5.2, 1.2 Hz, 1H), 7.43 (dd, J = 5.1, 2.9 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 7.14 – 7.09 (m, 1H), 2.43 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 198.1, 186.4, 166.2, 143.2, 143.0, 137.9, 137.3, 137.1, 134.3, 131.5, 129.6, 127.6, 127.6, 127.1, 122.6, 120.9, 117.8, 21.6.

HRMS (ESI-TOF): calculated for C₂₀H₁₅NO₃S [M+Na]⁺: 372.0665, found: 372.0663.

N-(4-fluoro-2-(2-oxo-2-(p-tolyl)acetyl)phenyl)-4-methylbenzamide (3e)

The title compound was prepared via the general procedure **B**, after purification by silica gel column chromatography (PE/EA = 32/1), **3e** was obtained as a white solid (26.0 mg, 0.069 mmol, 35%). Rf = 0.2 (PE/EA = 16/1).

¹H NMR (500 MHz, Chloroform-*d*) δ 12.15 (s, 1H), 9.10 (dd, J = 9.4, 4.9 Hz, 1H), 7.99 (d, J = 8.2 Hz, 2H), 7.86 (d, J = 8.2 Hz, 2H), 7.42 (ddd, J = 9.6, 7.5, 3.0 Hz, 1H), 7.36 – 7.30 (m, 5H), 2.46 (s, 3H), 2.44 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 198.4, 192.1, 166.1, 158.0, 156.0, 147.0, 143.1, 139.4, 131.3, 130.2, 130.0, 129.7, 127.6, 124.5 (d, J = 21.9 Hz), 122.9 (d, J = 6.7 Hz), 119.5 (d, J = 23.4 Hz), 118.9 (d, J = 5.3 Hz), 22.0, 21.6. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -118.11 (td, J = 8.1, 5.0 Hz).

HRMS (ESI-TOF): calculated for C₂₃H₁₈FNO₃ [M+Na]⁺: 398.1163, found: 398.1158

N-(2-(2-(4-methoxyphenyl)-2-oxoacetyl)phenyl)pivalamide (3f)

The title compound was prepared via the general procedure **B**, after purification by silica gel column chromatography (PE/EA = 8/1), **3f** was obtained as a white solid (54.6 mg, 0.161 mmol, 80%). Rf = 0.4 (PE/EA = 4/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 10.98 (s, 1H), 8.33 (d, *J* = 8.4 Hz, 1H), 7.97 (d, *J* = 8.8 Hz, 2H), 7.73 (t, *J* = 7.3 Hz, 1H), 7.64 – 7.59 (m, 1H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.13 (d, *J* = 8.8 Hz, 2H), 3.88 (s, 3H), 1.17 (s, 9H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 196.9, 190.9, 177.4, 164.8, 140.7, 136.1, 133.0, 132.8, 124.9, 123.6, 121.3, 114.7, 55.9, 26.9.

ESI-MS: calculated for C₂₀H₂₁NO₄ [M+H]⁺: 340.1543, found: 340.1548.

N-(5-methyl-2-(2-oxo-2-(p-tolyl)acetyl)phenyl)pivalamide (3g)

The title compound was prepared via the general procedure **B**, after purification by silica gel column chromatography (PE/EA = 8/1), **3g** was obtained as a white solid (44.2 mg, 0.130 mmol, 65%). Rf = 0.57 (PE/EA = 4/1) ¹H NMR (500 MHz, Chloroform-*d*) δ 11.68 (s, 1H), 8.80 (s, 1H), 7.85 (d, *J* = 8.2 Hz, 2H), 7.46 (d, *J* = 8.1 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.88 (d, *J* = 8.1 Hz, 1H), 2.47 (s, 3H), 2.43 (s, 3H), 1.41 (s, 9H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 198.6, 193.2, 178.8, 149.1, 146.4, 142.9, 134.2, 130.5, 130.1, 129.9, 123.4, 121.0, 116.2, 40.6, 27.6, 22.6, 22.0.

HRMS (ESI-TOF): calculated for C₂₁H₂₃NO₃ [M+Na]⁺: 360.1570, found: 360.1565.

N-(2-(2-oxo-2-(p-tolyl)acetyl)pyridine-3-yl)acetamide (3h)

The title compound was prepared via the general procedure **B**, after purification by silica gel column chromatography (PE/EA = 8/1), **3h** was obtained as a white solid (25.7 mg, 0.091 mmol, 46%). Rf = 0.13 (PE/EA =

4/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 10.65 (s, 1H), 8.80 (dd, *J* = 8.6, 1.3 Hz, 1H), 8.34 (dd, *J* = 4.4, 1.3 Hz, 1H), 7.80 (d, *J* = 8.2 Hz, 2H), 7.72 (dd, *J* = 8.7, 4.4 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 2.40 (s, 3H), 2.24 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 198.2, 195.1, 170.3, 146.3, 144.6, 138.4, 137.1, 130.7, 130.3, 130.2, 129.8, 129.7, 25.1, 21.9.

ESI-MS: calculated for C₁₆H₁₄N₂O₃ [M+H]⁺: 283.1077, found: 283.1079.

General Procedure C:

To a 25mL round bottom flask was added 0.2 mmol **2**, 2.0 mL methanol and 3.0 mL (1M NaOH). The reaction mixture was refluxed for 2-8h. After the reaction completed, saturated sodium bicarbonate solution was added, extracted with ethyl acetate, the organic phase was collected, dried with anhydrous sodium sulfate, and concentrated in vacuo. The crude product was purified by column chromatography to afford **4**

2-hydroxy-2-(p-tolyl)indolin-3-one (4a)

The title compound was prepared via the general procedure **C**, after purification by silica gel column chromatography (PE/EA = 2/1), **4a** was obtained as a White solid (81%). Rf = 0.46 (PE/EA = 1/1).

¹H NMR (500 MHz, DMSO- d_6) δ 10.34 (s, 1H), 7.22 (t, J = 7.7 Hz, 1H), 7.17 (d, J = 8.1 Hz, 2H), 7.11 – 7.07 (m, 3H), 6.95 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 7.7 Hz, 1H), 6.54 (s, 1H), 2.26 (s, 3H).¹³C NMR (125 MHz, DMSO- d_6) δ 178.6, 141.9, 138.6, 136.5, 133.8, 129.1, 128.6, 125.4, 124.7, 121.9, 109.8, 77.2, 20.7.

HRMS (ESI-TOF): calculated for C₁₅H₁₃NO₂ [M+Na]⁺: 262.0838, found: 262.0838.

3-hydroxy-6-methyl-3-(p-tolyl)indolin-2-one (4b)

The title compound was prepared via the general procedure C, after purification by silica gel column chromatography (PE/EA = 2/1), **4b** was obtained as a White solid (95%). Rf = 0.48 (PE/EA = 1/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 10.31 (s, 1H), 7.14 (d, *J* = 8.3 Hz, 2H), 7.10 (d, *J* = 8.2 Hz, 2H), 6.95 (d, *J* = 7.5 Hz, 1H), 6.77 (d, *J* = 7.5 Hz, 1H), 6.70 (s, 1H), 6.48 (s, 1H), 2.29 (s, 3H), 2.26 (s, 3H).

¹³C NMR (126 MHz, DMSO-*d*₆) δ 179.3, 142.5, 139.2, 139.2, 136.9, 131.4, 129.0, 125.9, 125.0, 122.9, 110.9, 77.5, 21.8, 21.1.

ESI-MS: calculated for $C_{16}H_{15}NO_2$ [M+Na]⁺: 276.0994, found: 276.0995.

3-hydroxy-3-(m-tolyl)indolin-2-one (4c)

The title compound was prepared via the general procedure **C**, after purification by silica gel column chromatography (PE/EA = 2/1), **4c** was obtained as a White solid (72%). Rf = 0.38 (PE/EA = 1/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 10.39 (s, 1H), 7.24 (t, *J* = 7.5 Hz, 1H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.11 (s, 1H), 7.07 (t, *J* = 6.8 Hz, 2H), 7.03 (d, *J* = 7.7 Hz, 1H), 6.96 (t, *J* = 7.4 Hz, 1H), 6.89 (d, *J* = 7.7 Hz, 1H), 6.58 (s, 1H), 2.26 (s, 3H).

¹³C NMR (125MHz, DMSO-*d*₆) δ 179.0, 142.4, 142.0, 137.6, 134.3, 129.7, 128.5, 128.5, 126.3, 125.2, 123.0, 122.5, 110.3, 77.7, 21.6.

3-(3-chlorophenyl)-3-hydroxyindolin-2-one (4d)

The title compound was prepared via the general procedure **C**, after purification by silica gel column chromatography (PE/EA = 2/1), **4d** was obtained as a White solid (80%). Rf = 0.42 (PE/EA = 1/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 10.50 (s, 1H), 7.37 – 7.31 (m, 3H), 7.28 (td, *J* = 7.7, 1.2 Hz, 1H), 7.12 (d, *J* = 7.2 Hz, 1H), 7.10 – 7.07 (m, 1H), 7.01 – 6.97 (m, 1H), 6.92 (d, *J* = 7.7 Hz, 1H), 6.83 (s, 1H).

¹³C NMR (125MHz, DMSO-*d*₆) δ 178.3, 144.4, 142.4, 133.4, 133.4, 130.6, 130.1, 128.0, 125.8, 125.3, 124.6, 122.8, 110.5, 77.4.

3-hydroxy-3-(thiophen-3-yl)indolin-2-one (4e)

The title compound was prepared via the general procedure **C**, after purification by silica gel column chromatography (PE/EA = 2/1), **4e** was obtained as a White solid (69%). Rf = 0.44 (PE/EA = 1/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 10.39 (s, 1H), 7.47 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.28 – 7.23 (m, 2H), 7.21 (dd, *J* = 3.0, 1.2 Hz, 1H), 7.02 (dd, *J* = 5.1, 1.2 Hz, 1H), 6.99 (td, *J* = 8.3, 7.6, 0.8 Hz, 1H), 6.90 – 6.86 (m, 1H), 6.60 (s, 1H).

¹³C NMR (125MHz, DMSO-*d*₆) δ 178.3, 142.9, 142.0, 133.4, 129.7, 126.9, 126.7, 125.2, 122.6, 122.4, 110.3, 76.0.

5-fluoro-3-hydroxy-3-(p-tolyl)indolin-2-one (4f)

The title compound was prepared via the general procedure C, after purification by silica gel column chromatography (PE/EA = 2/1), **4f** was obtained as a White solid (57%). Rf = 0.32 (PE/EA = 1/1).

¹H NMR (500 MHz, DMSO-*d*₆) δ 10.41 (s, 1H), 7.14 (q, *J* = 8.4 Hz, 4H), 7.11 – 7.07 (m, 1H), 6.94 (dd, *J* = 8.0, 2.7 Hz, 1H), 6.89 (dd, *J* = 8.5, 4.3 Hz, 1H), 6.70 (s, 1H), 2.27 (s, 3H).¹³C NMR (125 MHz, DMSO-*d*₆) δ 179.0, 159.6, 157.7, 138.5, 137.3, 136.0, 135.9, 129.2, 125.8, 116.0, 115.8, 112.8, 112.6, 111.2, 111.2, 77.9, 21.1.

¹⁹F NMR (471 MHz, DMSO- d_6) δ -121.31 (d, J = 13.4 Hz).

5-bromo-3-hydroxy-3-(p-tolyl)indolin-2-one (4g)

The title compound was prepared via the general procedure **C**, after purification by silica gel column chromatography (PE/EA = 2/1), **4g** was obtained as a White solid (70%). Rf = 0.45 (PE/EA = 1/1).

¹H NMR (500 MHz, DMSO- d_6) δ 10.55 (s, 1H), 7.43 (dd, J = 8.3, 2.1 Hz, 1H), 7.20 (d, J = 2.0 Hz, 1H), 7.18 – 7.12 (m, 4H), 6.88 (d, J = 8.3 Hz, 1H), 6.74 (s, 1H), 2.27 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 178.5 , 141.7 , 138.3 , 137.4 , 136.7 , 132.3 , 129.3 , 127.8 , 125.7 , 114.1 , 112.4 , 77.7 , 21.1

3-hydroxy-4-methyl-3-(p-tolyl)indolin-2-one (4h)

The title compound was prepared via the general procedure **C**, after purification by silica gel column chromatography (PE/EA = 2/1), **4h** was obtained as a White solid (48%). Rf = 0.40 (PE/EA = 1/1).

¹H NMR (500 MHz, DMSO- d_6) δ 10.28 (s, 1H), 7.16 (d, J = 7.7 Hz, 1H), 7.11 (s, 4H), 6.73 (dd, J = 7.5, 5.0 Hz, 2H), 6.44 (s, 1H), 2.27 (s, 3H), 1.92 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 179.0, 142.6, 137.7, 136.8, 135.9, 131. 6, 129.6, 129.1, 125.5, 124.3, 107.8, 78.0, 39.4, 21.1, 17.4.

ESI-MS: calculated for C₁₆H₁₅NO₂ [M+Na]⁺: 276.0994, found: 276.0996.

5 Gram-scale experiment and further functionalization of 2a

To a 100 mL round bottom flask was added 1 (5.0 mol, 1.0 eq.) and $Cu(OTf)_2$ (542 mg, 30 mol%), L (273.4 mg, 30 mol%) and $Zn(OTf)_2$ (363 mg, 20 mol%), MeCN (50.0 mL) and HFIP (5.0 mL). The reaction mixture was carried out under oxygen for 17 hours. The reaction was detected by TLC. After the reaction was complete, the organic phase was extracted three times with ethyl acetate and saturated brine and dried over Na₂SO₄. The organic phase obtained was concentrated in vacuo and column chromatographed with PE/EA (4:1) to 2 (69%) of the product.

Transformation of 2a to 5

To a 25 mL round-bottom flask was added **2a** (0.2 mmol), 2.0 mL DCM, and Et₃N (1.0 mL). The reaction mixture was stirred under rt for 10 min, then 0.3 mL AcCl was added to the reaction mixture and stirred for 1 hour. The reaction was detected by TLC. After the reaction was complete, the organic phase was extracted three times with ethyl acetate and saturated brine and dried over Na₂SO₄. A white solid product (32.9 mg, 51%) was obtained by silica gel column chromatography (PE/EA = 4/1).

White solid (32.9 mg, 51 %). Rf = 0.46 (PE/EA = 4/1).

¹H NMR (500 MHz, Chloroform-d) δ 8.69 (d, J = 8.4 Hz, 1H), 7.74 (t, J = 7.7 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 7.28 (t, J = 7.9 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 2.36 (s, 3H), 2.29 (s, 3H), 2.06 (s, 3H).

¹³C NMR (125 MHz, DMSO-d6) δ 187.0, 165.0, 163.4, 147.3, 135.3, 132.7, 125.7, 125.4, 120.2, 120.2, 120.1, 116.4, 113.1, 86.2, 20.1, 16.4, 15.8.

ESI-MS: calculated for C₁₉H₁₇NO₄ [M+Na]⁺: 346.1049, found: 346.1050.

Transformation of 2a to $6^{[3]}$

To a 25 mL round-bottom flask, was added **2a** (56.3 mg, 0.2 mmol) and 2.0 mL dry THF. To the reaction mixture was added 1M *t*-BuOK (0.3 mL) dropwise at room temperature. After stirring for 2 hours, MeI (5.0 eq.) dissolved in 2.0 mL dry THF was added dropwise at room temperature and the mixture was stirred at temperature overnight. The reaction mixture was diluted with H₂O and extracted with EA (3 × 30 mL). The organic phase was dried with dry Na₂SO₄, concentrated in vacuum, and silica column chromatography to obtain 6 as a white solid (25.9 mg, 0.088 mmol, 46 %). Rf = 0.37 (PE/EA = 4/1). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.66 (d, *J* = 8.4 Hz, 1H), 7.89 (ddd, *J* = 8.6, 7.4, 1.4 Hz, 1H), 7.75 – 7.72 (m, 1H), 7.37 – 7.33 (m, 1H), 7.22 (s, 4H), 3.26 (s, 3H), 2.28 (s, 3H), 1.90 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 195.4, 170.3, 153.9, 139.4, 133.0, 130.3, 125.6, 125.3, 125.1, 120.8, 118.0, 94.9, 52.0, 24.3, 21.1.

HRMS (ESI-TOF): calculated for C₁₈H₁₇NO₃ [M+Na]⁺: 318.1100, found: 318.1102.

Transformation of 2a to $7^{[4]}$

To a 25 mL round bottom flask was added **2a** (0.2 mmol), 3.0 mL methanol, and 0.2 mL H₂O. Under the condition of the ice bath, 5.0 equivalent of NaBH₄ was added, and the reaction was stirred for 30 minutes. The reaction mixture was allowed to warm to room temperature. After stirring for 1 h, the mixture was diluted with CHCl₃, wash with H₂O. The organic solvent is dried with anhydrous sodium sulfate, Column chromatography with PE/EA (1/1) to obtain **7** as a white solid (42.7 mg, 0.150 mmol, 75 %). Rf = 0.29 (PE/EA = 1/2).

¹H NMR (500 MHz, DMSO-*d*₆) δ 9.46 (s, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.18 (t, *J* = 7.3 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 2H), 7.07 (d, *J* = 7.9 Hz, 2H), 7.04 – 7.00 (m, 1H), 5.69 (d, *J* = 4.7 Hz, 1H), 5.60 (d, *J* = 4.4 Hz, 1H), 4.78 (dd, *J* = 6.3, 4.5 Hz, 1H), 4.57 (d, *J* = 5.2 Hz, 1H), 2.27 (s, 3H), 2.02 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 168.2, 140.4, 136.9, 136.2, 134.6, 128.6, 128.4, 127.7, 127.3, 124.1, 123.5, 77.1, 75.1, 24.5, 21.2.

HRMS (ESI-TOF): calculated for C₁₇H₁₉NO₃ [M+Na]⁺: 308.1257, found: 308.1258.

Synthetic Transformation of 2a to 8^[5]

To a solution of imidazole (109 mg, 5.6 mmol) in DCM (2.0 mL) was added SOCl₂ (40 μ L) at 0 °C. After the reaction mixture was stirred for 5 min at 0 °C, **2a** (56.3 mg, 0.2 mmol) was added with stirring. After 1 h, the reaction mixture was diluted with H₂O and extracted with DCM (3 × 10 mL). The combined organic layers were washed with brine (10 mL) and dried over Na₂SO₄, and then concentrated under reduced pressure. A white solid product (30.1 mg, 0.091 mmol, 45 %) was obtained by silica gel column chromatography (PE/EA = 32/1). White solid (30.1 mg, 0.091 mmol, 45%). Rf = 0.57 (PE/EA = 32/1).

¹H NMR (500 MHz, Chloroform-*d*) δ 8.61 (s, 1H), 7.80 – 7.74 (m, 2H), 7.72 (s, 1H), 7.46 (d, *J* = 8.2 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 1H), 7.24 (s, 2H), 7.13 (s, 1H), 6.94 (s, 1H), 2.36 (s, 3H), 1.85 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 192.2, 169.8, 152.5, 140.9, 138.8, 137.6, 130.2, 130.1, 127.3, 125.9, 125.6, 119.4, 118.8, 118.1, 81.4, 25.1, 21.2.

ESI-MS: calculated for C₂₀H₁₇N₃O₂ [M+H]⁺: 332.1393, found: 332.1391.

6 Mechanistic study

6.1 Radical Quenching Experiment

To a 15 mL-schlenk tube charged with a stirring bar, was added **1** (0.2 mmol, 1.0 eq.), $Cu(OTf)_2$ (21.8 mg, 30 mol%), L (10.9 mg, 30 mol%), $Zn(OTf)_2$ (14.6 mg, 20 mol%), and TEMPO (31.3 mg, 1.0 eq.) or BHT (44.1 mg, 1.0 eq.) in 2.2 mL of MeCN/HFIP (10/1). The reaction was carried out under oxygen for 17 hours. Product **2** was not observed by TLC. **6.2 Reaction commenced under N₂ atmosphere**

To a 15 mL-schlenk tube charged with a stirring bar was added **1** (0.2 mmol, 1.0 eq.), $Cu(OTf)_2$ (21.8 mg, 30 mol%), **L** (10.9 mg, 30 mol%) and $Zn(OTf)_2$ (14.6 mg, 20 mol% in 2.2 mL of MeCN/HFIP (10/1). The reaction was carried out under nitrogen for 17 hours. Product **2** was not observed by TLC.

6.3 ¹⁸O labeling experiments

Q-TOF data of 2a for the reaction in the presence of ¹⁸O₂ and H₂¹⁸O.

(i) O_2 -¹⁸O labeling experiments

Reaction conditions: **1** (0.2 mmol), Cu(OTf)₂ (30 mol%), Zn(OTf)₂ (20 mol%), 6,6'- dimethyl -2,2'dipyridyl (30 mol%) in 10:1 MeCN/HFIP (2.2 mL), 60 °C under ¹⁸O₂ atmosphere (1 atm) for 17 h. Isolated yield. The percentage of ¹⁸O was determined by Q-TOF.

The Q-TOF spectra of ${}^{18}\text{O-2a}$ for the reaction under ${}^{18}\text{O}_2$ atmosphere

	ows Filters: 0	Qualify fo	r Rules Filters					%	A 📕 A 📕	/02	c 📃 🕪	C,H, 🛄 📢	C 7 E		Mor	e	• 🖬 🗟 🕽
Index	Sample Name	7 Sample T ⊽	Component 5	7 Component ⊽	Component Group Name	Actual Concentr V	Expected RT	Area 🕤	Retent V	, Retenti Time D	V V	Calculated Concentrat V	Adduct / C v	Accuracy ♥	Ion Ratio ♥	Formula 🏹	Precursor V Mass
1	SWQ-C-182	Unknown	SWQ-C-182	Quantifiers	S-182	N/A	11.04	7.476e5	11.03	0.01		<2 points	[M+Na]+	N/A	2.6048	C17H15N	304.094
2	SWQ-C-182	Unknown	SWQ-C-182018	Qualifiers	S-182	N/A	11.04	1.948e6	11.03	0.01		<2 points	[M+Na]+	N/A	2.6048	C17H15N	308.103
k A	Manual Integ	ration 🔃	A										View	×	Options	•	•
A	Manual Integ	ration 😰 🕽	A Apply	SWQ-C-182 - SWQ Area: 7.476e5. Hei)-C-182 (Unknown) aht: 1.816e5. RT: 1) 304.0844 - 304 1.03 min	\20221020\	SWQ-C-182	.wiff2), (samp	le Index: 1)	SWQ-C-1 Area: 1.9	82 - SWQ-C-1820 48e6. Height: 6.05	View 018 (Unknown) 30 8e5. RT: 11.03 mir	• 18.0929\200	Options 221020\SWQ-	✔ (C-182.wiff2),	🗨 🔽 😹 (sample Index
k 🗛	Manual Integ	ration 😰 🛛	A Apply	SWQ-C-182 - SWQ Area: 7.476e5, Hei 1.8e5 -	2-C-182 (Unknown ght: 1.816e5, RT: 1) 304.0844 - 304 1.03 min	\20221020\	SWQ-C-182	.wiff2), (sampl	le Index: 1)	SWQ-C-1 Area: 1.9	82 - SWQ-C-1820 48e6, Height: 6.05 ^{6e5} 1	View 018 (Unknown) 30 8e5, RT: 11.03 min	• 8.0929\20; n	2 Options 221020\SWQ-	✔ C-182.wiff2),	🗨 🔽 😸
Retenti Expected	Manual Integ on Time (RT) — d RT	ration 😰 [Apply min	SWQ-C-182 - SWQ Area: 7.476e5, Heir 1.8e5 - 1.6e5 -	2-C-182 (Unknown) ght: 1.816e5, RT: 1) 304.0844 - 304 1.03 min	\20221020\ 11	SWQ-C-182 034	.wiff2), (sampi	le Index: 1)	SWQ-C-1 Area: 1.9	82 - SWQ-C-1820 48e6, Height: 6.05 6e5 -	View 018 (Unknown) 30 8e5, RT: 11.03 min	8.0929\20;	0 ptions 221020\SWQ- 11.032	♥ C-182.wiff2),	🕒 🗾 🐹
Retention	Manual Integ on Time (RT) d RT Window	ration 2	A Apply min sec	SWQ-C-182 - SWQ Area: 7.476e5, Hei 1.8e5 - 1.6e5 - 1.4e5 -	2-C-182 (Unknown) ght: 1.816e5, RT: 1) 304.0844 - 304 1.03 min	\20221020\	SWQ-C-182 034	.wiff2), (sampi	le Index: 1)	SWQ-C-1 Area: 1.9	82 - SWQ-C-1820 48e6, Height: 6.05 6e5 - 5e5 -	View 018 (Unknown) 30 8e5, RT: 11.03 min		Options 221020\SWQ- 11.032	♥ C-182.wiff2),	🖻 🗾 <table-of-contents> (sample Index:</table-of-contents>
RETHALF	Manual Integ on Time (RT) d RT Window Expected RT	ration 😰 🚺 11.04 30.0 Group	Apply min sec	SWQ-C-182 - SWQ Area: 7.476e5, Hei 1.8e5 - 1.6e5 - 1.4e5 -	2-C-182 (Unknown) ght: 1.816e5, RT: 1) 304.0844 - 304 1.03 min	\20221020\	SWQ-C-182 034	.wiff2), (sampl	le Index: 1)	SWQ-C-1 Area: 1.9	82 - SWQ-C-1820 48e6, Height: 6.05 5e5 - 4e5 -	View 018 (Unknown) 30 8e5, RT: 11.03 mir	8.0929\20)	221020\SWQ- 11.032	♥ C-182.wiff2),	sample Index:
Retenti Expected RT Half V Update	Manual Integ on Time (RT) d RT Window Expected RT port Largest Peak	ration 😰 🛛 11.04 30.0 Group	Apply min sec	SWQ-C-182 - SWQ Ares: 7.47665 - 1.665 - 1.465 - 1.265 - 5	:-C-182 (Unknown) ght: 1.816e5, RT: 1) 304.0844 - 304 1.03 min	\20221020\	SWQ-C-182 034	.wiff2), (sampi	le Index: 1)	SWQ-C-1 Area: 1.9	82 - SWQ-C-1820 48e6, Height: 6.05 6e5 - 5e5 - 4e5 -	View 018 (Unknown) 30 8e5, RT: 11.03 mir	* 18.0929\20; n	Options 221020\SWQ- 11.032	▼ C-182.wiff2),	🕒 🗾 🔝 ((sample index:
Retenti Expected RT Half V Update I Rep Integra	Manual Integ on Time (RT) d RT Window Expected RT port Largest Peak tion	11.04 30.0 Group	Apply min sec	SWQ-C-182 - SWQ Area: 7.476e5, Hei 1.8e5 1.6e5 - 1.4e5 - 1.2e5 20 20 20 20 20 20 20 20 20 20 20 20 20	-C-182 (Unknown) ght 1.816e5, RT 1) 304.0844 - 304 1.03 min	\20221020\	5WQ-C-182 034	.wiff2), (sampi	le Index: 1)	SWQ-C-1 Area: 1.9	82 - SWQ-C-1820 4866, Height: 6.05 665 - 565 - 465 - 365 -	View 118 (Unknown) 30 8e5, RT: 11.03 min	₩ 8.0929\20; 1	Options 221020\SWQ- 11.032	♥ C-182.wiff2),	2 2 State
Retenti Expected RT Half V Update I Rep Integra	Manual Integ on Time (RT) d RT Window Expected RT port Largest Peak tion m Peak Width	ration 2 2	A Apply min sec	SWQ-C-182 - SWQ Area: 7.476e5, Hei 1.8e5 1.6e5 - 1.2e5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2-C-182 (Unknown ght 1.816e5, RT: 1) 304.0844 - 304 1.03 min	\20221020\ 11	SWQ-C-182 034	wiff2), (sampi	le Index: 1)	SWQ-C-1 Area: 1.9 sd> Xtisuaatul	82 - SWQ-C-1820 48e6, Height 6.05 5e5 - 4e5 - 3e5 -	View 018 (Unknown) 30 8e5, RT: 11.03 min	♥ 18.0929\200 1	Options 2221020\SWQ- 11.032	▼ C-182.wiff2),	I I I I I I I I I I I I I I I I I I I
Retenti Expected RT Half I Update I Integra Minimur Minimur	Manual Integ on Time (RI) d RT Window Expected RT oort Largest Peak tion m Peak Width m Peak Height	ration 2 2 11.04 30.0 Group 3 100.00	A Apply for a constant of the	SWQ-C-182 - SWQ Area: 7.476e5, Hei 1.8e5 - 1.4e5 - 1.2e5 - 1.2e5 - 35 25 30 40 40 40 40 40 40 40 40 40 40 40 40 40	2-C-182 (Unknown ght 1.816e5, RT: 1) 304.0844 - 304 1.03 min		5WQ-C-182	.wiff2), (sampi	le Index: 1)	SWQ-C-1 Area: 1.9	82 - SWQ-C-1820 4866, Height 6.05 5e5 - 4e5 - 3e5 - 2e5 -	View 018 (Unknown) 30 8e5, RT: 11.03 mir	♥ 8.0929\200 1	Options 221020\SWQ- 11.032	♥ (sample Index:
Retenti Expected RT Half I Update I Rep Integra Minimur S/N Inte	Manual Integ on Time (RI) d RT Window Expected RT oort Largest Peak tion m Peak Width m Peak Height gration Threshold	11.04 30.0 Group 3 100.00 3 0.0	A Apply and a set of the set of t	SWQ-C-182 - SWQ Area: 7.476e5, Hei 1.8e5 - 1.4e5 - 1.4e5 - 1.2e5 - 35 25 36 8.0e4 - 6.0e4 - 4.0e4 -	-С-182 (Unknown ght 1.816e5, RT: 1) 304.0644 - 304 1.03 min		5WQ-C-182 034	.wiff2), (sampi	le Index: 1)	SWQ-C-1 Area: 1.9	82 - SWQ-C-182C 48e6, Height: 6.05 6e5 4e5 4e5 2e5 2e5 1e5	View 218 (Unknown) 30 8e5, RT: 11.03 min	♥ 8.0929\20) 1	Options 221020\SWQ- 11.032	♥ (sample index:
Retenti Expected RT Half V Update I Rep Integra Minimur S/N Inte Gaussiar	Manual Integ on Time (RT) d RT Window Expected RT oort Largest Peak too too m Peak Width m Peak Height gration Threshold 5 Smooth Width weather	ration 2 2 11.04 30.0 Group 3 100.00 3 0.0 40.0	Apply min sec points	SWQ-C-182 - SWQ Area: 7.476e5, Hei 1.6e5 1.4e5 1.4e5 1.2e5 5 5 8.0e4 6.0e4 4.0e4 2.0e4	r-C-182 (Unknown ght 1.816e5, RT: 1) 304.0844 - 304 1.03 min	\20221020\	SWQ-C-182 034	wiff2), (sampi	le Index: 1)	SWQ-C-1 Area: 1.9	82 - SWQ-C-182C 48e6, Height 6.05 665 - 465 - 365 - 265 - 165 -	View 018 (Unknown) 30 8e5, RT: 11.03 mir	• •8.0929\200	Options 221020\SWQ- 11.032	♥ C-182.wiłł2), i	sample Index:
Retentii Ketentii Kepectee RT Half \\ Update l Rep Ref Integra Minimur S/N Inte Gaussiar Noise Pe	Manual Integ on Time (RT) — 4 RT Window Expected RT orol Largest Peak tion m Peak Height gration Threshold Stanooth Width recentage	ation 2 11.04 30.0 Group 3 100.00 3 0.0 40.00 2000	Apply min sec points ys	SWQ-C-182 - SWQ Area: 7.4765, Hel 1.665 1.665 1.465 1.465 1.265 2.064 6.064 4.064 2.064 0.060	-C-182 (Unknown ghe 1.816e5, RT: 1) 304.0844 - 304 1.03 min		SWQ-C-182 034	.wiff2), (sampl	e Index: 1)	SWQ-C-1 Area: 1.9	82 - SWQ-C-182C 8866, Height 6.05 665 465 365 265 165 - 265 - 165 - 060	View 118 (Unknown) 30 8e5, RT: 11.03 mir	• 18.0929\200 7	Options 221020\SWQ- 11.032	✓ C-182.wiff2),	:sample Index:

The Q-TOF spectra of ¹⁸O-**2a** for the reaction under ¹⁸O₂ atmosphere

[MQ4] Peak	k Review (Untitled)																
2 21	ows Filters: 0	Qualify for	Rules Filters					%		/22 🛄 🐧	c 📕 ili	С,Ң 🦷 -	r 7 =	88	Mor	e	• 🖬 😸 🗙
Index	Sample Name	7 Sample T ⊽	Component Name	Component Type	Component Group Name ⊽	Actual Concentr V	Expected RT	Area 5	7 Retent Time	Retenti Time D	7 U 7	Calculated Concentrat	Adduct , / Charge	▼ Accuracy ⊽	7 Ion Ratio ⊽	Formula 🍸	Precursor Ac Mass
▶ 1	SWQ-C-182	Unknown	SWQ-C-182	Quantifiers	S-182-O	N/A	11.04	7.476e5	11.03	0.01		<2 points	[M+Na]+	N/A	2.8354	C17H15N	304.094
2	SWQ-C-182	Unknown	SWQ-C-182-18	Qualifiers	S-182-0	N/A	11.02	2.120e6	11.03	0.01		<2 points	[M+Na]+	N/A	2.8354	C17H15N	306.099
<																	>
A A	Manual Integ	ration 🔝 👂	N.										Viev	v	Options	•	e 🖬 🗟 🗙
▼ Retent	ion Time (RT)		Apply	SWQ-C-182 - SW0	2-C-182 (Unknown)	304.0844 - 304. 03 min	\20221020\	SWQ-C-182	.wiff2), (samp	le Index: 1)	SWQ-C-1	82 - SWQ-C-182-	180-1 (Unknown	n) 306.088\20	0221020\SWQ	-C-182.wiff2),	(sample Index: 1)
Expecte	d RT	11.04	min	1.8e5 -	gin. no roes, nii ri		N.,	024			A160. 2.11	l l	5e5, Id. 11.05 III		11 022		
RT Half	Window	30.0	sec	1.6e5			11	.034				6e5 -			11.055		
Update	Expected RT	Group	•	1.4=5								5e5 -					
Re	port Largest Peak			1205													
▼ Integra	ation			ě							cbs	4e5 -					
Minimu	m Peak Width	3	points	Atise 1.0eb							nsity,	3e5 -					
Minimu	m Peak Height	100.00		5 8.0e4							Inte						
S/N Inte	egration Threshold	3		6.0e4 -								2e5 -					
Gaussia	n Smooth Width	0.0	points	4.0e4 -								1.5					
Noise P	ercentage	40.0	%	2.0e4 -								les .			-		
Baseline	Subtract Window	2.00	min	0.0e0	Marine Marine				man lines	marries_		0e0					
Peak Sp	litting	2	points		1 2 3 4 5	0 7 8	9 10 11 1	2 13 14	15 16 17	18 19		1 2	3 4 5 6	7 8 9	10 11 12 1	3 14 15 16	17 18 19
							Time, min			1000				Time	t, min		

(ii) $H_2^{18}O^{-18}O$ labeling experiments

Reaction conditions: 1 (0.2 mmol), Cu(OTf)₂ (30 mol%), Zn(OTf)₂ (20 mol%), 6,6'- dimethyl -2,2'- dipyridyl (30 mol%), and $H_2^{18}O$ (5.0 equiv) in 10:1 MeCN/HFIP (2.2 mL) with stirring at 60 °C for 17 - 24 h. Isolated yield. The percentage of ¹⁸O was determined by Q-TOF.

The Q-TOF spectra of **2a-H₂O** for the reaction in $H_2^{18}O$ (5.0 equiv) (13%)

2 21																
_	rows Filters: 0 📈	Qualify for Rules Filters					%	A 📕 A 📕	/22 📕 '	'c 📕 I	C,H,	• < 7 =	88 🗖	Mo	re	• 🗆 🖾 🗵
Index	Sample Name 🛛 San	nple T 🏾 Component	. マ Componentマ	Component Group Name	Concentr	RT Expected	Area	7 Retent ⊽ Time	Retenti Time D	v U 1	Calculated . Concentrat	7 Adduct / C 7	Accuracy ⊽	Ion Ratio 🦷	7 Formula ⊽	Precursor V Mass
▶ 1	swq-c-186-h2o16 Unk	mown SWQ-C-186	Quantifiers	S-186	N/A	11.04	1.045e8	11.03	0.01		<2 points	[M+Na]+	N/A	0.1545	C17H15N	304.094
Ĉ																
۲	20-1120															
AA	Manual Integration	n 😰 🔊										View				
														Options	•	🖻 🖬 😸 🗡
		Apply	swq-c-186-h2o16 Area: 1.045e8, Hei	- SWQ-C-186 (Unk ight: 1.149e7, RT: 1	(nown) 304.0844 1.03 min	41027\swq-c	-186-h2o16	i.wiff2), (samp	le Index: 1)	swq-c-1 Area: 1.0	86-h2o16 - SWQ i14e7, Height: 2.3	C-186-H218O (Un 87e6, RT: 11.03 mi	known) 3002 n	?\swq-c-186	i-h2o16.wiff2),	(sample Index: 1
▼ Retent Expecte RT Half Update Re Vintegra Minimu S/N Inte Gaussia Noise P	ion Time (RT) d RT Expected RT port Largest Peak attion m Peak Wighth m Peak Height egration Threshold n Smooth Width tercentage	11.04 min 30.0 sec Group ♥ sec 3 points 100.00 s 40.0 %	 wqc-c-186-12c16 Area: 1.04568, He 1.1e7 1.0e7 9.0e6 8.0e6 3.0e6 	- SWQ-C-186 (Unk	(nown) 304,084	41027\swq-c	-186-h2o14	i.wiff2), (samp	le Index: 1)	swq-c-1 Area: 1.6	86-h2o16 - SWQ 14e7, Height: 2.3 2.0e6 1.5e6 5.0e5	C-186-H218O (Un 87e6, RT: 11.03 mi	known) 3002	11.030	-h2o16.wiff2),	(sample index: 1

6.4 Trapping experiment of ¹O2

To a 15 mL-schlenk tube charged with a stirring bar was added **10** (0.2 mmol, 1.0 eq.), $Cu(OTf)_2$ (21.8 mg, 30 mol%), **L** (10.9 mg, 30 mol%) and $Zn(OTf)_2$ (14.6 mg, 20 mol% in 2.2 mL of MeCN/HFIP (10/1). The reaction was carried out under nitrogen for 17 hours. Product **11** was not observed by TLC and LC-MS.

7 X-ray crystallographic data

4a	X-Ray of 4a
CCDC number	2237535
Identification code	4a
Empirical formula	C ₂₃ H ₁₉ NO ₃
Formula weight	357.39
Temperature/K	296.89(18)
Crystal system	triclinic
Space group	P-1
a/Å	7.90540(10)
b/Å	13.1683(3)
c/Å	19.1538(4)
$\alpha/^{\circ}$	90.215(2)
β/°	96.665(2)
$\gamma^{/\circ}$	106.787(2)
Volume/Å ³	1894.59(7)
Z	4
$ ho_{calc}g/cm^3$	1.253
µ/mm ⁻¹	0.668
F(000)	752.0
Crystal size/mm ³	0.23 imes 0.2 imes 0.15
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	7.016 to 155.276
Index ranges	$-9 \le h \le 9, -16 \le k \le 16, -24 \le l \le 18$
Reflections collected	24273
Independent reflections	7566 [$R_{int} = 0.0247, R_{sigma} = 0.0256$]
Data/restraints/parameters	7566/0/491
Goodness-of-fit on F ²	1.040
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0555, wR_2 = 0.1459$
Final R indexes [all data]	$R_1 = 0.0668, wR_2 = 0.1540$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.17

2v	X-Ray of 2v
CCDC number	2237688
Empirical formula	$C_{17}H_{14}BrNO_4$
Formula weight	376.15
Temperature [K]	298.19(10)
Crystal system	monoclinic
Space group (number)	$C2/c_{(15)}$
<i>a</i> [Å]	24.4178(4)
<i>b</i> [Å]	5.70910(10)
<i>c</i> [Å]	26.1253(4)
α [°]	90
β [°]	112.314(2)
γ [°]	90
Volume [Å ³]	3369.24(11)
Ζ	8
$ ho_{ m calc} [m g cm^{-3}]$	1.483
$\mu ~[\mathrm{mm}^{-1}]$	3.381
F(000)	1328
Crystal size [mm ³]	0.25×0.24×0.2
Crystal colour	colourless
Crystal shape	block
Radiation	Cu K_{α} (λ =1.54184 Å)
2θ range [°]	7.32 to 152.54 (0.79 Å)
Index ranges	$-28 \le h \le 30, -4 \le k \le 7, -32 \le l \le 31$
Reflections collected	10924
Independent reflections	$3350, R_{\rm int} = 0.0213, R_{\rm sigma} = 0.0202$
Completeness to $\theta = 67.684^{\circ}$	99.8 %
Data / Restraints / Parameters	3350/0/182
Goodness-of-fit on F^2	1.053
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0401, wR_2 = 0.1212$
Final R indexes [all data]	$R_1 = 0.0419, wR_2 = 0.1230$
Largest peak/hole [eÅ ⁻³]	1.02/-0.76
Empirical formula	3350/0/182
Formula weight	1.053

References:

[1] Amol Milind Garkhedkar, Babasaheb Sopan Gore, Wan-Ping Hu, and Jeh-Jeng Wang.,Lewis Acid Catalyzed Atom-Economic Synthesis of C2-Substituted Indoles from o-Amido Alkynols. *Org. Lett.* **2020**, 22(9); 3531–3536.

[2] Shrikant D. Tambe, Naeem Iqbal, and Eun Jin Cho., Nickel Catalyzed trans-Carboamination across Internal Alkynes to Access Multifunctionalized Indoles. *Org. Lett.* 2020, 22(21); 8550–8554

[3] Kanako Nozawa-Kumada, Yuta Matsuzawa, Kanako Ono, Masanori Shigeno, Yoshinori Kondo, Copper-catalyzed aerobic double functionalization of benzylic C(sp³)–H bonds for the synthesis of 3-hydroxyisoindolinones. *Chem. Commun.* **2021**, 57, 8604.

[4] Chun-Sheng Chien, Atsushi Hasegawa, Tomomi Kawasaki, Masanori Sakamoto, A Novel Synthesis of 1-Acylindoxyls. *Chem. Pharm. Bull.* **1986**, 34(4); 1493 - 1496.

[5] Anna E Cholewczynski, Peyton C Williams, Joshua G Pierce, Stereocontrolled Synthesis of (±)-Melokhanine E via an Intramolecular Formal [3 + 2] Cycloaddition. *Org. Lett.* 2020, 22, 714–717.

8 NMR Spectra. ¹H NMR, ¹³C NMR and ¹⁹F NMR

1-acetyl-2-hydroxy-2-(p-tolyl)indolin-3-one (2a)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -: fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

4-(1-acetyl-2-hydroxy-3-oxoindolin-2-yl)benzaldehyde (2e)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -: f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -: fl (ppm)

1-acetyl-2-hydroxy-2-(3-methoxyphenyl)indolin-3-one (2g)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

Methyl 3-(1-acetyl-2-hydroxy-3-oxoindolin-2-yl)benzoate (2i)

1-acetyl-2-hydroxy-6-methyl-2-(p-tolyl)indolin-3-one (2k)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 fl (ppm) -10 -:

1-acetyl-5-bromo-2-hydroxy-2-(p-tolyl)indolin-3-one (2n)

1-acetyl-5-fluoro-2-hydroxy-2-(p-tolyl)indolin-3-one (20)

 $\underbrace{ \underbrace{}_{-117,\ 26}^{-117,\ 26}}_{-117,\ 30}$

No. Contraction

1-acetyl-2-hydroxy-2-(p-tolyl)-5-(trifluoromethyl)indolin-3-one (2p)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2. f1 (ppm)

1-acetyl-2-hydroxy-2-(1H-indol-5-yl)indolin-3-one (2r)

1-acetyl-2-hydroxy-2-(thiophen-3-yl)indolin-3-one (2s)

1-acetyl-2-(furan-2-yl)-2-hydroxyindolin-3-one (2t)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -: f1 (ppm)

1-heptanoyl-2-hydroxy-2-phenylindolin-3-one(2w)

4-methyl-N-(2-(2-oxo-2-(p-tolyl)acetyl)phenyl)benzamid (3a)

N-(2-(2-(4-methoxyphenyl)-2-oxoacetyl)phenyl)-4-methylbenzamide (3b)

4-methyl-N-(2-(2-oxo-2-(m-tolyl)acetyl)phenyl)benzamide (3c)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

4-methyl-N-(2-(2-oxo-2-(thiophen-3-yl)acetyl)phenyl)benzamide (3d)

N-(4-fluoro-2-(2-oxo-2-(p-tolyl)acetyl)phenyl)-4-methylbenzamide (3e)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

8 9 1 1		
	1	
		90.147101.0511.0711711711711711711

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

N-(2-(2-(4-methoxyphenyl)-2-oxoacetyl)phenyl)pivalamide (3f)

N-(5-methyl-2-(2-oxo-2-(p-tolyl)acetyl)phenyl)pivalamide (3g)

N-(2-(2-oxo-2-(p-tolyl)acetyl)pyridine-3-yl)acetamide (3h)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

2-hydroxy-2-(p-tolyl)indolin-3-one (4a)

3-hydroxy-6-methyl-3-(p-tolyl)indolin-2-one (4b)

3-hydroxy-3-(m-tolyl)indolin-2-one (4c)

3-hydroxy-3-(thiophen-3-yl)indolin-2-one (4e)

5-bromo-3-hydroxy-3-(p-tolyl)indolin-2-one (4g)

3-hydroxy-4-methyl-3-(p-tolyl)indolin-2-one (4h)

NMR Spectra of 5

NMR Spectra of 6

NMR Spectra of 7

NMR Spectra of 8

