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1. General materials and methods
1.1. Materials and instruments

All the reagents and solvents were commercially available and used as received unless other
specified purification. Dulbecco’s modified eagle medium (DMEM) was purchased from Gibco
(Thermo Fisher Scientific). Fetal bovine serum (FBS), penicillin-streptomycin and PBS were
purchased from Invitrogen (Carlsbad, CA, USA). The human normal renal epithelial cells (293T)
was purchased from Cell Resource Center (Beijing, China).

NMR date were recorded on a Bruker Advance 400/600 MHz spectrometers at room
temperature, unless otherwise noted. The chemical shifts in NMR spectra are reported in ppm
proton resonance resulting from incomplete deuteration of the NMR solvents. High-resolution
electrospray ionization (HR-ESI) mass spectral analyses were performed by the Thermo Fisher Q
Exactive™ HF/UItiMate™ 3000 RSLCnano. Fluorescence emission spectra was recorded on an
Edinburgh Instruments FLS980 time-resolved fluorescence spectrometer equipped with an
integrating sphere. Cytotoxicity studies were performed on SpectraMax ® M5 plate reader,
Molecular Devices. The muscle relaxation mouse model was recorded using the YSL-4C Rota-rod
rotor.

1.2.  Cell and animals

293T cells were cultured in DMEM supplemented with 10% FBS, 1% penicillin and 1%
streptomycin. Then cells were incubated at 37 °C under 5% CO; and 90% relative humidity, and
passaged every 2 days. KM mice with 18-22 g weight were purchased from the SPF
Biotechnology Co. Ltd and approved by Beijing Institute of Pharmacology and Toxicology. All
mice have free access to food and water throughout the experiments. All animal experiments meet
the requirements of the ethical review committee. The animal experiments were approved by the
Institutional Animal Care and Use Committee of the Center, which followed the guidelines of the
Association for Assessment and Accreditation of Laboratory Animal Care International
(AAALAC).

1.3.  Fluorescence titration®

To quantitatively assess the complexation behavior of NMBAs and WTP3, fluorescence

titrations of hosts with guests were performed at 298 K in a phosphate buffer solution of pH 7.4 by

equation 1. We considered that a guest formed a 1:1 host:guest complex with a host at an

S3



association constant (Ka), which satisfied the respective law of mass action relating to the
equilibrium concentrations of free host ([H]), free guest ([G]) and host-guest complex ([HG]). The
relationship between the total concentration of host ([H]o), guest ([G]o) and their equilibrium
concentrations were introduced by the law of mass conservation (equation 2-1 and 2-2). Here [G]o
was the initial concentration of guest as a known parameter, which was kept constant in the
titration process. Then equation 1 and 2-2 were employed to deduced equation 3. When the
fluorescence titration was performed, the intensity of fluorescence (F) corresponded to the
combined intensity of the host and the host-guest complex, which were described by molar
fractions (equation 4). Both Fre and Fg were known parameters in which Fg was the fluorescent
of [G]o and Fne was the fluorescent intensity when all guests were complexed. The equation 5
deduced by equation 2-1, 2-2, 3 and 4, explained the relationship between K, and variables [H]o in
fluorescence titration.

[H] + [6] < [HG]
[HG]

Ka = THilo) @

(6] = [6]o — [HG) (2-1)

[H] = [H]), — [HG] (2-2)

(HG) = 1A ®
_HGr, 6]

"= Tag, e e e @

(1610 = tH1o — 1) - J([G]o—[H]o—,%a) + 4[H1,[G1o )

F = Fy¢ + (Fg — Fye)

To proceed the competitive titrations, we considered competitors that could competitively
bind to host in a 1:1 stoichiometry at an association constant (K¢, equation 6). Free host (H), free
competitor (C) and host-competitor complex (HC) obeyed the respective law of mass action
referring to equilibrium concentrations. Here the total concentration of host ([H]o), competitor
(IC]o) and their equilibrium concentrations satisfied the law of mass conservation (equation 7). In
the course of titration, the fluorescence intensity (Fc) was expressed as a linear combination of

Fre and Fg, weighted by their molar fractions on the basis of equation 8. Through a 1:1 host-guest
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binding model, Fuc was the initial experimental fluorescence intensity in the absence of C.
Substituting equation 3 into equation 8 gave equation 9, with the concentration of uncomplexed
host as an unknown parameter ([H]), which was numerically solved by equation 10. Note:
equation 10 was deduced by combination equation 3, 6, 7-1 and 7-2. For fitting, the fluorescence

intensity was plotted against [C]o based on equation 9.

[H] + [G] © [HG]
_ [HC]
ke = ey ©
[H] = [H], — [HG] — [HC] (7-1)
[C] =[C]o — [HC] (7-2)
_ 6] | (6]
=TT e, ©
K,[H
Fe =Fg + (Fyg — FG)HT[[]H] )
0=A[H]® +B[H]>* + C[H] + D
A=K,K,
B=K,+K:+ KaKc([G]o + [C]o - [H]o)
C = Kc([Clo — [H]o) — Kq([H]o — [G]o) + 1
D =—[H], (10)

1.4.  Synthetic procedures of container WTP3

The first compounds TP3 were synthesized by using the method from the reference.?

Synthesis of TP3-OH. To solution of TP3 (490.00 mg, 0.45mmol) in 150.00 mL DCM and
replace argon three times. Put the flask in ice bath and dropwise boron tribromide (1.30 mL,
135.00 mmol) into reaction solution slowly. The resulting mixture was stirred under Ar for 18
hours. Add ice water to quench the reaction. The product was extracted with ethyl acetate for three
time. Combine the organic phase, and dried to afford a light yellow solid (392.85 mg, 0.43 mmol,
95% yield). The product TP3-OH was proceeded directly to the next reaction. *H NMR (400
MHz, acetone-ds) & (ppm): 7.49 (s, 12H), 7.16 (s, 6H), 6.55 (s, 6H), 3.89 (s, 6H). *C NMR (100
MHz, acetone-ds) 8 (ppm): 155.1, 154.2, 137.4, 132.8, 129.5, 121.5, 120.3, 104.2.

Synthesis of WTP3. To a mixture of TP3-OH (140.00 mg, 0.15 mmol) and pyridine sulfur
trioxide complex (716.22 mg, 4.50 mmol) was added dry pyridine (10.00 mL). The resulting

mixture was stirred at 75 <T under Ar for 12 hours. The reaction mixture was allowed to cool to
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RT and pyridine poured out. The crude solid was washed by dichloromethane and ethyl acetate for
two times. Then, adjusted to pH = 7.5 by slow addition of saturated aqueous NaHCOs;. After
addition of EtOH (30.00 mL), the crude product was collected by centrifugation 3500 rpm > 10
min. The precipitate was suspended in ethanol (30.00 mL x2), sonicated for 3 minutes, and solid
collected by centrifugation. The crude solid was redissolved in MeOH. Desalination by
centrifugation. After drying under high vacuum, WTP3 was obtained as a light yellow solid
(273.29 mg, 0.13 mmol, 82% yield). M.p. > 290 °C (decomposed). *H NMR (400 MHz, D;0) §
(ppm): 7.66 (s, 6H), 7.53 (s, 12H), 7.28 (s, 6H), 4.11 (s, 12H). 3C NMR (100 MHz, D,0 and 1%
CD30D) & (ppm): 149.0, 146.9, 136.0, 132.0, 131.0, 139.2, 115.0. HR-MS (ESI): m/z 1047.7796
(Cs7H30Na10045S12%), calculated 1047.7772; 690.8562 (Cs7H3oNagO4sS12>), calculated 690.8550;

512.3943 (Cs7H30NagO04sS12*), calculated 512.3940.

1.5.  Molecular docking model

Three-dimensional structures of these NMBAs and container WTP3 were drawn with
ChemBioDraw Ultra 14.0 software. AutoDock Tools-1.5.6 was used to generate the pdb (protein
data bank) files. The binding model of NMBAs/WTP3 were simulated with AutoDock Vina. A
grid map of dimensions 18 A x 14 A x 14 A with a grid space of 1.000 A was set. The center of

the search space was set to 0.221 A, 0.000 A and 0.000 A (x, y, ).

1.6. Invitro cytotoxicity studies

The relative cytotoxicity of WTP3 against 293T cells were assessed in vitro using CCK-8
according to the manufacture’s instruction. 293T cells were seeded into 96-well plates at a density
of 8000 cells/well in 100 i of DMEM supplemented with 10% FBS, 1% penicillin, and 1%
streptomycin and cultured for 24 h in 5% CO; at 37 <. WTP3 was dissolved in PBS and then
diluted to the required concentration. It was then added to the cell-containing wells which were
further incubated at 37 <C under 5% CO; for 48 h. Subsequently, 10 L of CCK-8 was added into
each well and incubated for another 0.5 h. The plates were then measured at 450 nm using a plate

reader. All experiments were carried out five independent times.
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1.7.  Locomotion recovery from muscle relaxation

The rotor parameter was set to 40 revolution per minute (rpm). KM mice were trained on the
Rota-rod rotor five times a day by 20 minutes for two consecutive days in advance, and each
training time was 20 minutes. The mice were chosen that would not fall from the YLS-4C within
30 s and randomly divided into three groups with 10 mice in each group. The mice could not
move on the rotor for 30 s showed that a mouse model of muscle relaxation was established
successfully according to previously reported.® We start the timer, when intravenous injection of
0.40 mg/kg of Cis is finished and end the timer when the mice could move on the rotor for 30 s
continuously. One minute after injection of Cis, the mice were administered with either PBS or
0.69 mg/kg of WTP3 and their locomotion behaviours were immediately monitored (The

administration volumes of Cis and WTP3 are both 10 mL/kg).

2. Supporting results and experimental raw data

2.1. Characterization of WTP3 and host-guest complex
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Fig. S1. 'H NMR spectrum (400 MHz, Acetone-dg, 298 K) of TP3-OH.
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Fig. S2. C NMR spectrum (400 MHz, Acetone-ds, 298 K) of TP3-OH.
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Fig. S3. 'H NMR spectrum (400 MHz, D20, 298 K) of WTP3.
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Fig. S4. C NMR spectrum (400 MHz, D,0O with 1% CD30D as interior label, 298 K) of WTP3.
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Fig. S5. ESI-MS spectra of WTP3.
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Fig. S6. (a) *H NMR spectra (400 MHz, D,0, 298K) recorded for the dilution of container WTP3
(20.0 - 0.1 mM). WTP3 itself weakly self-associated in water, which is evidenced by the upfield
chemical shift changes of the aromatic region at 7.67 — 7.70 ppm protons. (b) Plot of chemical

shift of WTP3 versus [WTP3].
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Fig. S7. 'H NMR spectrum recorded (400 MHz, D,0, 298 K) for: (a) WTP3 (5.0 mM), (b) Roc
(5.0 mM), (c) Roc/WTP3 complex (2.5 mM), and (d) a mixture of Roc/WTP3 (1.3 mM) and

excess Roc (3.3 mM).
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Fig. S8. 'H NMR spectrum recorded (400 MHz, D,0, 298 K) for: (a) WTP3 (5.0 mM), (b) Vec
(5.0 mM), (c) Vec/WTP3 complex (2.5 mM), and (d) a mixture of Vec/WTP3 (1.3 mM) and

excess Vec (3.3 mM).

(d)

Jl_A Jw«_ﬁw

(c)

A i [ R U

Q._LAMU_,“LNJJ

Jll e L

90 85 80 75 7.0 65 6.0 55 50 45 40 35 30 25 20 15 10 05 00 -05-1.0
Chemical Shift (ppm)

(b)

()

Fig. S9. 'H NMR spectrum recorded (400 MHz, D;0, 298 K) for: (a) WTP3 (5.0 mM), (b) Pan
(5.0 mM), (c) Pan/WTP3 complex (2.5 mM), and (d) a mixture of Pan/WTP3 (1.3 mM) and

excess Pan (3.3 mM).
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Fig. S10. *H NMR spectrum recorded (400 MHz, D,0, 298 K) for: (a) WTP3 (5.0 mM), (b) Gall
(5.0 mM), (c) Gal/WTP3 complex (2.5 mM), and (d) a mixture of Gal/WTP3 (1.3 mM) and

excess Gal (3.3 mM).

(d)

PR W

(b)

TR N 1

()

lll B

90 85 80 75 7.0 65 6.0 55 50 45 40 35 30 25 20 15 10 05 0.0 -05-1.0
Chemical Shift (ppm)

Fig. S11. *H NMR spectrum recorded (400 MHz, D0, 298 K) for: (a) WTP3 (5.0 mM), (b) Cis
(5.0 mM), (c) Cis/WTP3 complex (2.5 mM), and (d) a mixture of Cis/WTP3 (1.3 mM) and

excess Cis (3.3 mM).
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Fig. S12. ESI-MS spectra of Roc/WTP3.
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Fig. S13. ESI-MS spectra of Vec/WTP3.
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Fig. S14. ESI-MS spectra of Pan/WTP3.
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Fig. S15. ESI-MS spectra of Gal/WTP3.
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Fig. S16. ESI-MS spectra of Cis/WTP3.

Structural presentation of NMBA/WTP3

2.2.

Fig. S17. Molecular docking simulation of (a) Vec/WTP3, (b) Pan/WTP3, (c) Gal/WTP3 and (d)

Cis/WTP3 complexes in aqueous solution.
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2.3. Job’s plot analysis for complexation of Rho123 with WTP3
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Fig. S18. Job’s plot for WTP3 with Rho123 in 10 mM PBS buffer at pH 7.4 (Aex = 329 nm, Aem =

526 nm, [WTP3] + [Rho123]) = 1.0 uM).

2.4. Binding affinities between container WTP3 and different NMBAS guests
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Fig. S19. (a) Competitive fluorescence titration of Vec in presence of Rho123@WTP3. (b) The
associated titration curve. Competitive fluorescence titration of Vec in presence of
Rho123@WTP3 (1.0/1.0 uM) in PBS buffer (10 mM, pH = 7.4) and Aex = 329 nm. The associated
titration curve at Aem = 526 nm and fit according a 1:1 competitive binding model. All date are

from n = 3 independent experiments and are presented as mean + SD.
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Fig. S20. (a) Competitive fluorescence titration of Pan in presence of Rho123@WTP3. (b) The
associated titration curve. Competitive fluorescence titration of Pan in presence of
Rho123@WTP3 (1.0/1.0 uM) in PBS buffer (10 mM, pH = 7.4) and Aex = 329 nm. The associated
titration curve at Aem = 526 nm and fit according a 1:1 competitive binding model. All date are

from n = 3 independent experiments and are presented as mean + SD.
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Fig. S21. (a) Competitive fluorescence titration of Gal in presence of Rho123@WTP3. (b) The
associated titration curve. Competitive fluorescence titration of Pan, Gal in presence of
Rho123@WTP3 (1.0/1.0 uM) in PBS buffer (10 mM, pH = 7.4) and Aex = 329 nm. The associated
titration curve at Aem = 526 nm and fit according a 1:1 competitive binding model. All date are

from n = 3 independent experiments and are presented as mean + SD.
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Fig. S22. (a) Competitive fluorescence titration of Cis in presence of Rho123@WTP3. (b) The

associated

titration curve.

Competitive fluorescence titration of Cis

in presence of

Rho123@WTP3 (1.0/1.0 uM) in PBS buffer (10 mM, pH = 7.4) and Aex = 329 nm. The associated

titration curve at Aem = 530 nm and fit according a 1:1 competitive binding model. All date are

from n = 3 independent experiments and are presented as mean £SD.

2.5.

important species

The fluorescence responses of Rhol23/WTP3 towards Cis and some biologically

1.5
1.04
=
>
= 0.5-
0.0-
¥ @Q\\o ¥ 9\0 & &ov:\\o &P+
\60 C}\ Q \(" )
) Ll (‘\q,Q
00 \
v (<)

Fig. S23. Fluorescence responses of Rho123 (1.00 uM)/WTP3 (1.00 uM) at 525 nm (Aex = 500

nm) upon addition of Cis and various biological co-existing species (20 uM) in PBS buffer. Data

were from n = 3 independent experiments and are presented as mean £SD.
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