Supporting Information

1. General Information	S 2
2. Preparation of Alkyl Chlorides	S 2
3. General Procedure for Nickel-Catalyzed Sulfonylation	S 3
4. Summary of the effects of reaction parameters and conditions on the reaction efficiency	S 4
5. Control Experiments	S 9
6. Scale up reaction	S 11
7. Analytical Data of Substrates and Products	S12
8. NMR Spectra of Substrates and Products	S32
9. References	S99

General Information

Unless otherwise noted, all chemicals used in the preparations of starting materials and in the nickelcatalyzed sulfonylation were commercially available and were used as received without further purifications. All catalytic reactions were carried out under nitrogen in reaction tubes. Column chromatography purifications were carried out using 200-300 mesh silica gel. The eluents for column chromatography and PTLC were presented as ratios of solvent volumes. Nuclear Magnetic Resonance spectra were recorded on a Bruker 400 MHz (100 MHz and 376 MHz for ¹³C and ¹⁹F, respectively) instruments at ambient temperature. All ¹H NMR spectra were measured in part per million (ppm) relative to the signals of tetramethylsilane (TMS, 0.00 ppm) added into the deuterated chloroform (CDCl₃, 7.26 ppm) unless otherwise stated. Data for ¹H NMR were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet,quint = quintet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, and br = broad signal), coupling constants, and integration. All ¹³C NMR spectra were reported in ppm relative to tetramethylsilane (0.00 ppm) unless otherwise stated, and were obtained with complete ¹H decoupling. All GC analyses were performed on a Shimadzu GC-2014C with an FID detector. All GC-MS analyses were performed on a Shimadzu GCMS-QP2020NX. High-resolution mass spectra (HRMS) by electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI) method were performed at the EPFL ISIC Mass Spectroscopy Service.

Preparation of Alkyl Chlorides

Substrates $1g^{[1]}$, $1o^{[2]}$, $1p^{[2]}$, $1r^{[2]}$ and $1s^{[2]}$ were synthesized via known method. $1l^{[2]}$, $1q^{[2]}$, $1t^{[2]}$, $1h^{[3]}$ and $1u - 1w^{[3]}$ were prepared by methods described in the references.

Preparation of Alkyl Chlorides 1i-1k, 1m and 1n

A flame-dried flask was charged with benzyl chloride (5.0 mmol), 3-Chloro-1-propanol (0.52 g, 5.5 mmol, 1.1 equiv.), and DMF (10 mL) under nitrogen protection. NaH (241 mg (60 % dispersion in mineral oil), 10 mmol, 2 equiv.) was added in batches at 0 °C, and the mixture was stirred for 2 hours. Then the mixture was allowed to warm to room temperature, and stirred for 4h after being added with NaH (0.5 mmol). The mixture was then quenched with ice water and extracted with ethyl acetate (3 x 25 mL). The combined organic phase was washed with water, and brine and dried with anhydrous Na₂SO₄, concentrated in vacuum. Purification by column chromatography affords desired product.

General Procedure for Nickel-Catalyzed Sulfonylation

An oven-dried 15 mL re-sealable screw-cap test tube equipped with a Teflon-coated magnetic stir bar was sequentially charged with phenylboronic acids **2** (1.2 equiv.), $K_2S_2O_5$ (1.1 equiv.), Na_2CO_3 (0.5 equiv.), $NiCl_2$ ·dme (10 mol%), 1,10-phenanthroline (15 mol%) in the glovebox. Then 1.5 mL DMF and 0.5 mL THF, alkyl chlorides **1** (0.2 mmol) were added into the tube in turn. All these procedures were conducted in the glovebox. The vial was sealed with a screw cap and removed from the glove box. Then the vial was placed on a heating base and irradiated at 120 °C for 12 h. After that, the vial was removed from the heating source and cooled to room temperature. The crude reaction mixture was then diluted with water (20 mL) and subsequently extracted with ethyl acetate (EA, 3 x 10 mL). The organic fractions were combined, washed with brine (1 x 10 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product residue was purified by flash column chromatography using a solvent mixture (EA, petroleum ether) as an eluent to afford the purified product.

Summary of the effects of reaction parameters and conditions on the reaction efficiency

Table S1. Screening of Solvents

L C C	+ K ₂ S ₂ O ₅ + B(OH) ₂ 2a	NiCl ₂ ·dme, phen Na ₂ CO ₃ , solvent 120 °C, 12 h	$P_{S} O P_{S} P_{h}$ $O + S_{S} O P_{h}$ $S O P_{h}$ $S O P_{h}$
Entry	Solvent	3a Yield (%) ^a	5 Yield (%) ^a
1	DMF 2 mL	75	9
2	DMA 2 mL	45	4
3	DMSO 2 mL	20	N.D.
4	NMP 2 mL	73	8
5	MeCN 2 mL	33	Trace
6	DCE 2 mL	Trace	N.D.
7	DMF/THF 1.5/0.5 mL	81	12
8	DMF/dioxane 1.5/0.5 mL	79	9

Reaction conditions: **1a** (0.2 mmol), K₂S₂O₅ (1.1 eq.), **2a** (1.5 eq.), NiCl₂·dme (10 mol%), 1,10-phenanthroline (15 mol%), Na₂CO₃ (2 eq.) and solvent, 12 h, 120 °C. [a] The yields were detected by GC using naphthalene as an internal standard.

Table S2. Screening of Temperatures

CI 1a	+ K ₂ S ₂ O ₅ + B(OH) ₂ 2a	NiCl₂·dme, phen Na₂CO₃, DMF/THF 120 ºC, 12 h		P Ph 3a PO Ph Ph 5
Entry	T / °C	3a Yie	eld (%) ^a	5 Yield (%) ^a
1	100	2	10	5
2	110	5	56	7
3	120	7	78	9

Reaction conditions: **1a** (0.2 mmol), K₂S₂O₅ (1.1 eq.), **2a** (1.5 eq.), NiCl₂·dme (10 mol%), 1,10-phenanthroline (15 mol%), Na₂CO₃ (2 eq.) and DMF/THF (1.5/0.5 mL), 12 h, T. [a] The yields were detected by GC using naphthalene as an internal standard.

1a	$CI + K_2S_2O_5 + B(OH)_2$ 2a	catalyst, phen Na ₂ CO ₃ , DMF/THF 120 °C, 12 h	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$
Entry	Catalyst	3a Yield (%) ^a	5 Yield (%) ^a
1	NiCl ₂	82	11
2	NiCl ₂ ·dme	84	11
3	NiBr ₂	63	7
4	NiBr ₂ ·dme	30	N.D.
5	NiI ₂	35	N.D.
6	Ni(acac) ₂	14	2
7	Co(OAc) ₂	33	3
8	CoBr ₂	59	2
9	Cu(OAc) ₂	28	3
10	CuBr ₂	7	trace
8	FeBr ₃	36	trace

Table S3. Screening of Transition Mental Catalysts

Reaction conditions: **1a** (0.2 mmol), K₂S₂O₅ (1.1 eq.), **2a** (1.5 eq.), catalyst (10 mol%), 1,10-phenanthroline (15 mol%), Na₂CO₃ (2 eq.) and DMF/THF (1.5/0.5 mL), 12 h, 120 °C. [a] The yields were detected by GC using naphthalene as an internal standard.

Reaction conditions: **1a** (0.2 mmol), $K_2S_2O_5$ (1.1 eq.), **2a** (1.5 eq.), NiCl₂·dme (10 mol%), ligand (15 mol%), Na₂CO₃ (2 eq.) and DMF/THF (1.5 mL/0.5 mL), 12 h, 120 °C. [a] The yields were detected by GC using naphthalene as an internal standard.

la la	CI + $K_2S_2O_5$ + $B(OH)_2$ 2a	NiCl₂ [.] dme, phen Na₂CO₃, DMF/THF 120 ºC, 12 h	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
Entry	The amount of K ₂ S ₂ O ₅	3a Yield (%) ^a 5 Yield (%) ^a
1	1 eq.	66	7
2	1.1 eq.	80	10
3	1.2 eq.	78	9
4	1.5 eq.	79	7

T 11	0.5	a	•	<u> </u>		• 1	1 .	0	T7 .	α	\sim
Inhla	5	Voraa	nina	ot	Hai	11370	ant	ot.	Ka	5-1	- ۱
Table	0.0.	SUICC	anne.	UI -	Ľuu	livai	ICIII.	OI.	18/2	523	<u>ں ہ</u>
										- 4	

Reaction conditions: **1a** (0.2 mmol), K₂S₂O₅, **2a** (1.5 eq.), NiCl₂·dme (10 mol%), 1,10-phenanthroline (15 mol%), Na₂CO₃ (2 eq.) and DMF/THF (1.5/0.5 mL), 12 h, 120 °C. [a] The yields were detected by GC using naphthalene as an internal standard.

Table S6. Sci	reening o	f Equiva	lent of 2a
---------------	-----------	----------	-------------------

1a	$CI + K_2S_2O_5 + CI + CI + K_2S_2O_5 + CI + C$	NiCl₂·dme, phen Na₂CO₃, DMF/THF 120 °C, 12 h		Ph + ^{3a}
Entry	The amount of 2a	3 a Y	field (%) ^a	5 Yield (%) ^a
1	1 eq.		75	8
2	1.2 eq.		80	10
3	1.5 eq.		83	10

Reaction conditions: **1a** (0.2 mmol), K₂S₂O₅, **2a** (1.5 eq.), NiCl₂·dme (10 mol%), 1,10-phenanthroline (15 mol%), Na₂CO₃ (2 eq.) and DMF/THF (1.5/0.5 mL), 12 h, 120 °C. [a] The yields were detected by GC using naphthalene as an internal standard.

Cl 1a	K ₂ S ₂ O ₅ B(OH) ₂ 2a	NiCl ₂ ·dme, phen Na ₂ CO ₃ , DMF/THF 120 °C, 12 h	$ \begin{array}{c} $
Entry	Base	3a Yield	(%) ^a 5 Yield (%) ^a
1	Na ₂ CO ₃	81	6
2	K ₂ CO ₃	78	9
3	Cs_2CO_3	66	8
4	KF	66	5
5	KI	46	Trace
6	NaI	46	Trace
7	'BuOLi	39	2
8	'BuONa	4	n.d.
9	^t BuOK	17	Trace

Table S7. Screening of Bases

Reaction conditions: **1a** (0.2 mmol), K₂S₂O₅, **2a** (1.5 eq.), NiCl₂·dme (10 mol%), 1,10-phenanthroline (15 mol%), base (2 eq.) and DMF/THF (1.5/0.5 mL), 12 h, 120 °C. [a] The yields were detected by GC using naphthalene as an internal standard.

la la	$K_1^{(1)} + K_2 S_2 O_5 + 1 $ 2a b $(OH)_2 = \frac{N_1^2}{N_2}$	$iCl_2 \cdot dme, phen$ $_2CO_3, DMF/THF$ $120 \ ^{\circ}C, 12 \ h$	Ph 3a -+ O Ph
Entry	The amount of Na ₂ CO ₃	3a Yield (%) ^a	5 Yield (%) ^a
1	2 equiv	81	9
2	1.5 equiv	79	10
3	1 equiv	80	8
4	0.5 equiv	84(82 ^b)	7

Table S8. Screening of Equivalent of Na₂CO₃

Reaction conditions: **1a** (0.2 mmol), K₂S₂O₅, **2a** (1.5 eq.), NiCl₂·dme (10 mol%), 1,10-phenanthroline (15 mol%), Na₂CO₃ and DMF/THF (1.5/0.5 mL), 12 h, 120 °C. [a] The yields were detected by GC using naphthalene as an internal standard. [b] Isolated yield.

Table S9. Screening of Reaction Conditions

lia	CI + $K_2S_2O_5$ + $K_2S_2O_5$ + R_2	$\frac{Cl_2 \cdot dme, phen}{Na_2CO_3, DMF}$	P Ph 3a + O Ph Ph 5
Entry	Deviation from standard condition	as 3a Yield (%) ^a	5 Yield (%) ^a
1	None	80	9
2	No [Ni]	8	2
3	No 1,10-phenanthroline	36	4
4	No Na ₂ CO ₃	69	5

The standard reaction conditions: **1a** (0.2 mmol), K₂S₂O₅ (1.1 eq.), **2a** (1.5 eq.), NiCl₂·dme (10 mol%), 1,10-phenanthroline (15 mol%), Na₂CO₃ (2 eq.) and DMF (2 mL), 12 h, 120 °C. [a] The yields were detected by GC using naphthalene as an internal standard.

Control Experiments

Figure S1. Control Experiments

1) Reaction of radical clock

2) Pre-synthesis of intermediate A

3) Aryl sulfinate intermediate trapping experiment

4) Alkylation of sodium benzenesulfite

Equation 1 followed the General Procedure using 6-Chloro-1-hexene (0.2 mmol) and **2a** (1.2 equiv.) as the substrate. After purification, the isolated yield of **3ap** was 55%.

(hex-5-en-1-ylsulfonyl)benzene^[4] (3ap). ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.89 (m, 2H), 7.68 – 7.64 (m, 1H), 7.59 – 7.55 (m, 2H), 5.76 – 5.66 (m, 1H), 4.99 – 4.92 (m, 2H), 3.11 – 3.07 (m, 2H), 2.06 – 2.00 (m,

2H), 1.77 – 1.69 (m, 2H), 1.50 – 1.42 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 139.2, 137.5, 133.7, 129.3, 128.1, 115.4, 56.1, 33.0, 27.4, 22.1.

Equation 2 followed the General Procedure using (chloromethyl)cyclopropane (0.2 mmol) and **2a** (1.2 equiv.) as the substrate. After purification, the isolated yield of **3aq** was 55%.

((cyclopropylmethyl)sulfonyl)benzene^[5] (3aq). ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.92 (m, 2H), 7.67 – 7.63 (m, 1H), 7.58 – 7.54 (m, 2H), 3.01 (d, J = 7.2 Hz, 2H), 1.04 – 0.94 (m, 1H), 0.57 – 0.52 (m, 2H), 0.13 – 0.09 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 139.3, 133.7, 129.1, 128.4, 61.4, 4.8, 4.4.

The pre-synthesis of nickel catalyst $6^{[6]}$:

Add phenanthroline (1 mmol), Ni (cod)₂ (1 mmol) and THF (10 mL) to a 50 mL scintillation vial. After stirring the reaction mixture at room temperature for 5 min, add PhBr (1.2 equiv.) and reaction overnight. Concentrate under reduce pressure. Wash the solid several times with dry *n*-pentane and then dry under vacuum for 2 hours to obtain product in 68% yield.

The detection of sulfinate **8**^[7]:

To a 50 mL Schlenk tube containing phenylboronic acid (**2a**) (0.2 mmol), of NiCl₂·dme (10 mol%), Na₂CO₃ (1 equiv), phen (15 mol%), K₂S₂O₅ (0.7 equiv), and the tube was purged with N₂ for 3 times, followed by 2 mL of DMF. The resulting mixture was stirred at 120 °C for 16 h. After cooling to room temperature, add ethanol and stir for a while, the mixture was filtered over Celite. The solvent was removed under reduced pressure. Then the remaining solid was extracted and recrystallized by MeCN to get a white solid. ¹H NMR (400 MHz, DMSO-d6) δ 7.45 (d, J = 7.3 Hz, 2H), 7.28 (t, J = 7.3 Hz, 2H), 7.21 (t, J = 7.2 Hz, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ 160.1, 128.3, 128.2, 124.7.

Equation 6 followed the General Procedure using sodium benzenesulfonate instead of $K_2S_2O_5$ and **2a** to afford sulfone **3a**. **Equation 7** followed the General Procedure using sodium benzenesulfonate instead of $K_2S_2O_5$ and **2a** to afford sulfone **3a** under metal-free conditions.

3-phenylpropyl benzenesulfinate (5): ¹**H NMR** (400 MHz, CDCl₃) δ 7.73 – 7.70 (m, 2H), 7.56 – 7.52 (m, 3H), 7.28 – 7.24 (m, 2H), 7.20 – 7.17 (m, 1H), 7.14 – 7.12 (m, 2H), 4.06 (dt, J = 10.0, 6.3 Hz, 1H), 3.64 (dt, J = 10.0, 6.3 Hz, 1H), 2.69 – 2.65 (m, 2H), 1.98 – 1.91 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 144.5, 140.9, 132.2, 129.1, 128.4, 128.4, 126.0, 125.2, 64.0, 31.9, 31.3.

HRMS (ESI/QTOF) m/z: $[M + H]^+$ Calcd for $C_{15}H_{16}O_2SH^+$ 261.0944; Found 261.0949.

Scale up reaction

An oven-dried 50 mL re-sealable screw-cap test tube equipped with a Teflon-coated magnetic stir bar was sequentially charged with **2a** (1.46 g, 12 mmol, 1.2 equiv.), $K_2S_2O_5$ (2.44 g, 11 mmol, 1.1 equiv.), Na_2CO_3 (5.3 g, 5 eq, 0.5 equiv.), $NiCl_2 \cdot dme$ (220 mg, 1 mmol, 10 mol%), 1,10-phenanthroline (252 mg, 1.45 mmol, 15 mol%) under N_2 atmosphere (glovebox). Then 15 mL DMF and 5 mL THF, **1a** (1.54 g, 10 mmol) were added into the tube via syringes in turn. The tube was capped with a pressure screw cap. Then the tube was placed on a heating base and irradiated at 120 °C for 12 h. After which time the tube was removed from the heating source. The crude reaction mixture was then diluted with water, and subsequently extracted with EtOAc (3 x 30 mL). The organic fractions were combined, washed with brine (1 x 30 mL), dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. The crude product residue was purified by flash column chromatography (silica gel; petroleum ether/ethyl acetate), giving the corresponding products **3a** (1.64 g) in 64% yield.

Analytical Data of Substrates and Products

((3-phenylpropyl)sulfonyl)benzene^[8] (3a): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 82% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 – 7.86 (m, 2H), 7.67 – 7.62 (m, 1H), 7.57 – 7.53 (m, 2H), 7.28 – 7.24 (m, 2H), 7.21 – 7.17 (m, 1H), 7.10 – 7.08 (m, 2H), 3.09 – 3.05 (m, 2H), 2.69 (t, J = 7.4 Hz, 2H), 2.08 – 2.00 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 139.9, 139.1, 133.7, 129.3, 128.7, 128.4, 128.1, 126.5, 55.5, 34.1, 24.2.

(butylsulfonyl)benzene^[9] (3b): The product was purified by silica gel column chromatography, using petroleum ether/EA = 20/1 (v/v) as an eluent. Colorless liquid in 75% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 – 7.90 (m, 2H), 7.68 – 7.64 (m, 1H), 7.60 – 7.55 (m, 2H), 3.11 – 3.07 (m, 2H), 1.73 – 1.65 (m, 2H), 1.44 – 1.34 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 139.3, 133.7, 129.4, 128.1, 56.2, 24.7, 21.6, 13.6.

(decylsulfonyl)benzene^[8] (3c): The product was purified by silica gel column chromatography, using petroleum ether/EA = 20/1 (v/v) as an eluent. Colorless liquid in 68% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 – 7.90 (m, 2H), 7.67 – 7.64 (m, 1H), 7.59 – 7.55 (m, 2H), 3.10 – 3.06 (m, 2H), 1.74 – 1.66 (m, 2H), 1.36 – 1.22 (m, 14H), 0.87 (t, J = 6.8 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 139.2, 133.6, 129.3, 128.1, 56.3, 31.9, 29.4, 29.2, 29.0, 28.3, 22.7 (d, J = 2.7 Hz), 14.1.

5-(phenylsulfonyl)pentanenitrile^[10] (**3d**): The product was purified by silica gel column chromatography, using petroleum ether/EA = 20/1 (v/v) as an eluent. Colorless liquid in 72% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 – 7.88 (m, 2H), 7.69 – 7.64 (m, 1H), 7.60 – 7.55 (m, 2H), 3.14 – 3.10 (m, 2H), 2.39 – 2.34 (m, 2H), 1.90 –1.76 (m, 4H). ¹³**C NMR** (101 MHz, CDCl₃) δ 138.7, 134.0, 129.5, 128.0, 118.9, 55.2, 24.1, 22.0, 16.9.

methyl-4-(phenylsulfonyl)butanoate^[8] (**3e**): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. Colorless liquid in 74% yield. **¹H NMR** (400 MHz, CDCl₃) δ 7.96 – 7.93 (m, 2H), 7.72 – 7.67 (m, 1H), 7.62 – 7.58 (m, 2H), 3.68 (s, 3H), 3.23 – 3.19 (m, 2H), 2.49 (t, J = 7.1 Hz, 2H), 2.09 – 2.02 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 138.9, 133.9, 129.4, 128.1, 55.1, 51.8, 32.0, 18.3.

((3-phenoxypropyl)sulfonyl)benzene (3f): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. Colorless liquid in 73% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.66 (m, 2H), 7.54 – 7.48 (m, 3H), 7.26 – 7.21 (m, 2H), 7.17 – 7.09 (m, 3H), 4.04 (dt, J = 9.9, 6.3 Hz, 1H), 3.61 (dt, J = 9.9, 6.3 Hz, 1H), 2.69 – 2.58 (m, 2H), 1.96 – 1.89 (m, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 144.7, 141.0, 132.2, 129.1, 128.5, 126.1, 125.3, 63.9, 31.9, 31.4. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₆O₃SNa⁺ 299.0712; Found 299.0713.

3-(phenylsulfonyl)propyl benzoate^[11] (**3g**): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 77% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 – 7.92 (m, 4H), 7.68 – 7.64 (m, 1H), 7.59 – 7.54 (m, 3H), 7.45 – 7.41 (m, 2H), 4.37 (t, J = 6.2 Hz, 2H), 3.29 – 3.25 (m, 2H), 2.24 – 2.17 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 166.2, 138.8, 134.0, 133.3, 129.7, 129.6, 129.5, 128.5, 128.1, 62.5, 53.3, 22.6.

benzyl-3-(phenylsulfonyl)propanoate^[12] (**3h**): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 61% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 – 7.88 (m, 2H), 7.68 – 7.63 (m, 1H), 7.55 (t, J = 7.7 Hz, 2H), 7.38 – 7.29 (m, 5H), 5.06 (s, 2H), 3.46 – 3.42 (m, 2H), 2.80 – 2.77 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 169.9, 138.4, 135.2, 134.1, 129.5, 128.7, 128.6, 128.4, 128.2, 67.2, 51.5, 27.9.

1-fluoro-4-((3-(phenylsulfonyl)propoxy)methyl)benzene (3i): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.89 (m, 2H), 7.67 – 7.63 (m, 1H), 7.58 – 7.54 (m, 2H), 7.26 – 7.21 (m, 2H), 7.04 – 6.99 (m, 2H), 4.39 (s, 2H), 3.51 (t, J = 5.9 Hz, 2H), 3.23 – 3.20 (m, 2H), 2.04 – 1.98 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.4 (d, J = 245.8 Hz),139.1 133.8, 133.7 (d, J = 3.2 Hz), 129.4 (d, J = 8.1 Hz), 129.3, 128.1, 115.3 (d, J = 21.4 Hz), 72.3, 67.8, 53.5, 23.4. ¹⁹F NMR (377 MHz, CDCl₃) δ -114.43. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₆H₁₇FO₃SNa⁺ 331.0775; Found 331.0769.

1-chloro-4-((3-(phenylsulfonyl)propoxy)methyl)benzene (3j): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.89 (m, 2H), 7.68 – 7.64 (m, 1H), 7.58 – 7.54 (m, 2H), 7.31 – 7.27 (m, 2H), 7.21 – 7.18 (m, 2H), 4.40 (s, 2H), 3.51 (t, J = 6.0 Hz, 2H), 3.24 – 3.20 (m, 2H), 2.05 – 1.98 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 139.1, 136.4, 133.8, 133.5, 129.3, 129.0, 128.6, 128.1, 72.2, 67.9, 53.5, 23.4. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₆H₁₇ClO₃SNa⁺ 347.0479; Found 347.0479.

1-bromo-4-((3-(phenylsulfonyl)propoxy)methyl)benzene (3k): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 58% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.88 (m, 2H), 7.67 – 7.63 (m, 1H), 7.58 – 7.54 (m, 2H), 7.46 – 7.42 (m, 2H), 7.15 – 7.11 (m, 2H), 4.37 (s, 2H), 3.50 (t, J = 6.0 Hz, 2H), 3.23 – 3.19 (m, 2H), 2.04 – 1.97 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 139.1, 137.0, 133.8, 131.6, 129.4, 129.3, 128.1, 121.6, 72.2, 67.9, 53.5, 23.4. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₆H₁₇BrO₃SNa⁺ 390.9974; Found 390.9976.

1-iodo-4-(3-(phenylsulfonyl)propoxy)benzene (3l): The product was purified by silica gel column chromatography, using petroleum ether/EA = 8/1 (v/v) as an eluent. White solid in 44% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 – 7.91 (m, 2H), 7.68 – 7.64 (m, 1H), 7.59 – 7.54 (m, 1H), 7.53 – 7.49 (m, 2H), 6.61 – 6.57 (m, 2H), 3.99 – 3.96 (m, 2H), 3.31 – 3.27 (m, 2H), 2.24 – 2.17 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 158.2, 139.0, 138.3, 133.9, 129.4, 128.0, 116.8, 83.3, 65.5, 53.2, 22.9. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₅IO₃SH⁺ 402.9859; Found 402.9858.

1-((3-(phenylsulfonyl)propoxy)methyl)-4-(trifluoromethyl)benzene (3m): The product was purified by silica gel column chromatography, using petroleum ether/EA = 8/1 (v/v) as an eluent. White solid in 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.89 (m, 2H), 7.68 – 7.63 (m, 1H), 7.59 – 7.54 (m, 4H), 7.37 (d, J = 7.9 Hz, 2H), 4.49 (s, 2H), 3.55 (t, J = 6.0 Hz, 2H), 3.25 – 3.22 (m, 2H), 2.08 – 2.01 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 139.1, 133.8, 129.9 (d, J = 32.2 Hz), 129.4, 128.1, 127.5, 125.4 (q, J = 3.8 Hz)., 72.2, 68.1, 53.4, 23.3. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.36.

HRMS (ESI/QTOF) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{17}F_3O_3SNa^+$ 381.0743; Found 381.0733.

4-((3-(phenylsulfonyl)propoxy)methyl)benzonitrile (3n): The product was purified by silica gel column chromatography, using petroleum ether/EA = 4/1 (v/v) as an eluent. White solid in 47% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.89 (m, 2H), 7.68 – 7.55 (m, 5H), 7.37 (d, J = 8.0 Hz, 2H), 4.52 (s, 2H), 3.56 (t, J = 5.9 Hz, 2H), 3.25 – 3.21 (m, 2H), 2.08 – 2.01 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 139.0, 133.8, 132.3, 129.4, 128.0, 127.7, 118.8, 111.4, 72.0, 68.3, 53.4, 23.3. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₇H₁₇NO₃SNa⁺ 338.0821; Found 338.0830.

3-(phenylsulfonyl)propyl thiophene-2-carboxylate (30): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White oil in 42% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 – 7.92 (m, 2H), 7.76 (dd, J = 3.8, 1.3 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.60 – 7.56 (m, 3H), 7.11 – 7.09 (m, 1H), 4.35 (t, J = 6.2 Hz, 2H), 3.27 – 3.23 (m, 2H), 2.22 – 2.15 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 161.9, 138.8, 134.0, 133.8, 133.1, 132.9, 129.5, 128.1, 127.9, 62.7, 53.2, 22.7. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₄H₁₄O₄S₂Na⁺ 333.0226; Found 333.0223.

3-(phenylsulfonyl)propyl furan-2-carboxylate (3p): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White oil in 56% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 – 7.90 (m, 2H), 7.68 – 7.64 (m, 1H), 7.59 – 7.55 (m, 3H), 7.15 (dd, J = 3.5, 0.8 Hz, 1H), 6.50 (dd, J = 3.5, 1.8 Hz, 1H), 4.35 (t, J = 6.2 Hz, 2H), 3.26 – 3.22 (m, 2H), 2.21 – 2.14 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 158.3, 146.6, 144.1, 138.8, 134.0, 129.5, 128.1, 118.4, 112.0, 62.4, 53.1, 22.6.

HRMS (ESI/QTOF) m/z: $[M + H]^+$ Calcd for $C_{14}H_{14}O_5SH^+$ 295.0635; Found 295.0628.

1-(3-(phenylsulfonyl)propyl)-1H-benzo[d][1,2,3]triazole (3q): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 42% yield. **¹H NMR** (400 MHz, CDCl₃) δ 7.90 – 7.87 (m, 2H), 7.84 – 7.80 (m, 2H), 7.66 – 7.62 (m, 1H), 7.56 – 7.52 (m, 2H), 7.41 – 7.36 (m, 2H), 4.84 (t, J = 6.5 Hz, 2H), 3.22 – 3.18 (m, 2H), 2.58 – 2.51 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 144.4, 138.7, 134.0, 129.4, 128.1, 126.6, 118.0, 54.5, 53.3, 23.4. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₅N₃O₂SH⁺ 302.0958; Found 302.0958.

5-(3-(phenylsulfonyl)propoxy)benzo[d][1,3]dioxole (3r): The product was purified by silica gel column chromatography, using petroleum ether/EA = 8/1 (v/v) as an eluent. White solid in 64% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 – 7.92 (m, 2H), 7.68 – 7.64 (m, 1H), 7.59 – 7.55 (m, 2H), 6.66 (d, J = 8.5 Hz, 1H), 6.40 (d, J = 2.5 Hz, 1H), 6.23 (dd, J = 8.5, 2.5 Hz, 1H), 5.89 (s, 2H), 3.93 (t, J = 5.8 Hz, 2H), 3.31 – 3.28 (m, 2H), 2.21 – 2.14 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 153.8, 148.3, 142.0, 139.0, 133.8,

129.4, 128.1, 108.0, 105.7, 101.2, 98.1, 66.4, 53.3, 23.0.

HRMS (ESI/QTOF) m/z: $[M + Na]^+$ Calcd for $C_{16}H_{16}O_5SNa^+$ 343.0611; Found 343.0618.

1-(3-(phenylsulfonyl)propyl)-1H-indole (3s): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 66% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 – 7.83 (m, 2H), 7.65 – 7.60 (m, 2H), 7.54 – 7.50 (m, 2H), 7.29 – 7.25 (m, 1H), 7.20 – 7.16 (m, 1H), 7.12 – 7.05 (m, 2H), 6.49 (d, J = 3.1 Hz, 1H), 4.29 (t, J = 6.7 Hz, 2H), 3.00 – 2.96 (m, 2H), 2.32 – 2.25 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 138.9, 135.8, 133.9, 129.4, 128.7, 128.0, 127.7, 121.9, 121.2, 119.7, 109.2, 102.0, 53.0, 44.3, 23.6.

HRMS (ESI/QTOF) m/z: $[M + H]^+$ Calcd for $C_{17}H_{17}NO_2SH^+$ 300.1053; Found 300.1058.

(3-(phenylsulfonyl)propyl)(p-tolyl)sulfane (3t): The product was purified by silica gel column chromatography, using petroleum ether/EA = 15/1 (v/v) as an eluent. White solid in 53% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 – 7.86 (m, 2H), 7.68 – 7.63 (m, 1H), 7.57 – 7.53 (m, 2H), 7.19 – 7.17 (m, 2H), 7.06 (d, J = 7.9 Hz, 2H), 3.27 – 3.23 (m, 2H), 2.91 (t, J = 6.8 Hz, 2H), 2.31 (s, 3H), 2.01 – 1.94 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 139.0, 137.1, 133.8, 131.3, 130.8, 129.9, 129.4, 128.1, 54.6, 33.4, 22.3, 21.1.

HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₈O₂S₂H⁺ 307.0821; Found 307.0829.

3-(phenylsulfonyl)propyl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (3u): The product was

purified by silica gel column chromatography, using petroleum ether/EA = 5/1 (v/v) as an eluent. White solid in 50% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.89 (m, 2H), 7.68 – 7.63 (m, 1H), 7.57 – 7.53 (m, 2H), 7.00 (d, J = 7.4 Hz, 1H), 6.67 (d, J = 7.4 Hz, 1H), 6.61 (s, 1H), 4.12 (t, J = 6.2 Hz, 2H), 3.92 – 3.88 (m, 2H), 3.19 – 3.15 (m, 2H), 2.31 (s, 3H), 2.15 (s, 3H), 2.10 – 2.03 (m, 2H), 1.70 – 1.68 (m, 4H), 1.19 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 177.5, 156.9, 138.8, 136.5, 133.9, 130.4, 129.4, 128.1, 123.5, 120.8, 112.0, 67.8, 62.0, 53.2, 42.1, 37.0, 25.2, 25.1, 22.6, 21.4, 15.8.

HRMS (ESI/QTOF) m/z: $[M + Na]^+$ Calcd for $C_{24}H_{32}O_5SNa^+$ 455.1863; Found 455.1858.

3-(phenylsulfonyl)propyl (S)-2-(6-methoxynaphthalen-2-yl)propanoate (3v): The product was purified by silica gel column chromatography, using petroleum ether/EA = 5/1 (v/v) as an eluent. White solid in 56% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.71 – 7.68 (m, 4H), 7.62 – 7.57 (m, 2H), 7.46 – 7.42 (m, 2H), 7.35 (dd, J = 8.5, 1.9 Hz, 1H), 7.18 – 7.12 (m, 2H), 4.19 – 4.06 (m, 2H), 3.92 (s, 3H), 3.81 (q, J = 7.1 Hz, 1H), 2.95 – 2.91 (m, 2H), 2.02 – 1.95 (m, 2H), 1.54 (d, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.3, 157.7, 138.8, 135.4, 133.7, 129.3, 128.9, 127.8, 127.3, 126.0, 125.9, 119.2, 105.6, 62.2, 55.3, 52.8, 45.3, 22.3, 18.2. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₄O₅SNa⁺ 435.1237; Found 435.1232.

3-(phenylsulfonyl)propyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (3w): The product was purified by silica gel column chromatography, using petroleum ether/EA = 3/1 (v/v) as an eluent. White solid in 57% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.79 (m, 2H), 7.67 – 7.62 (m, 3H), 7.56 – 7.52 (m, 2H), 7.49 – 7.45

(m, 2H), 6.91 – 6.86 (m, 2H), 6.67 (dd, J = 9.0, 2.5 Hz, 1H), 4.16 (t, J = 6.1 Hz, 2H), 3.81 (s, 3H), 3.64 (s, 2H), 3.03 – 2.99 (m, 2H), 2.35 (s, 3H), 2.07 – 2.01 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 168.3, 156.1, 139.4, 138.8, 136.0, 133.9, 133.8, 131.2, 130.8, 130.5, 129.4, 129.2, 128.0, 115.1, 112.2, 111.7, 101.2, 62.6, 55.7, 53.0, 30.3, 22.4, 13.3.

HRMS (ESI/QTOF) m/z: $[M + H]^+$ Calcd for $C_{28}H_{26}CINO_6SH^+$ 540.1242; Found 540.1245.

(benzylsulfonyl)benzene^[13] (3x): The product was purified by silica gel column chromatography, using petroleum ether/EA = 20/1 (v/v) as an eluent. White solid in 83% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.64 – 7.58 (m, 3H), 7.44 (t, J = 7.8 Hz, 2H), 7.33 – 7.29 (m, 1H), 7.27 – 7.23 (m, 2H), 7.09 – 7.07 (m, 2H), 4.31 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 137.8, 133.7, 130.8, 128.8, 128.7, 128.6, 128.5, 128.1, 62.8.

1-methyl-4-((phenylsulfonyl)methyl)benzene^[8] **(3y)**. The product was purified by silica gel column chromatography, using petroleum ether/EA = 20/1 (v/v) as an eluent. White solid in 87% yield. **¹H NMR** (400 MHz, CDCl₃) δ 7.66 – 7.58 (m, 3H), 7.47 – 7.43 (m, 2H), 7.06 (d, J = 7.8 Hz, 2H), 6.96 (d, J = 8.1 Hz, 2H), 4.27 (s, 2H), 2.32 (s, 3H). **¹³C NMR** (101 MHz, CDCl₃) δ 138.7, 138.0, 133.7, 130.7, 129.3, 128.9, 128.7, 125.0, 62.6, 21.2.

1-methyl-3-((phenylsulfonyl)methyl)benzene^[14] **(3z)**. The product was purified by silica gel column chromatography, using petroleum ether/EA = 20/1 (v/v) as an eluent. White solid in 86% yield. **¹H NMR** (400 MHz, CDCl₃) δ 7.66 - 7.58 (m, 3H), 7.47 - 7.44 (m, 2H), 7.16 - 7.11 (m, 2H), 6.90 (s, 1H), 6.88 – 6.81 (m, 1H), 4.27 (s, 2H), 2.26 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 138.3, 138.0, 133.7, 131.6, 129.6, 128.9, 128.7, 128.5, 127.9, 127.9, 62.9, 21.3.

1-methyl-2-((phenylsulfonyl)methyl)benzene^[15] **(3aa)**. The product was purified by silica gel column chromatography, using petroleum ether/EA = 20/1 (v/v) as an eluent. White solid in 81% yield. **¹H NMR** (400 MHz, CDCl₃) δ 7.66 – 7.60 (m, 3H), 7.46 (t, J = 7.8 Hz, 2H), 7.24 – 7.20 (m, 1H), 7.13 – 7.08 (m, 2H), 7.03 – 7.01 (m, 1H), 4.38 (s, 2H), 2.11 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.3, 138.3, 133.8, 131.9, 130.7, 129.0, 129.0, 128.7, 126.6, 126.1, 60.1, 19.4.

1,4-dimethyl-2-((phenylsulfonyl)methyl)benzene (3ab). The product was purified by silica gel column chromatography, using petroleum ether/EA = 20/1 (v/v) as an eluent. White solid in 85% yield. **¹H NMR** (400 MHz, CDCl₃) δ 7.67 – 7.60 (m, 3H), 7.56 (t, J = 7.8 Hz, 2H), 7.04 – 6.98 (m, 2H), 6.82 (s, 1H), 4.33 (s, 2H), 2.21 (s, 3H), 2.05 (s, 3H). **¹³C NMR** (101 MHz, CDCl₃) δ 138.4, 135.6, 135.1, 133.8, 132.6, 130.5, 129.7, 128.9, 128.7, 126.2, 60.1, 20.8, 18.9. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₆O₂SH⁺ 261.0944; Found 261.0953.

1,3,5-trimethyl-2-((phenylsulfonyl)methyl)benzene^[15] **(3ac)**. The product was purified by silica gel column chromatography, using petroleum ether/EA = 20/1 (v/v) as an eluent. White solid in 86% yield;. ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.76 (m, 2H), 7.67 – 7.63 (m, 1H), 7.53 – 7.49 (m, 2H), 6.85 (s, 2H), 4.47 (s, 2H), 2.27 (s, 3H), 2.17 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 139.6, 139.0, 138.5, 133.8, 129.5, 129.2, 128.5, 122.3, 57.3, 21.0, 20.2.

phenyl(4-((phenylsulfonyl)methyl)phenyl)sulfone^[16] **(3ad)**. The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 58% yield. **¹H NMR** (400 MHz, CDCl₃) δ 7.66 – 7.58 (m, 3H), 7.48 – 7.43 (m, 2H), 7.37 – 7.28 (m, 5H), 7.17 – 7.14 (m, 2H), 7.00 – 6.97 (m, 2H), 4.26 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 137.9, 137.8, 134.4, 133.9, 132.0, 131.5, 130.1, 129.4, 129.0, 128.7, 127.8, 126.4, 62.5.

1-fluoro-4-((phenylsulfonyl)methyl)benzene^[8] **(3ae)**. The product was purified by silica gel column chromatography, using petroleum ether/EA = 20/1 (v/v) as an eluent. White solid in 79% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.65 – 7.59 (m, 3H), 7.47 (t, J = 7.8 Hz, 2H), 7.07 – 7.04 (m, 2H), 6.97 – 6.93 (m, 2H), 4.28 (s, 2H). ¹³**C** NMR (101 MHz, CDCl₃) δ 163.1 (d, J = 248.6 Hz), 137.7, 133.9, 132.6 (d, J = 8.4 Hz), 129.1, 128.6, 124.0 (d, J = 3.4 Hz), 115.7 (d, J = 21.8 Hz), 62.0.

1-fluoro-2-((phenylsulfonyl)methyl)benzene^[17] **(3af)**. The product was purified by silica gel column chromatography, using petroleum ether/EA = 20/1 (v/v) as an eluent. White solid in 83% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.68 – 7.60 (m, 3H), 7.46 (t, J = 7.9 Hz, 2H), 7.33 – 7.28 (m, 2H), 7.14 – 7.10 (m, 1H), 6.94 – 6.89 (m, 1H), 4.40 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 161.2 (d, J = 249.8 Hz), 137.9, 133.9, 132.7 (d, J = 2.8 Hz), 131.0 (d, J = 8.3 Hz), 129.0, 128.6, 124.4 (d, J = 3.8 Hz), 115.8 (d, J = 14.6 Hz), 115.5 (d, J = 21.7 Hz), 55.7 (d, J = 2.5 Hz).

1-chloro-3-((phenylsulfonyl)methyl)benzene^[8] **(3ag)**. The product was purified by silica gel column chromatography, using petroleum ether/EA = 20/1 (v/v) as an eluent. White solid in 56% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.66 – 7.61 (m, 3H), 7.48 (t, J = 7.7 Hz, 2H), 7.26 – 7.23 (m, 2H), 7.02 (d, J = 8.4 Hz, 2H), 4.27 (s, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 137.7, 135.1, 134.0, 132.1, 129.1, 128.9, 128.7, 126.7, 62.2.

1-bromo-4-((phenylsulfonyl)methyl)benzene^[8] **(3ah)**. The product was purified by silica gel column chromatography, using petroleum ether/EA = 20/1 (v/v) as an eluent. White solid in 64% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.66 – 7.61 (m, 3H), 7.50 – 7.46 (m, 2H), 7.42 – 7.38 (m, 2H), 6.97 – 6.94 (m, 2H), 4.26 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 137.7, 134.0, 132.4, 131.9, 129.1, 128.7, 127.2, 123.4, 62.2.

4-((phenylsulfonyl)methyl)benzoate^[15] **(3ai)**. The product was purified by silica gel column chromatography, using petroleum ether/EA = 15/1 (v/v) as an eluent. White solid in 60% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 – 7.90 (m, 2H), 7.63 – 7.59 (m, 3H), 7.47 – 7.43 (m, 2H), 7.15 (d, J = 8.3 Hz, 2H), 4.35 (s, 2H), 3.90 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 166.6, 137.6, 134.0, 133.1, 130.9, 130.5, 129.8, 129.1, 128.6, 126.5, 62.6, 52.3.

1-((phenylsulfonyl)methyl)naphthalene^[15] **(3aj)**. The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent White solid in 74% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.84 – 7.81 (m, 3H), 7.61 – 7.59 (m, 2H), 7.54 – 7.50 (m, 1H), 7.47 – 7.39 (m, 2H), 7.35 (t, J = 7.8 Hz, 3H), 7.22 – 7.20 (m, 1H), 4.83 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 138.0, 133.7, 132.1, 130.6, 129.8, 128.9, 128.7, 126.7, 126.0, 125.1, 124.5, 123.6, 59.9.

2-chloro-5-((phenylsulfonyl)methyl)pyridine^[18] **(3ak)**. The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 2.5 Hz, 1H), 7.69 – 7.64 (m, 3H), 7.58 – 7.50 (m, 3H), 7.31 – 7.29 (m, 1H), 4.29 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.1, 151.1, 140.8, 137.3, 134.4, 129.4, 128.5, 124.4, 123.5, 59.1.

2-chloro-5-((phenylsulfonyl)methyl)thiazole^[18] **(3al)**. The product was purified by silica gel column chromatography, using petroleum ether/EA = 15/1 (v/v) as an eluent. White solid in 52% yield. **¹H NMR** (400 MHz, CDCl₃) δ 7.78 – 7.75 (m, 2H), 7.70 – 7.66 (m, 1H), 7.56 – 7.52 (m, 2H), 7.17 (s, 1H), 4.45 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 143.1, 136.9, 134.6, 129.5, 128.6, 126.4, 54.7.

((1-phenylethyl)sulfonyl)benzene^[19] (3am). The product was purified by silica gel column chromatography, using petroleum ether/EA = 20/1 (v/v) as an eluent. White solid in 74% yield.
¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.52 (m, 3H), 7.41 – 7.37 (m, 2H), 7.31 – 7.21 (m, 3H), 7.14 – 7.11 (m, 2H), 4.23 (q, J = 7.2 Hz, 1H), 1.77 (d, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 136.9, 133.8,

133.6, 129.4, 129.2, 128.8, 128.7, 128.4, 66.1, 14.0.

2-(1-(phenylsulfonyl)ethyl)naphthalene^[19] **(3an)**. The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 55% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.78 (m, 1H), 7.73 – 7.68 (m, 2H), 7.55 – 7.43 (m, 6H), 7.36 – 7.32 (m, 2H), 7.27 (dd, J = 8.5, 1.9 Hz, 1H), 4.40 (q, J = 7.1 Hz, 1H), 1.85 (d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 136.8, 133.6, 133.3, 132.9, 131.2, 129.3, 129.1, 128.7, 128.1, 128.1, 127.7, 126.7, 126.6, 126.4, 66.2, 14.3.

1-fluoro-4-(1-(phenylsulfonyl)ethyl)benzene (3ao). The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 72% yield. **¹H NMR** (400 MHz, CDCl₃) δ 7.60 – 7.54 (m, 3H), 7.44 – 7.40 (m, 2H), 7.13 – 7.10 (m, 2H), 6.96 – 6.91 (m, 2H), 4.23 (q, J = 7.2 Hz, 1H), 1.74 (d, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.0 (d, J = 248.4 Hz), 136.7, 133.7, 131.2 (d, J = 8.4 Hz), 129.6 (d, J = 3.3 Hz), 129.2, 128.8, 115.5 (d, J = 21.6 Hz), 65.3, 14.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -112.47.

HRMS (ESI/QTOF) m/z: $[M + H]^+$ Calcd for $C_{14}H_{13}FO_2SH^+$ 265.0693; Found 265.0688.

1-methyl-4-((3-phenylpropyl)sulfonyl)benzene^[13] **(4b)**: The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 80% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 – 7.73 (m, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.27 – 7.23 (m, 2H), 7.20 – 7.16 (m, 1H), 7.10 – 7.08 (m, 2H), 3.06 – 3.02 (m, 2H), 2.67 (t, J = 7.5 Hz, 2H), 2.43 (s, 3H), 2.06 – 1.98

(m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 140.0, 136.1, 129.9, 128.6, 128.4, 128.1, 126.4, 55.6, 34.1, 24.3, 21.7.

1-methyl -3-((3-phenylpropyl)sulfonyl)benzene^[13] (**4c**): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 79% yield. **¹H NMR** (400 MHz, CDCl₃) δ 7.68 – 7.64 (m, 2H), 7.45 – 7.40 (m, 2H), 7.28 – 7.24 (m, 2H), 7.21 – 7.16 (m, 1H), 7.10 – 7.08 (m, 2H), 3.08 – 3.04 (m, 2H), 2.68 (t, J = 7.5 Hz, 2H), 2.42 (s, 3H), 2.07 – 2.00 (m, 2H). **¹³C NMR** (101 MHz, CDCl₃) δ 139.9, 139.6, 138.9, 134.5, 129.2, 128.6, 128.4, 128.3, 126.5, 125.2, 55.4, 34.1, 24.2, 21.4.

1-methyl-2-((3-phenylpropyl)sulfonyl)benzene^[13] (**4d**): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 25% yield. **¹H NMR** (400 MHz, CDCl₃) δ 7.98 (dd, J = 8.0, 1.4 Hz, 1H), 7.50 (td, J = 7.5, 1.4 Hz, 1H), 7.38 – 7.34 (m, 1H), 7.31 – 7.24 (m, 3H), 7.21 – 7.17 (m, 1H), 7.10 – 7.06 (m, 2H), 3.13 – 3.08 (m, 2H), 2.70 (t, J = 7.4 Hz, 2H), 2.59 (s, 3H), 2.07 – 2.00 (m, 2H). **¹³C NMR** (101 MHz, CDCl₃) δ 139.9, 137.9, 137.1, 133.7, 132.8, 130.3, 128.6, 128.4, 126.6, 126.5, 54.3, 34.0, 24.0, 20.3.

1,3-dimethyl-5-((3-phenylpropyl)sulfonyl)benzene (4e): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 78% yield. **¹H NMR** (400 MHz, CDCl₃) δ 7.47 (s, 2H), 7.28 – 7.24 (m, 3H), 7.21 – 7.16 (m, 1H), 7.11 – 7.08 (m, 2H), 3.07 – 3.03 (m, 2H), 2.68 (t, J = 7.5 Hz, 2H), 2.37 (s, 6H), 2.07 – 2.00 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 140.0, 139.4, 138.8, 135.4, 128.6, 128.4, 126.4, 125.5, 55.4, 34.1, 24.2, 21.2. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₁₇H₂₀O₂SH⁺ 289.1257; Found 289.1257.

^tBu

1-(tert-butyl)-4-((3-phenylpropyl)sulfonyl)benzene (4f): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 74% yield. **¹H NMR** (400 MHz, CDCl₃) δ 7.80 – 7.77 (m, 2H), 7.56 – 7.52 (m, 2H), 7.27 – 7.23 (m, 2H), 7.20 – 7.16 (m, 1H), 7.11 – 7.08 (m, 2H), 3.08 – 3.04 (m, 2H), 2.69 (t, J = 7.5 Hz, 2H), 2.09 – 2.01 (m, 2H), 1.34 (s, 9H). **¹³C NMR** (101 MHz, CDCl₃) δ 157.6, 134.0, 136.1, 128.6, 128.4, 127.9, 126.4, 126.3, 55.5, 35.3, 34.1, 31.1, 24.2.

HRMS (ESI/QTOF) m/z: $[M + Na]^+$ Calcd for $C_{19}H_{24}O_2SNa^+$ 339.1389; Found 339.1393.

4-((3-phenylpropyl)sulfonyl)-1,1'-biphenyl (**4g**): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 71% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.60 – 7.58 (m, 2H), 7.49 – 7.39 (m, 3H), 7.27 – 7.21 (m, 2H), 7.19 – 7.16 (m, 1H), 7.10 – 7.08 (m, 2H), 3.11 – 3.08 (m, 2H), 2.69 (t, J = 7.4 Hz, 2H), 2.11-2.02 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 146.6, 139.9, 139.1, 137.5, 129.1, 128.7, 128.6, 128.6, 128.4, 128.0, 127.4, 126.4, 55.6, 34.1, 24.3.

HRMS (ESI/QTOF) m/z: $[M + Na]^+$ Calcd for $C_{21}H_{20}O_2SNa^+$ 359.1076; Found 359.1080.

MeC

1-methoxy-4-((3-phenylpropyl)sulfonyl)benzene^[13] **(4h)**: The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 71% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 – 7.77 (m, 2H), 7.28 – 7.24 (m, 2H), 7.21 – 7.17 (m, 1H), 7.11 – 7.08 (m, 2H), 7.01 – 6.98 (m, 2H), 3.87 (s, 3H), 3.06 – 3.02 (m, 2H), 2.68 (t, J = 7.5 Hz, 2H), 2.07 – 1.98 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 163.7, 140.0, 130.6, 130.2, 128.6, 128.4, 126.4, 114.5, 55.8, 55.7, 34.1, 24.4.

1-((3-phenylpropyl)sulfonyl)-4-(trifluoromethoxy)benzene (4i): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 52% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.90 (m, 2H), 7.38 – 7.35 (m, 2H), 7.29 - 7.25 (m, 2H), 7.22 – 7.18 (m, 1H), 7.11 – 7.09 (m, 2H), 3.10 – 3.05 (m, 2H), 2.70 (t, J = 7.4 Hz, 2H), 2.09 - 2.01 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 153.0 (d, J = 1.9 Hz), 139.7, 137.3, 130.4, 128.7, 128.4, 126.6, 121.1, 120.2 (q, J = 259.8 Hz), 55.5, 34.0, 24.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -57.54. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₆H₁₅F₃O₃SNa⁺ 367.0586; Found 367.0581.

4-((3-phenylpropyl)sulfonyl)benzonitrile^[13] **(4j)**: The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 65% yield. **¹H NMR** (400 MHz, CDCl₃) δ 8.00 – 7.98 (m, 2H), 7.86 – 7.84 (m, 2H), 7.29 – 7.25 (m, 2H), 7.23 – 7.18 (m, 1H), 7.10 – 7.08 (m, 2H), 3.11 – 3.07 (m, 2H), 2.71 (t, J = 7.4 Hz, 2H), 2.08 – 2.00 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.2, 139.5, 133.1, 128.9, 128.8, 128.4, 126.7, 117.6, 117.1, 55.2, 34.0, 24.1.

1-((3-phenylpropyl)sulfonyl)-3-(trifluoromethyl)benzene^[20] (**4k**): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 66% yield. **¹H NMR** (400 MHz, CDCl₃) δ 8.15 (s, 1H), 8.16 (d, J = 8.1 Hz, 1H), 7.90 (d, J = 7.9 Hz, 1H), 7.71 (t, J = 7.8 Hz, 1H), 7.29-7.25 (m, 2H), 7.22 – 7.18 (m, 1H), 7.11 – 7.08 (m, 2H), 3.12 – 3.08 (m, 2H), 2.72 (t, J = 7.4 Hz, 2H), 2.11 – 2.03 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 139.6, 132.1 (q, J = 33.6 Hz), 131.5, 130.5 (q, J = 3.6 Hz), 130.2, 128.7, 128.4, 126.6, 125.2 (q, J = 3.9 Hz), 123.1 (q, J = 273.1 Hz), 55.4, 34.0, 24.0.

1-fluoro-4-((3-phenylpropyl)sulfonyl)benzene^[8] **(4l)**: The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 70% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 – 7.86 (m, 2H), 7.29 – 7.19 (m, 5H), 7.11 – 7.08 (m, 2H), 3.08 – 3.04 (m, 2H), 2.69 (t, J = 7.5 Hz, 2H), 2.07 – 2.00 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 165.8 (d, J = 256.2 Hz), 139.8, 135.1 (d, J = 3.2 Hz), 131.0 (d, J = 9.7 Hz), 128.7, 128.4, 126.5, 116.7 (d, J = 22.6 Hz), 55.6, 34.1, 24.3.

1-fluoro-3-((3-phenylpropyl)sulfonyl)benzene (4m): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 70% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 (dt, J = 7.8, 1.3 Hz, 1H), 7.59 – 7.51 (m, 2H), 7.37 – 7.32 (m, 1H), 7.29 – 7.25 (m, 2H), 7.22 – 7.18 (m, 1H), 7.11 – 7.08 (m, 2H), 3.10 – 3.06 (m, 2H), 2.70 (t, J = 7.5 Hz, 2H), 2.08 – 2.01 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.5 (d, J = 252.5 Hz), 141.1 (d, J = 6.4 Hz), 139.7, 131.3 (d, J = 7.7 Hz), 128.7, 128.4, 126.6, 123.9 (d, J = 3.5 Hz), 121.1 (d, J = 21.1 Hz), 115.5 (d, J = 24.2 Hz), 55.3, 34.1, 24.2. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -109.66.

HRMS (ESI/QTOF) m/z: $[M + H]^+$ Calcd for $C_{15}H_{15}FO_2SH^+$ 279.0850; Found 279.0850.

1,3-difluoro-5-((3-phenylpropyl)sulfonyl)benzene (4n): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 62% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.38 (m, 2H), 7.31 – 7.26 (m, 2H), 7.24 – 7.19 (m, 1H), 7.12 – 7.07 (m, 3H), 3.10 – 3.06 (m, 2H), 2.72 (t, J = 7.4 Hz, 2H), 2.10 – 2.02 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 163.0 (dd, J = 256.0, 11.4 Hz), 142.4 (t, J = 7.9 Hz), 139.5, 128.8, 128.4, 126.7, 111.7 (dd, J = 28.0 Hz), 109.5 (t, J = 25.0 Hz), 55.2, 34.0, 24.1. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -104.57.

HRMS (ESI/QTOF) m/z: $[M + H]^+$ Calcd for $C_{15}H_{14}F_2O_2SNa^+$ 297.0755; Found 297.0752.

1-chloro-4-((3-phenylpropyl)sulfonyl)benzene (40): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 65% yield. **¹H NMR** (400 MHz, CDCl₃) δ 7.82 – 7.79 (m, 2H), 7.54 – 7.50 (m, 2H), 7.29 – 7.25 (m, 2H), 7.22 – 7.18 (m, 1H), 7.14 – 7.08 (m, 2H), 3.08 – 3.04 (m, 2H), 2.70 (t, J = 7.4 Hz, 2H), 2.07 – 2.00 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 140.5, 139.7, 137.5, 129.7, 129.6, 128.7, 128.4, 126.5, 55.5, 34.1, 24.2. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₅ClO₂SNa⁺ 317.0373; Found 317.0374.

1,2-dichloro-4-((3-phenylpropyl)sulfonyl)benzene (4p): The product was purified by silica gel column chromatography, using petroleum ether/EA = 10/1 (v/v) as an eluent. White solid in 50% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (d, J = 2.0 Hz, 1H), 7.70 – 7.67 (m, 1H), 7.64 – 7.61 (m, 1H), 7.29 – 7.25 (m, 2H), 7.22 – 7.18 (m, 1H), 7.11 – 7.08 (m, 2H), 3.09 – 3.05 (m, 2H), 2.71 (t, J = 7.4 Hz, 2H), 2.08 – 2.00 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 139.5, 138.9, 138.8, 134.1, 131.5, 130.1, 128.7, 128.4, 127.2, 126.6, 54.8, 34.0, 24.1.

HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₄Cl₂O₂SNa⁺ 350.9984; Found 350.9981.

1-((3-phenylpropyl)sulfonyl)naphthalene (**4q**): The product was purified by silica gel column chromatography, using petroleum ether/EA = 5/1 (v/v) as an eluent. White solid in 33% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.65 (d, J = 8.4 Hz, 1H)., 8.28 (dd, J = 7.4, 1.3 Hz, 1H), 8.12 (d, J = 8.3 Hz, 1H), 7.97 – 7.95 (m, 1H), 7.68 – 7.56 (m, 3H), 7.22 – 7.12 (m, 3H), 7.03 – 7.01 (m, 2H), 3.28 – 3.25 (m, 2H), 2.64 (t, J = 7.5 Hz, 2H), 2.07 – 1.99 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 139.9, 135.3, 134.3, 134.1, 130.7, 129.3, 128.9, 128.8, 128.6, 128.4, 127.1, 126.4, 124.5, 124.1, 55.0, 34.0, 24.2. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₉H₁₈O₂SNa⁺ 333.0920; Found 333.0921.

3-((3-phenylpropyl)sulfonyl)thiophene (4r): The product was purified by silica gel column chromatography, using petroleum ether/EA = 8/1 (v/v) as an eluent. White solid in 65% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (dd, J = 3.1, 1.3 Hz, 1H), 7.45 (dd, J = 5.1, 3.1 Hz, 1H), 7.35 (dd, J = 5.1, 1.3 Hz, 1H), 7.30 – 7.25 (m, 2H), 7.22 – 7.18 (m, 1H), 7.12 – 7.10 (m, 2H), 3.12 – 3.08 (m, 2H), 2.71 (t, J = 7.5 Hz, 2H), 2.11 – 2.03 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 139.9, 139.7, 132.7, 128.7, 128.5, 128.4, 126.5, 126.0, 55.8, 34.1, 24.3.

HRMS (ESI/QTOF) m/z: $[M + Na]^+$ Calcd for $C_{13}H_{14}O_2S_2Na^+$ 289.0327; Found 289.0334.

3-((3-phenylpropyl)sulfonyl)quinoline (4s): The product was purified by silica gel column chromatography, using petroleum ether/EA = 8/1 (v/v) as an eluent. White solid in 64% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 9.24 (d, J = 2.3 Hz, 1H), 8.72 (d, J = 2.3 Hz, 1H), 8.21 (d, J = 8.4 Hz, 1H), 7.97 – 7.89 (m, 2H), 7.72 – 7.68 (m, 1H), 7.25 – 7.14 (m, 3H), 7.09 – 7.06 (m, 2H), 3.21 – 3.17 (m, 2H),

2.71 (t, J = 7.4 Hz, 2H), 2.14 – 2.06 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 149.8, 147.1, 139.5, 138.1, 133.0, 132.1, 129.7, 129.3, 128.7, 128.5, 128.4, 126.6, 126.3, 56.0, 34.1, 24.2. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₁₈H₁₇NO₂SH⁺ 312.1053; Found 312.1054.

NMR Spectra of Substrates and Products

7.881 7.885 7.885 7.885 7.863 7.863 7.863 7.637 7.637 7.550 7.551 7.5525 7.5526 7.5524 7.5526 7.5524 7.5526 7.5524 7.5526 7.5226 7.5249 7.5226 7.2249 7.2206 7.2249 7.2206 7.206

80 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

f1 (ppm)

 $\begin{array}{c} 7.911\\ 7.905\\ 7.891\\ 7.890\\ 7.890\\ 7.657\\ 7.657\\ 7.657\\ 7.657\\ 7.657\\ 7.652\\ 7.653\\ 7.653\\ 7.653\\ 7.653\\ 7.653\\ 7.653\\ 7.653\\ 7.653\\ 7.653\\ 7.653\\ 7.653\\ 7.633\\ 7.652\\ 7.756\\ 7.556\\ 7.756\\ 7.556\\ 7.756\\ 7.556\\ 7.756\\ 7.562\\ 7.756\\ 7.562\\ 7.756\\ 7.562\\ 7.756\\ 7.562\\ 7.756\\ 7.562\\ 7.756\\ 7.562\\ 7.756\\ 7.562\\ 7.$

 $\begin{array}{c} 7.934\\ 7.925\\ 7.9226\\ 7.9226\\ 7.9226\\ 7.9226\\ 7.9226\\ 7.9226\\ 7.9266\\ 7.9266\\ 7.9266\\ 7.9266\\ 7.9667\\ 7.9667\\ 7.9666\\ 7.9667\\ 7.9666\\ 7.9662\\ 7.5655\\ 7.75656\\ 7.75656\\ 7.75656\\ 7.75656\\ 7.75656\\ 7.75656\\ 7.75656\\ 7.75656\\ 7.75656\\ 7.75656\\ 7.75656\\ 7.75656\\ 7.756$

S63

S73

8.151 8.076 8.076 7.3916 7.2915 7.2915 7.729 7.728 7.728 7.728 7.728 7.728 7.728 7.728 7.728 7.728 7.727 7.205 7.119 7.7215 7.7215 7.7216 7.7216 7.7216 7.7219 7.7219 7.7219 7.7193 7.7193 7.7193 7.7193 7.7105 7.705 7.705 7.705 7.20

 $\begin{array}{c} 7.823\\ 7.817\\ 7.817\\ 7.817\\ 7.817\\ 7.817\\ 7.817\\ 7.538\\ 7.515\\ 7.5515\\ 7.5515\\ 7.5515\\ 7.5515\\ 7.5515\\ 7.5515\\ 7.5515\\ 7.5515\\ 7.5515\\ 7.519\\ 7.519\\ 7.5119\\ 7.525\\ 7.25119\\ 7.22119\\ 7.22119\\ 7.22119\\ 7.22119\\ 7.2213\\ 7.22119\\ 7.2213\\ 7.2213\\ 7.2213\\ 7.2213\\ 7.2213\\ 7.2213\\ 7.2213\\ 7.2213\\ 7.2213\\ 7.2213\\ 7.2213\\ 7.2213\\ 7.220$

References

- C. Nguyen, G. F. Ruda, A. Schipani, G. Kasinathan, I. Leal, A. M.-Buendia, M. Kaiser, R. Brun, L. M. R.-Pe'rez, B.-L. Sahlberg, N. G. Johansson, D. G.-Pacanowska, and I. H. Gilbert. *J. Med. Chem.* 2006, 49, 4183-4195.
- R. L. Hudkins, N. C. Becknell, J. A. Lyons, L. D. Aimone, M. Olsen, R. C. Haltiwanger, J. R. Mathiasen,
 R. Raddatz, J. A. Gruner. *European Journal of Medicinal Chemistry*, 2015, 95, 349-356.
- [3] Dr. J. Sheng, H.-Q. Ni, S.-X. Ni, Y. He, R. Cui, G.-X. Liao, K.-J. Bian, Dr. B.-B. Wu, Prof. Dr. X.-S. Wang, Angew. Chem. Int. Ed. 2021, 60, 15020–15027.
- [4] Yang, H.; Carter, R. G. Org. Lett. 2010, 12, 3108–3111.
- [5] X. Marset, G. Guillena and D. J. Ramón. Chem. Eur. J. 2017, 23, 10522–10526.
- [6] Q. Lin and T. Diao. J. Am. Chem. Soc. 2019, 141, 44, 17937–17948.
- [7] H. Zhu, Y. Liu, Y. Zhang. Molecular Catal, **2021**, 505, 111500.
- [8] M. Huang, Dr. J. Hu, Dr. I. Krummenacher, Dr. A. Friedrich, Prof. Dr. H. Braunschweig, Prof. Dr. S. A. Westcott, Prof. Dr. U. Radius, Prof. Dr. T. B. Marder, *Chem. Eur. J.* 2022, 28, e202103866.
- [9] N. Margraf and G. Manolikakes, J. Org. Chem. 2015, 80(5), 2582–2600.
- [10] M. M. Zhao, C. Qu, and J. E. Lynch, J. Org. Chem. 2005, 70(17), 6944–6947.
- [11] J.-J. Wang and W. Yu, Org. Lett. 2019, 21(22), 9236–9240.
- [12] Y. Bin and R. Hua, *Molecules*, **2017**, 22, 39.
- [13] D.-K. Kim, H.-S. Um, H. Park, S. Kim, J. Choi and C. Lee, Chem. Sci., 2020, 11, 13071.
- [14] G. Gao, B. Zheng, Y. Fu, M. Li, B. Wang, X.-Z. Chen, Y.-Y. Zhang, J.-J. Liu, S.-C. Hou, P. J. Walsh, Asian J. Org. Chem. 2017, 6, 654.
- [15] R. Kuwano, Y. Kondo, and T. Shirahama, Org. Lett. 2005, 7(14), 2973–2975.
- [16] F. G. Bordwell, M. J. Bausch, J. C. Branca, J. A. Harrelson Jr., *Journal of Physical Organic Chemistry*, 1988, 1, 225-239.
- [17] J. P. Scott, D. C. Hammond, E. M. Beck, K. M. J. Brands, A. J. Davies, Ulf-H. Dolling and D. J. Kennedy, *Tetrahedron Letters*, 2004, 45, 3345–3348.
- [18] X. Gu, Y. Peng, X. Huang , J. Wang, G. Song, *Yingyong Huaxue*, 2019, 36, 16-23.
- [19] D. Song, L. Chen, Y. Li, T Liu, X. Yi, L. Liu, F. Ling and W. Zhong, Org. Chem. Front., 2021, 8, 120-126.
- [20] J. He, G. Chen, B. Zhang, Y. Li, J.-R. Chen, W.-J. Xiao, F. Liu, and C. Li, *Chem*, 2020, 6(5), 1149-1159.