Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Hydrogen generation by coupling methanol steam reforming with

metal hydride hydrolysis

Kuerbangnisha Kadeer^a, Xingguo Li^a, Jie Zheng*^a

Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular

Engineering, Peking University, Beijing 100871, China

1. Experiments

CaH₂ (Shanghai Titan Scientific Co., Ltd, >97%) and CuO (Beijing Beihua Fine Chemicals Co., Ltd, 99.0%) in the powder form are mixed with different molar ratios by ball milling (Fritsch Pulverisette 5) under Ar atmosphere. Other mixtures were prepared in a similar process. The materials are confirmed by powder X-ray diffraction (XRD, PANalytical X'Pert3 Powder, Cu K α), scanning electron microscope (SEM, Hitachi S4800) with an energy dispersive X-ray spectrometer (EDX), X-ray photoelectron microscopy (XPS, Axis Ultra, Kratos, Al K α radiation) and Fourier transformed infrared (FT-IR) spectroscopy (Bruker Tensor 27).

The hydrogen generation performance is measured in a 50 mL stainless steel autoclave (SLM 50, Beijing Century Senlang Co., Ltd.) with a high precision pressure gauge (accuracy 0.01 MPa, L61K, Hong Kong Huibang Technology Co., Ltd) and a gas flowmeter (50 mL/min, D07, Beijing Seven Star Flow Co., Ltd.). In a typical measurement, the CaH₂/CuO composite and a 10 mL crucible containing a CH₃OH-H₂O mixture is loaded into the autoclave. After purging with high purity Ar three times, the autoclave is sealed and is heated to 150-250 °C. CH₃OH and H₂O are vaporized and react with the solid and the pressure of the autoclave increases due to the formation of gaseous products. After 180 min, the autoclave is allowed to cool down to room temperature. The total amount of gas is determined by the pressure of the autoclave, which has been previously calibrated. The gas composition is analyzed by gas chromatography (GC7900, China). The H₂ yield is calculated using the total amount of gas times the H₂ purity from gas chromatography analysis.

To evaluation of the contribution of hydrolysis and methanol steam reforming in the H_2 generation, parallel experiments in the same setup by using pure hydrides (CaH₂ or MgH₂) and H₂O are carried out. The H₂ yield and purity is determined by the same method as noted above.

2. Estimation of the equilibrium CO partial pressure

The thermodynamic data of the matters involved in the calculation is retrieved from Ref 1¹. For estimation, the reaction enthalpy $\Delta_r H_m^{\circ}$ and entropy $\Delta_r S_m^{\circ}$ values are regarded as temperature invariant within the experimental temperature range. The Gibbs free energy change of the reaction $\Delta_r G_m^{\circ}(T)$ and equilibrium constate $K^{\circ}(T)$ are calculated using:

$$\Delta_r G_m^{\circ}(T) = \Delta_r H_m^{\circ} - T \Delta_r S_m^{\circ}$$
$$K^{\circ}(T) = e^{-\Delta_r G_m^{\circ}(T)/RT}$$

The results are summarized in Table S7.

In the calculation, we assume that the reaction yields the same H₂ partial pressure 3 MPa. To calculate the equilibrium CO partial pressure in MSR using catalyst supported on non-CO₂ absorbing substrates, we start with a mixture gas of H₂: CO₂=3:1 in molar ratio (Here we assume full conversion of the stoichiometric CH₃OH and H₂O in the MSR to simplify the estimation). Thus, the CO pressure is determined by the equilibrium of the water-gas shift reaction with initial state $p(H_2) = 3$ MPa and $p(CO_2)=1$ MPa.

When CO₂ is absorbed to yield CaCO₃, the CO₂ partial pressure is determined by the reaction CaCO₃ \Leftrightarrow CaO + CO₂, which is 2.95×10⁻⁵ MPa at 250°C. Thus, the initial state is p(H₂) = 3 MPa and p(CO₂) = 2.95×10⁻⁵ MPa.

The results are summarized in Table S7.

3. Supplementary figures and tables

Fig.S1 SEM images of (a) CuO, (b) CaH₂, (c) CaH₂/CuO composite and (d) product of CaH₂/CuO after the coupled reaction; (e) XRD and (f) XPS spectrum of CaH₂/CuO composite before and after the coupled reaction.

Fig. S² Element mapping of the CaH₂-CuO composite (mass ratio CaH₂:CuO=10:1) prepared by ball milling before reaction.

Fig. S³ Element mapping of the solid product of the CaH₂-CuO composite (mass ratio

CaH₂:CuO=10:1) after coupling.

Fig. S4 XRD pattern of the product of pure CaH₂ (without adding CuO) after the coupled reaction

Fig. S⁵ IR spectrum of the product of the Mg(OH)₂-CuO and MgH₂-CuO composites after the coupled reaction. Peaks for MgCO₃·3H₂O: 850 cm⁻¹, 1105 cm⁻¹, 1485 cm⁻¹, 1420 cm⁻¹.

Entry <i>x</i>	v	<i>n</i> CaH ₂	<i>n</i> CH₃OH	<i>n</i> H₂O	V(H ₂)	V _m (H ₂)	V _h (H ₂)	CO	CH_4	CO ₂
	X	/ mol	/mol	/mol	/mL	/mL	/mL	/%	/%	/%
1	0	0	0.010	0.010	301	301	0	0.60	0.60	23.80
2	1/2	0.010	0.010	0.030	1188	756	432	0.00	0.08	6.64
3	3/5	0.015	0.010	0.040	1361	737	624	0.00	0.00	0.00
4	2/3	0.020	0.010	0.050	1681	761	920	0.00	0.00	0.00
5	3/4	0.030	0.010	0.070	2194	782	1412	0.00	0.00	0.00
6	1	0.010	0	0.020	432	0	432	0.00	0.00	0.00

Table S1. Experimental details of H_2 generation by coupling methanol steam reforming with hydrolysis of CaH₂.

The amount of CuO is 0.042 g and the reaction temperature is 250°C in all the experiments. In Entry 1, 0. 01 mol CaCO₃ is used as the support for CuO.

x: fraction of hydrolysis in the coupled reaction, determined by $x=n(CaH_2)/(n(CaH_2) + n(CH_3OH))$. V_m(H₂): Volume of H₂ from methanol steam reforming at 298 K, 101 kPa.

 $V_h(H_2) {:}\ Volume \ of \ H_2 \ from \ hydrolysis \ of \ CaH_2 \ at \ 298 \ K, \ 101 \ kPa.$

Токте	Note for the torm	Fraction of hydrolysis in the coupled reaction x						
Term	Note for the term	<i>x</i> =0	<i>x</i> =1/2	<i>x</i> =3/5	<i>x</i> =2/3	<i>x</i> =3/4	<i>x</i> =1	
m(CuO)/g		0.042 ^b	0.042	0.042	0.042	0.042	0	
n(CaH ₂)/mol	Amount of reactants	0	0.01	0.015	0.02	0.03	0.01	
n(CH₃OH)/mol	Amount of reactants	0.01	0.01	0.01	0.01	0.01	0	
n(H₂O)/mol		0.01	0.03	0.04	0.05	0.07	0.02	
V(H ₂) _{exp} /mL ^c	Experimental total H ₂ volume at 298 K and 101 kPa	301	1188	1361	1681	2194	432	
V _h /mL	H ₂ volume from hydrolysis at 298 K and 101 kPa	0	432	624	920	1412	432	
V _m /ml	H ₂ volume from methanol steam reforming at 298 K and 101 kPa	301	756	737	761	782	0	
n(H ₂) _{exp} /mol	Experimental total H ₂ moles	0.012	0.048	0.055	0.068	0.089	0.018	
ρ _{Η, exp} /% ^d	Experimental H density	1.60	7.38	6.53	6.56	6.25	4.54	
р _{н, հ} /%	Experimental H density from hydrolysis	0	2.68	2.99	3.59	4.02	4.54	
р _{н, m} /%	Experimental H density from methanol steam reforming	1.60	4.69	3.53	2.97	2.23	0	
n(H ₂) _{theo} /mol	Theoretical total H ₂ moles	0.03	0.05	0.06	0.07	0.09	0.02	
V(H ₂) _{theo} /mL	Theoretical total H ₂ volume at 298 K and 101 kPa	736	1227	1473	1718	2209	491	
ρ _{H, theo} /%	Theoretical H density	3.92	7.62	7.06	6.71	6.29	5.16	
H₂(%)		75.00	93.28	100.00	100.00	100.00	100.00	
CO(%)	Volume percentage of	0.60	0.00	0.00	0.00	0.00	0.00	
CH₄(%)	gases in the products	0.60	0.08	0.00	0.00	0.00	0.00	
CO₂(%)		23.80	6.64	0.00	0.00	0.00	0.00	

Table SSS</t

Note

a. The reaction is carried out at 250 °C. x is the fraction of hydrolysis in the coupled reaction, defined as $x=n(CaH_2)/(n(CaH_2) + n(CH_3OH))$

b. For x=0 (conventional methanol steam reforming), 0.042 g CuO is loaded on 0.010 mol CaCO $_3$

c. The experiment H₂ volume is calculated by the total gas volume at 298 K times the H₂ volume percentage from gas chromatography analysis.

d. The H density (both experimental and theoretical) is calculated based on all the reactants (CaH₂, CuO, CH₃OH and H₂O)

Tarra	Note for the torus	Substrates for CuO						
Term	Note for the term	Al ₂ O ₃	CaCO₃	Mg(OH)₂	Ca(OH)₂	MgH ₂	CaH₂	
m(CuO)/g		0.042	0.042	0.042	0.042	0.042	0.042	
n(CaH ₂)/mol	A	0.010	0.010	0.010	0.010	0.010	0.010	
n(CH₃OH)/mol	Amount of reactants	0.010	0.010	0.010	0.010	0.010	0.010	
n(H₂O)/mol		0.010	0.010	0.010	0.010	0.030	0.030	
V(H ₂) _{exp} /mL ^b	Experimental total H ₂ volume at 298 K and 101 kPa	144	301	76	674	799	1188	
V _h /mL	H ₂ volume from hydrolysis at 298 K and 101 kPa	0	0	0	0	440	432	
V _m /ml	H ₂ volume from methanol steam reforming at 298 K and 101 kPa	144	301	76	674	359	756	
n(H ₂) _{exp} /mol	Experimental total H ₂ moles	0.006	0.012	0.003	0.027	0.033	0.048	
ρ _{Η, exp} /% ^c	Experimental H density	0.76	1.60	0.55	4.31	5.63	7.38	
р _{н, հ} /%	Experimental H density from hydrolysis	0	0	0	0	3.10	2.68	
р _{н, m} /%	Experimental H density from methanol steam reforming	0.76	1.60	0.55	4.31	2.53	4.69	
n(H ₂) _{theo} /mol	Theoretical total H ₂ moles	0.03	0.03	0.03	0.03	0.05	0.05	
V(H ₂) _{theo} /mL	Theoretical total H ₂ volume at 298 K and 101 kPa	736	736	736	736	1227	1227	
ρ _{H, theo} /%	Theoretical H density	3.87	3.92	5.37	4.71	8.65	7.62	
H ₂ (%)		73.88	75.00	76.20	95.77	89.55	93.28	
CO(%)	Volume percentage of	0.72	0.60	0.00	0.00	0.00	0.00	
CH₄(%)	gases in the products	0.13	0.60	0.00	0.00	0.12	0.08	
CO ₂ (%)		25.28	23.80	23.80	4.23	10.33	6.64	

Table SSExperimental details, key results and calculation details for coupled reactions on CuOsupported on different substrates (Data for Fig. 4 in the main text) a

Note:

a. The reaction is carried out at 250 °C. The mass ratio of CuO/substrate is 1/10. The molar ratio of H_2O/CH_3OH is 3 (i.e. x=1/2) for the hydrides and 1 for other substrates.

b. The experiment H₂ volume is calculated by the total gas volume at 298 K times the H₂ volume percentage from gas chromatography analysis.

c. The H density (both experimental and theoretical) is calculated based on all the reactants (CaH₂, CuO, CH₃OH and H₂O)

Tamma	Note for the torus	Reaction temperature/°C						
Term	Note for the term	150	180	200	220	250		
m(CuO)/g		0.042	0.042	0.042	0.042	0.042		
n(CaH₂)/mol	Amount of reactants	0.020	0.020	0.020	0.020	0.020		
n(CH₃OH)/mol		0.010	0.010	0.010	0.010	0.010		
n(H ₂ O)/mol		0.050	0.050	0.050	0.050	0.050		
V(H ₂) _{exp} /mL ^b	Experimental total H ₂ volume at 298 K and 101 kPa	936	1037	1089	1608	1681		
V _h /mL	H ₂ volume from hydrolysis at 298 K and 101 kPa	920	920	920	920	920		
V _m /ml	H ₂ volume from methanol steam reforming at 298 K and 101 kPa	16	117	169	687	761		
n(H ₂) _{exp} /mol	Experimental total H ₂ moles	0.038	0.042	0.044	0.066	0.068		
ρ _{Η, exp} /% ^c	Experimental H density	3.65	4.05	4.25	6.27	6.56		
ρ _{н, հ} /%	Experimental H density from hydrolysis	3.59	3.59	3.59	3.59	3.59		
р _{н, m} /%	Experimental H density from methanol steam reforming	0.06	0.46	0.66	2.68	2.97		
n(H ₂) _{theo} /mol	Theoretical total H ₂ moles	0.07	0.07	0.07	0.07	0.07		
V(H ₂) _{theo} /mL	Theoretical total H ₂ volume at 298 K and 101 kPa	1718	1718	1718	1718	1718		
ρ _{H, theo} /%	Theoretical H density	6.71	6.71	6.71	6.71	6.71		
H ₂ (%)		100	100	100	100	100		
CO(%)	Volume percentage of	0	0	0	0	0		
CH₄(%)	gases in the products	0	0	0	0	0		
CO2(%)		0	0	0	0	0		

Table SSS</t

Note:

a. The amount of reactants: CaH₂ 0.020 mol, CuO: 0.042 g, CH₃OH 0.010 mol, H₂O 0.050 mol, i.e. x=2/3.

b. The experiment H_2 volume is calculated by the total gas volume at 298 K times the H_2 volume percentage from gas chromatography analysis.

c. The H density (both experimental and theoretical) is calculated based on all the reactants (CaH₂, CuO, CH₃OH and H₂O)

Substance	Physical state	${}^{\Delta_{f}H_{m}^{ heta}}$ / (kJ/mol)	$S^{ heta}_{m}$ / (J/mol K)
СО	g	-110.53	197.67
H ₂ O	g	-241.82	188.72
CO2	g	-393.51	213.64
H₂	g	0	130.59
CaCO ₃	C	-1207.60	91.70
CaO	С	-634.92	38.10

Table S5 List of Enthalpies and Entropies of the related substances.

Table S6 Thermal and kinetic equilibrium calculation results.

	$\Delta_r H_m(298.15K)$	$\Delta_r S_m(298.15K)$	$\Delta_r G_m^{\circ}(523.15K)$	K [°] (523.15K)
	/(kJ/mol)	/ (J/mol K)	/(J/mol)	
H ₂ +CO ₂ =CO+H ₂ O	41.16	42.16	1.91*10 ⁴	1.23*10 ⁻²
CaCO ₃ =CaO+CO ₂	179.17	160.04	9.54*10 ⁴	2.95*10 ⁻¹⁰

Table S7 List of the partial pressure calculation results.

MSR on conventional Cu based catalyst								
H ₂ CO ₂ CO H ₂ O								
Initial partial pressure/MPa	3	1	0	0				
Equilibrium partial pressure/MPa	2.83	0.83 0.17		0.17				
Coupled MSR and hydrolysis on CuO/CaH ₂								
	H ₂ CO ₂ CO H ₂ O							
Initial partial pressure/MPa	3	2.95*10 ⁻¹¹	0	0				
Equilibrium partial pressure/MPa	3	2.95*10 ⁻¹¹	1.04*10-6	1.04*10 ⁻⁶				

Reference

1. A. P. Miller, *Lange's Handbook of Chemistry*, 1941.