Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Water Splitting and CO₂ Reduction over AgSr₂Ta₅O₁₅ Photocatalyst Developed by Valence Band Control Strategy

Tomoaki Takayama, a. b Akihide Iwase, a.c Akihiko Kudo a.d*

The corresponding author (*): a-kudo@rs.tus.ac.jp

Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.

b. His current affiliation is Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology, 8916-5

Takayama, Ikoma, Nara 630-0192, Japan.

^c His current affiliation is Department of Applied Chemistry, School of Science and Technology, Meiji University, Kanagawa 214-8571, Japan.

^{d.} Tokyo University of Science, Research Institute of Science and Technology, Carbon Value Research Center, Japan.

Experiments

Preparation of AgSr₂Ta₅O₁₅ and NaSr₂Ta₅O₁₅

AgSr₂Ta₅O₁₅ was prepared by a conventional solid-state reaction. The starting materials are summarized as follows; Ag₂O (Kanto Chemical; 99.0%), Ta₂O₅ (Rare Metallic; 99.99%), SrCO₃ (Kanto Chemical; 99.9%). For AgSr₂Ta₅O₁₅, Ag₂O, Ta₂O₅, and SrCO₃ were mixed using an alumina mortar. The amount of Ag₂O was 5% excess as compared to the stoichiometric ratio. The mixture was calcined at 1173 K for 1 h in an alumina crucible, followed by grinding the calcined sample. This calcined sample was further calcined at 1423 K for 10 h to obtain powdered AgSr₂Ta₅O₁₅ sample. If necessary, the obtained AgSr₂Ta₅O₁₅ was treated using an aqueous HNO₃ solution to remove the excess Ag component. Afterward, the treated AgSr₂Ta₅O₁₅ was additionally washed with water until the pH of the supernatant solution reached neutral. NaSr₂Ta₅O₁₅ of a reference sample was prepared by a polymerized complex method according to the literature.¹ Cocatalysts of Ag and NiO were loaded by impregnation. AgNO₃ (Tanaka Kikinzoku) and Ni(NO₃)₂•6H₂O (Wako Pure Chemical; 98.5%) were used as the cocatalyst sources. Water was employed as the solvent of the AgNO₃ and Ni(NO₃)₂ salts. After the solution contained with either of salts was dropped into the AgSr₂Ta₅O₁₅ or NaSr₂Ta₅O₁₅ powder, the obtained slurry was placed on a boiling water bath for drying off the water. Afterward, the powder impregnated with either of salts was heated at 723 K for 1 h, and 573 K for 1 h, respectively, in a muffle furnace to load the Ag and NiO cocatalysts.

Characterization

Crystal structures of AgSr₂Ta₅O₁₅ and NaSr₂Ta₅O₁₅ were identified by X-ray diffraction (XRD: Rigaku; MiniFlex (Cu Kα)). Their diffuse reflectance spectra were obtained using the Kubelka-Munk method (DRS: Jasco; V-570). Particle shapes of AgSr₂Ta₅O₁₅ and NaSr₂Ta₅O₁₅ were observed using a scanning electron microscope (SEM: JEOL; JSM-7600F).

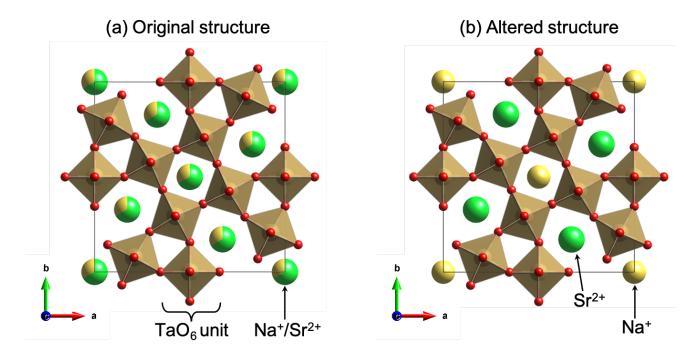
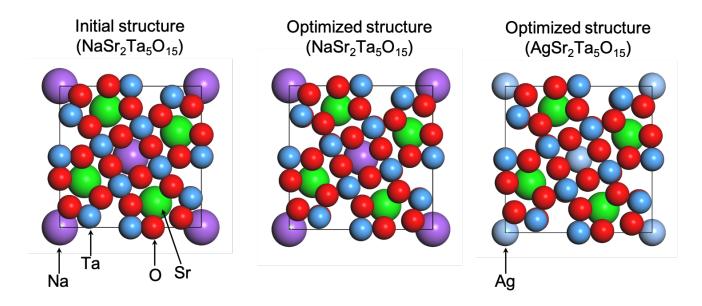
Computational condition

Density functional theory (DFT) calculations were performed using the CASTEP code² to obtain band structures of AgSr₂Ta₅O₁₅ and NaSr₂Ta₅O₁₅. The Vanderbilt-type ultrasoft pseudopetentials,³ the generalized gradient approximation (GGA)⁴ and the Perdew-Burke-Ernzerh of exchange-correlation functional (PBE)⁵ were employed in periodic boundary conditions. Checking the calculation convergence for the geometry optimizations, 500 eV of cut-off energy was employed as optimal parameter The detailed history for the parameter optimization is shown in Figures S2–S4, and Table S1. The reciprocal space was sampled using a k-point mesh with a typical spacing of 0.07 Å⁻¹, as generated by the Monkhorst-Pack scheme.⁶ Geometry optimizations of the supercells were conducted using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm.⁷ Convergence criteria are summarized as follows; (1) self-consistent field tolerance: 2.0×10^{-6} eV per atom; (2) energy tolerance: 2.0×10^{-5} eV per atom; (3) maximum force tolerance: 0.05 eV Å⁻¹, and (4) maximum displacement tolerance: 2.0×10^{-3} Å; (5) maximum stress: 0.1 GPa. Projected densities of states (DOS) for various orbitals were calculated using the optimized bulk models and HSE06 that well reproduces experimental band gaps.⁸⁻¹⁰ Gaussian broadening of 0.20 eV was applied for plotting the DOS. In DOS calculations, the reciprocal space was sampled using a k-point mesh with a typical spacing of 0.04 Å⁻¹. Cartesian coordinates of the crystal structure of NaSr₂Ta₅O₁₅ provided from the inorganic database¹¹ was

employed as the initial structure for the DFT calculation. The crystal structure of $NaSr_2Ta_5O_{15}$ was altered to satisfy the condition for the DFT calculation (Figure S1). For $AgSr_2Ta_5O_{15}$, its initial structure was generated by replacement of the Na sites of $NaSr_2Ta_5O_{15}$ with Ag. XRD simulations were performed using the optimized structures with X-ray of Cu K α and plot step of 0.01° .

Photocatalytic Reaction

Photocatalytic CO₂ reduction and water splitting were conducted using a gas-flow system equipped with an inner irradiation cell made of quart or Pyrex, and a 400 W high-pressure mercury lamp. Photocatalysts were dispersed in water. NaHCO₃ was added into the aqueous solution, if necessary. CO₂ or Ar gas was continually supplied into the aqueous suspension. The amounts of gaseous products were determined by gas-chromatographs (Shimadzu, GC-8A; TCD, MS-5A, Ar carrier; FID, MS-13X, a methanizer, N₂ carrier).

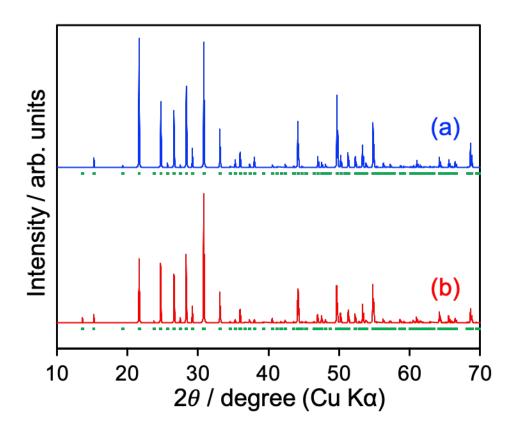
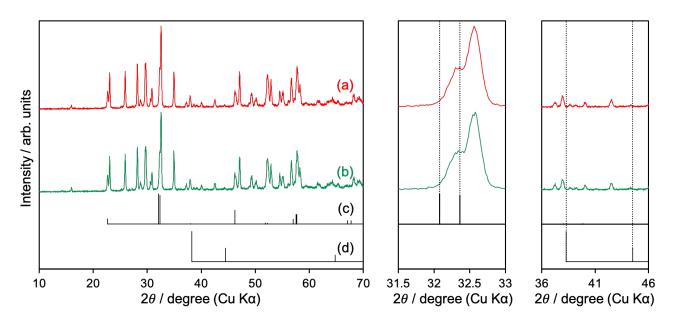
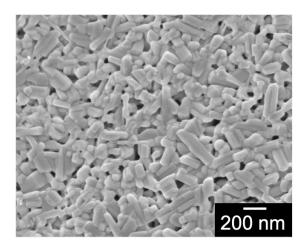

Figure S1. Crystal structures of (a) original $NaSr_2Ta_5O_{15}$ structure obtained from the database, ¹¹ and (b) altered $NaSr_2Ta_5O_{15}$ structure for DFT calculation. These illustrations were drawn by VESTA software. ¹²

Table S1. Lattice parameters of $NaSr_2Ta_5O_{15}$ and $AgSr_2Ta_5O_{15}$ before/after geometry optimization using DFT calculations.


Material	Cut-off	Lattice parameters					
	/ eV	a / Å	b/Å	c / Å	α / °	β/°	γ/°
NaSr ₂ Ta ₅ O ₁₅	initial	12.383	=a	3.861	90.000	$=\alpha$	$=\alpha$
	400	12.974	=a	4.101	90.000	$=\alpha$	$=\alpha$
	500	12.963	=a	4.099	90.000	$=\alpha$	$=\alpha$
	600	12.973	=a	4.101	90.000	$=\alpha$	$=\alpha$
AgSr ₂ Ta ₅ O ₁₅	400	12.991	=a	4.098	90.000	$=\alpha$	$=\alpha$
	500	12.974	=a	4.095	90.000	$=\alpha$	$=\alpha$
	600	12.977	=a	4.094	90.000	$=\alpha$	$=\alpha$


Figure S2. Crystal structures of initial NaSr₂Ta₅O₁₅ structure obtained from the database,¹¹ and optimized NaSr₂Ta₅O₁₅ and AgSr₂Ta₅O₁₅ structures. Constituent elements are displayed with their element symbols. Black solid lines indicate the periodic boundary.

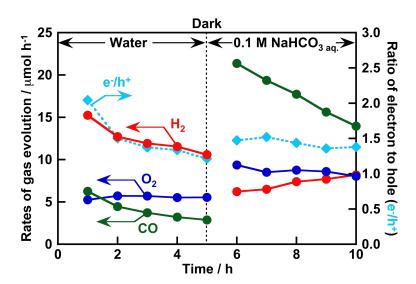

Figure S3. Simulated XRD patterns of (a) NaSr₂Ta₅O₁₅ and (b) AgSr₂Ta₅O₁₅ after geometry optimization. Green plots indicate their diffraction positions. Steps are 0.01°.

Figure S4. XRD patterns of AgSr₂Ta₅O₁₅ (a) without HNO₃ treatment and (b) with HNO₃ treatment, and PDFs of (c) AgTaO₃ (PDF No.: 1-72-1383) and (d) Ag (PDF No.: 1-71-4612).

Figure S5 SEM image of NaSr₂Ta₅O₁₅ prepared by a polymerized complex method.

Figure S6. Rates of gas evolutions in CO_2 reduction using water as an electron doner over Ag(3 wt%)-loaded $AgSr_2Ta_5O_{15}$ photocatalyst. Photocatalyst: 0.5 g, Reactant solution: water (350 mL), Reactor: a gas-flow system with an inner irradiation cell made of quartz, Light source: a 400 W high-pressure mercury lamp, Concentration of an aqueous NaHCO₃ solution: 0.1 mol L⁻¹. (e⁻/h⁺) = [(sum of H₂ and CO formation rates)×2]/[(the O₂ formation rate)×4]. This result is the same as Figure 3 on the main text.

References

- (1) T. Takayama, A. Iwase, A. Kudo, Bull. Chem. Soc. Jpn. 2015, 88, 538.
- (2) M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, *J. Phys.: Condens. Mat.*, 2002, **14**, 2717.
- (3) D. Vanderbilt, *Phys. Rev. B*, 1990, **41**, 7892.
- (4) J. A. White, and D. M. Bird, *Phys. Rev. B*, 1994, **50**, 4954.
- (5) J. P. Perdew, K. Burke, and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.
- (6) H. J. Monkhorst, and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188.
- (7) D. Packwood, J. Kermode, L. Mones, N. Bernstein, J. Woolley, N. Gould, C. Ortner, and G. Csányi, *J. Chem. Phys.*, 2016, **144**, 164109.
- (8) J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys., 2003, 118, 8207.
- (9) J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys., 2006, 124, 219906.
- (10) J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, J. G. Angyan, J. Chem. Phys., 2006, 125, 249901.
- (11) Y. Xu, M. Yamazaki, and P. Villars, Jpn. J. Appl. Phys., 2011, 50, 11RH02.
- (12) K. Momma, and F. Izumi, J. Appl. Crystallogr., 2011, 44, 1272.