Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Electronic Supplemental Information

Zn(II)-catalysed Enantioselective Addition of Alcohols and tert-Butyl Hydroperoxide to Isatin-derived N-Boc Ketimines

Jiaqi Hou, Leipeng Xue, Tianxu Yu, Jiahui Li, Shibo Yu, Chao Yao* and Yue-Ming Li*

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China.

Contents

1. Experimental Section
1.1. General Information
1.2. Optimization of Reaction Conditions
1.3 General Procedures for Enantioselective Addition of Alcohols and Peroxides to
Isatin-derived N-Boc Ketimines
1.4 Enantioselective Addition of Sulfur-based Nucleophiles to Isatin-derived N-Boc
Ketimine
1.5 Enantioselective Addition of Alcohols and Peroxides to Cyclic Ketimine 6
1.6 Computational Studies on the Key Intermediates of the Reactions
2. Characterization and ee Values of the Products
3. Copies of NMR Spectra of the Products
4. References

1. Experimental Section

1.1. General Information

¹H NMR and ¹³C {¹H} NMR spectra were recorded on 400 MHz nuclear magnetic resonance spectrometer with tetramethylsilane (TMS) as the internal standard. High performance liquid chromatography experiments were performed with Daicel chiral column (AD-H, OD-H, IA, AS-H, etc.). Specific rotations were measured with an automatic polarimeter. High-resolution mass spectra (HRMS) were obtained with Varian 7.0T Fourier transform ion cyclotron resonance mass spectrometer. The solvents (such as petroleum ether, ethyl acetate, dichloromethane, etc.) are analytically pure. The room temperature was 25 °C; the silica gel used for column chromatography was 200-300 mesh. Unless otherwise noted, commercial reagents were used as received. All drying solvents were handled in accordance with standard procedures and aldehydes were treated by vacuum distillation or recrystallization.

Ligands L1-L8 were prepared as previously reported.¹

1.2. Optimization of Reaction Conditions

The metal salts were first investigated. To our delight, the reaction catalyzed by zinc salts afforded the target products with excellent yield and ee, among which $Zn(ClO_4)_2 \cdot 6H_2O$ was the best salt in terms of both the yield and enantioselectivity (Table S1, entry 6). NiCl₂ could not facilitate the reaction and no product was obtained (Table S1, entry 7). CH₂Cl₂ was still the best medium for the reaction. The addition of base also played a key role in the reaction. In the presence of DIPEA, compound **3a** could be obtained in 89% yield with 96% ee (Table S1, entry 11). The addition of a strong base or no base resulted in sharp decrease in enantioselectivity (Table S1, entry 12-14). In addition, reducing the catalyst loading or lowering the reaction temperature to 0 °C was also detrimental to both the yield and enantioselectivity of the reaction (Table S1, entry 16-17).

Table S1. Optimization of the Reaction Conditions^a

1	Cu(OTf) ₂	Et ₃ N	CH ₂ Cl ₂	93	72
2	$Cu(ClO_4)_2 \cdot 6H_2O$	Et ₃ N	CH_2Cl_2	80	60
3	CuBr ₂	Et ₃ N	CH_2Cl_2	98	47
4	CuOTf	Et ₃ N	CH_2Cl_2	84	64
5	Zn(OTf) ₂	Et ₃ N	CH_2Cl_2	93	75
6	$Zn(ClO_4)_2 \cdot 6H_2O$	Et ₃ N	CH_2Cl_2	92	86
7	NiCl ₂	Et ₃ N	CH_2Cl_2	trace	-
8	$Zn(ClO_4)_2 \cdot 6H_2O$	Et ₃ N	THF	47	65
9	$Zn(ClO_4)_2 \cdot 6H_2O$	Et ₃ N	CHCl ₃	83	76
10	$Zn(ClO_4)_2 \cdot 6H_2O$	Et ₃ N	toluene	41	80
11	$Zn(ClO_4)_2 \cdot 6H_2O$	DIPEA	CH_2Cl_2	89	96
12	$Zn(ClO_4)_2 \cdot 6H_2O$	-	CH_2Cl_2	95	0
13	$Zn(ClO_4)_2 \cdot 6H_2O$	NaHCO ₃	CH_2Cl_2	85	12
14	$Zn(ClO_4)_2 \cdot 6H_2O$	DBU	CH_2Cl_2	80	89
15	$Zn(ClO_4)_2 \cdot 6H_2O$	piperidine	CH_2Cl_2	91	72
16 ^d	$Zn(ClO_4)_2 \cdot 6H_2O$	DIPEA	CH_2Cl_2	88	82
17 ^e	$Zn(ClO_4)_2 \cdot 6H_2O$	DIPEA	CH_2Cl_2	82	20

^a Unless otherwise noted, all the reactions were performed with isatin-derived N-Boc ketimine **1a** (0.15 mmol), ethanol **2a** (1.5 mmol), base (0.015mmol), **L5** (10 mol%), and salt (10 mol%) in dry CH₂Cl₂ (2.0 mL) at room temperature for 24 h. ^b Isolated yields. ^c The ee values were determined by HPLC. ^d **L5**:Zn(ClO₄)₂·6H₂O:DIPEA = 1:1:1 (5 mol%). ^e Reaction was carried at 0 °C.

1.3 General Procedures for Enantioselective Addition of Alcohols and Peroxides to Isatin-derived N-Boc Ketimines

Binaphthyl-proline-based chiral ligand L5 (8.4 mg, 0.015 mmol), $Zn(ClO_4)_2 \cdot 6H_2O$ (5.6 mg, 0.015 mmol) and DIPEA (2.0 mg, 0.015 mmol) were stirred in a dry reaction tube in DCM (2.0 mL) at room temperature for 1 h, isatin-derived N-Boc ketimine 1 (0.15 mmol) and alcohols (or ^{*t*}BuOOH) were then added. The reaction mixture was stirred for 24 h at room

temperature and the reaction was monitored with TLC. After the consumption of ketimine **1**, the reaction mixture was directly purified with flash chromatography (petroleum ether : ethyl acetate = 4:1) on silica gel to give the desired products.

1.4 Enantioselective Addition of Sulfur-based Nucleophiles to Isatin-derived N-Boc Ketimine

Scheme S1. Addition of Sulfur-based Nucleophiles to isatin-derived ketimine 1a.

Binaphthyl-proline-based chiral ligand L5 (8.4 mg, 0.015 mmol), $Zn(ClO_4)_2 \cdot 6H_2O$ (5.6 mg, 0.015 mmol) and DIPEA (2.0 mg, 0.015 mmol) were stirred in a dry reaction tube in DCM (2.0 mL) at room temperature for 1 h, isatin-derived N-Boc ketimine 1a (0.15 mmol) and ¹BuSH were then added. The reaction mixture was stirred for 24 h at room temperature and the reaction was monitored with TLC. After the consumption of ketimine 1a, the reaction mixture was directly purified with flash chromatography (petroleum ether : ethyl acetate = 4:1) on silica gel to give the desired product 5.

1.5 Enantioselective Addition of Alcohols and Peroxides to Cyclic Ketimine 6

Scheme S2. Addition of Alcohols and Peroxides to Cyclic Ketimine 6.

1.6 Computational Studies on the Key Intermediates of the Reactions.

DFT calculations were carried out to get structural insights into the reaction. The following structures **7a** and **7b** were proposed as key intermediates leading to the desired products.

Intermediate **7a** corresponds to Si-attack, and led to products with (S)-configuration. Intermediate **7b** corresponds to Re-attack, and led to products with (R)-configuration. DFT calculations on **7a**/**7b** were carried out with Gaussian G09 D01 package.² The intermediates were optimized at M06L level of theory³ with 6-31+G(d) basis set for light atoms⁴ and SDD for copper.⁵ Implicit solvation model SMD⁶ was used with dichloromethane as the solvent. Preliminary results showed that **7a** was favored over **7b** ($\Delta E = -2.31$ kcal/mol), suggesting that Si-attack of the nucleophiles on the substrates was the predominant one. Optimized structure of **7a**:

7a

Atomic		Coo	ordinates (Angstroms))
Number	Atomic Type	Х	Y	Z
6	0	5.072438	-0.886354	-0.388740
6	0	3.799909	-0.556470	0.022950
6	0	3.337053	-0.892069	1.324251
6	0	4.252672	-1.551494	2.208265
6	0	5.551667	-1.884636	1.752500
6	0	5.955226	-1.568236	0.475894
1	0	5.400195	-0.613680	-1.390474
1	0	3.144278	-0.020088	-0.661165
6	0	2.003129	-0.593868	1.775649
6	0	3.845663	-1.836524	3.531742
1	0	6.227303	-2.390608	2.441887
1	0	6.955661	-1.829646	0.135524
6	0	2.588664	-1.494087	3.958052
6	0	1.642734	-0.893464	3.088669
1	0	4.551534	-2.314009	4.210441
1	0	2.295526	-1.686459	4.990008
6	0	1.054188	0.031289	0.806906
6	0	0.653643	1.401457	0.911194
6	0	0.682506	-0.698331	-0.324808
6	0	1.050378	2.231625	1.990974
6	0	-0.167509	1.975317	-0.112497
6	0	-0.111409	-0.108691	-1.339915
6	0	0.623409	3.539569	2.075597
1	0	1.705359	1.824983	2.761011
6	0	-0.592612	3.321802	0.003913
6	0	-0.536951	1.190005	-1.231079

Coordinates:

6	0	-0.213585	4.090390	1.081307
1	0	0.941411	4.156111	2.914813
1	0	-1.225838	3.735680	-0.780877
1	0	-1.145320	1.640640	-2.013386
1	0	-0.544608	5.124190	1.161400
8	0	1.093318	-1.974121	-0.528063
6	0	0.299839	-0.543132	3.664947
1	0	-0.137766	0.308199	3.135139
1	0	0.438111	-0.231418	4.710005
6	0	-0.285294	-2.864153	4.340897
6	0	-1.927763	-1.266793	4.455001
6	0	-0.395360	-2.516025	5.830591
1	0	0.707204	-3.171006	4.010391
1	0	-0.981519	-3.663782	4.067067
6	0	-1.472169	-1.416238	5.901733
1	0	-2.660005	-2.061967	4.237761
1	0	-0.659138	-3.402504	6.415705
1	0	0.561280	-2.149998	6.222183
1	0	-2.317205	-1.684043	6.543410
1	0	-1.065435	-0.472420	6.285290
6	0	-2.524478	0.039874	4.016977
1	0	-3.412515	0.268309	4.620553
1	0	-1.826461	0.873099	4.153924
6	0	-4.341751	-0.397881	2.458931
6	0	-2.808768	1.257884	1.907685
6	0	-5.079892	0.928687	2.683352
1	0	-4.595372	-1.184354	3.177823
1	0	-4.520978	-0.779619	1.451063
6	0	-4.031407	2.022724	2.405386

1	0	-2.851570	1.087832	0.826256
1	0	-1.848186	1.727702	2.148147
1	0	-5.942681	1.000316	2.013543
1	0	-5.463668	1.002298	3.706797
1	0	-4.367902	2.758237	1.667647
1	0	-3.790496	2.572921	3.322983
7	0	-2.884274	-0.074527	2.570636
7	0	-0.728383	-1.641185	3.613290
8	0	-3.036176	-1.048187	-0.191555
6	0	-2.276540	-3.314582	-0.634978
6	0	-3.134241	-2.078567	-0.856674
1	0	1.714900	-2.225749	0.182907
7	0	-1.411862	-3.190778	0.327299
6	0	-0.325680	-4.070201	0.594368
8	0	0.213410	-4.016541	1.684280
8	0	0.009848	-4.802568	-0.443198
6	0	1.200951	-5.735616	-0.371971
6	0	2.459070	-4.932091	-0.106057
1	0	2.440772	-4.446420	0.874618
1	0	3.314330	-5.617439	-0.117458
1	0	2.627221	-4.183987	-0.889374
6	0	1.220374	-6.331596	-1.764565
1	0	2.107476	-6.965206	-1.872267
1	0	0.338579	-6.954318	-1.952440
1	0	1.265906	-5.546655	-2.528140
6	0	0.933147	-6.786388	0.685701
1	0	-0.033491	-7.276784	0.519083
1	0	1.711578	-7.555372	0.621136
1	0	0.952222	-6.369613	1.696459

7	0	-3.956972	-2.332349	-1.894125
6	0	-3.732614	-3.637906	-2.358085
6	0	-4.397742	-4.268454	-3.389616
6	0	-2.709059	-4.278851	-1.609397
6	0	-4.046261	-5.596375	-3.663848
1	0	-5.172002	-3.762564	-3.961249
6	0	-2.400853	-5.617905	-1.887277
6	0	-3.073997	-6.267037	-2.916279
1	0	-4.554051	-6.117472	-4.472862
1	0	-1.652217	-6.143364	-1.306116
1	0	-2.837870	-7.303577	-3.143138
6	0	-4.864056	-1.381610	-2.496418
1	0	-4.759979	-0.430331	-1.970983
1	0	-4.609698	-1.240958	-3.552546
1	0	-5.897087	-1.734340	-2.414402
30	0	-1.598456	-1.604984	1.696924
53	0	-0.546651	-1.237530	-3.092223

Energies:

Sum of electronic and zero-point Energies=	-2462.250585
Sum of electronic and thermal Energies=	-2462.202300
Sum of electronic and thermal Enthalpies=	-2462.201356
Sum of electronic and thermal Free Energies=	-2462.330040

Number of imaginary frequency: 0

Optimized structure of **7b**:

7b

Coordinates

Atomic	Atomic	Coordinates (Angstroms)			
Number	Туре	X	Y	Z	
6	0	5.146365	-1.030893	-0.252634	
6	0	3.811498	-0.929228	0.069936	
6	0	3.376064	-0.963647	1.422230	
6	0	4.376731	-1.092853	2.440806	
6	0	5.741754	-1.204949	2.075864	
6	0	6.123547	-1.178000	0.755188	
1	0	5.450199	-0.995487	-1.297228	
1	0	3.082040	-0.809171	-0.729061	
6	0	1.989214	-0.858025	1.793729	
6	0	3.979864	-1.091340	3.796114	
1	0	6.482111	-1.306423	2.868956	
1	0	7.174612	-1.261032	0.484766	
6	0	2.656605	-0.953956	4.130090	
6	0	1.644720	-0.834289	3.143974	
1	0	4.740112	-1.191815	4.569962	
1	0	2.360727	-0.938519	5.178596	

6	0	0.999984	-0.780493	0.676348
6	0	0.401201	0.462355	0.293902
6	0	0.847177	-1.894906	-0.151216
6	0	0.552024	1.651231	1.055184
6	0	-0.306888	0.548442	-0.951722
6	0	0.168535	-1.783424	-1.392946
6	0	0.009246	2.843452	0.623623
1	0	1.126037	1.620588	1.980524
6	0	-0.847087	1.790090	-1.367072
6	0	-0.386077	-0.590891	-1.784513
6	0	-0.700523	2.917451	-0.594589
1	0	0.141932	3.742029	1.224278
1	0	-1.376230	1.830052	-2.319785
1	0	-0.876906	-0.500366	-2.753190
1	0	-1.119071	3.867073	-0.922983
8	0	1.398336	-3.097533	0.128775
6	0	0.245251	-0.647691	3.661438
1	0	-0.205654	0.266509	3.249640
1	0	0.310244	-0.500523	4.747555
6	0	-0.103087	-3.109206	3.572658
6	0	-1.805451	-1.819730	4.424207
6	0	0.003899	-3.279642	5.090426
1	0	0.853328	-3.175100	3.049765
1	0	-0.785081	3.840697	325
6	0	-1.144315	-2.426045	5.660888
1	0	-2.532873	-2.542794	4.018569
1	0	-0.070458	-4.334603	5.372373
1	0	0.974726	-2.918372	5.451517
1	0	-1.870569	-3.011641	6.232744

1	0	-0.769673	-1.639966	6.328433
6	0	-2.478061	-0.481924	4.579526
1	0	-3.284051	-0.548267	5.324015
1	0	-1.764039	0.258235	4.952503
6	0	-4.458461	-0.409578	3.141987
6	0	-3.001072	1.491640	3.175018
6	0	-5.228959	0.750978	3.740338
1	0	-4.612185	-1.378680	3.630204
1	0	-4.703774	-0.523382	2.077421
6	0	-4.458958	1.953569	3.206974
1	0	-2.497464	1.799345	2.256451
1	0	-2.430943	1.877030	4.026138
1	0	-6.283920	0.746270	3.446553
1	0	-5.186416	0.711747	4.837359
1	0	-4.793176	2.195941	2.191117
1	0	-4.587664	2.851040	3.820327
7	0	-3.014590	-0.018960	3.263700
7	0	-0.718390	-1.767644	3.373657
8	0	-1.941312	-3.373821	1.134632
6	0	-3.037490	-2.236745	-0.715739
6	0	-2.447585	-3.435501	0.010570
1	0	1.889854	-3.042571	0.970645
7	0	-3.056221	-1.149861	0.000313
6	0	-3.740819	0.052390	-0.328595
8	0	-3.470927	1.071169	0.276090
8	0	-4.680857	-0.132349	-1.231401
6	0	-5.628648	0.991683	-1.592493
6	0	-6.419327	1.366351	-0.356442
1	0	-5.792860	1.843656	0.402252

1	0	-7.201938	2.078676	-0.641249
1	0	-6.909388	0.487673	0.080301
6	0	-6.514390	0.344058	-2.636644
1	0	-7.298437	1.050730	-2.929519
1	0	-5.951473	0.077780	-3.537935
1	0	-6.997684	-0.558238	-2.245453
6	0	-4.834856	2.144570	-2.171988
1	0	-4.197255	1.806318	-2.998017
1	0	-5.535893	2.883929	-2.576441
1	0	-4.214019	2.638119	-1.419136
7	0	-2.639428	-4.518113	-0.761581
6	0	-3.207525	-4.118462	-1.987166
6	0	-3.468803	-4.924398	-3.074422
6	0	-3.444442	-2.718227	-2.004284
6	0	-3.946546	-4.300634	-4.234665
1	0	-3.290509	-5.996629	-3.045897
6	0	-3.882915	-2.116346	-3.192741
6	0	-4.129872	-2.916267	-4.302141
1	0	-4.159780	-4.911144	-5.109769
1	0	-4.008786	-1.041367	-3.254601
1	0	-4.470700	-2.461308	-5.228757
6	0	-2.198774	-5.859926	-0.447576
1	0	-1.731406	-5.843864	0.538645
1	0	-3.052330	-6.544816	-0.438740
1	0	-1.467404	-6.195719	-1.190581
30	0	-1.922769	-1.182159	1.764735
53	0	0.214003	-3.421709	-2.755449

Energies:

Sum of electronic and zero-point Energies=	-2462.248098
Sum of electronic and thermal Energies=	-2462.199851
Sum of electronic and thermal Enthalpies=	-2462.198907
Sum of electronic and thermal Free Energies=	-2462.326363

Number of imaginary frequency: 0.

2. Characterization and ee Values of the Products

(S)-tert-butyl-(1-benzyl-3-ethoxy-2-oxoindolin-3-yl)carbamate (3a)

White solid, 95% yield, 96% ee, mp 121-123 °C. $[\alpha]_D^{20} = -3.00$ (c = 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.0 Hz, 1H), 7.32 (q, J = 8.1 Hz, 4H), 7.27 – 7.18 (m, 2H), 7.06 (t, J = 7.5 Hz, 1H), 6.70 (d, J = 7.8 Hz, 1H), 5.63 (s, 1H), 4.99 (d, J = 15.7 Hz, 1H), 4.84 (d, J = 15.7 Hz, 1H), 3.50 (q, J = 7.0 Hz, 2H), 1.34 (s, 9H), 1.16 (t, J = 7.0 Hz, 3H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.7, 153.3, 142.9, 135.4, 130.3, 128.8, 127.7, 127.3, 126.3, 125.8, 123.2, 109.5, 84.4, 80.6, 59.7, 44.0, 28.2, 15.3. HRMS-ESI(m/z): [M+Na]⁺ calcd for C₂₂H₂₆N₂NaO₄⁺ 405.1785, found 405.1789. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 5.2 min for (*S*)-isomer and t_R = 15.7 min for (*R*)-isomer.

(S)-tert-butyl-(3-ethoxy-1-methyl-2-oxoindolin-3-yl)carbamate (3b)⁷

White solid, 93% yield, 96% ee, mp 112-114 °C. $[\alpha]_D^{20} = -8.20$ (c = 1.00, CH₂Cl₂). Reference: $[\alpha]_D^{20} = +21$ (c = 1.0, CH₂Cl₂) for (R)-configuration. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.27 (s, 1H), 7.03 (s, 1H), 6.76 (d, J = 6.1 Hz, 1H), 5.54 (s, 1H), 3.43 – 3.35 (m, 2H), 3.13 (s, 3H), 1.23 (s, 9H), 1.06 (s, 3H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 171.4, 152.2, 142.7, 129.4, 125.3, 124.6, 122.1, 107.4, 83.3, 79.4, 58.6, 27.1, 25.2, 14.2.The ee value was determined by chiral HPLC analysis (Chiralcel IA-H, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 7.0 min for (*S*)-isomer and t_R = 12.8 min for (*R*)-isomer.

Peaks	Ret. Time	Area	Area%
1	6.613	11702370	49.234
2	12.135	12066623	50.766

(S)-tert-butyl-(3-ethoxy-1-ethyl-2-oxoindolin-3-yl)carbamate (3c)

White solid, 94% yield, 94% ee, mp 133-135 °C. $[\alpha]_D^{20} = -1.81$ (c = 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.34 (s, 1H), 7.10 (s, 1H), 6.86 (s, 1H), 5.51 (s, 1H), 3.76 (d, J = 43.8 Hz, 2H), 3.45 (s, 2H), 1.33 (s, 9H), 1.29 (s, 3H), 1.14 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.1, 153.2, 142.8, 130.3, 126.4, 126.2, 122.9, 108.5, 84.2, 80.4, 59.5, 34.8, 28.1, 15.2, 12.6. HRMS-ESI(m/z): [M+Na]⁺ calcd for C₁₇H₂₄N₂NaO₄⁺ 343.1628, found 343.1629. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 5.7 min for (*S*)-isomer and t_R = 11.4 min for (*R*)-isomer.

Peaks	Ret. Time	Area	Area%
1	5.723	7845771	50.607
2	11.247	7657623	49.393

(S)-tert-butyl-(1-allyl-3-ethoxy-2-oxoindolin-3-yl)carbamate (3d)

White solid, 92% yield, 94% ee. mp 124-126 °C. $[\alpha]_D^{20} = -11.2$ (c = 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 7.3 Hz, 1H), 7.31 (td, J = 7.8, 1.2 Hz, 1H), 7.12 - 7.07 (m, 1H), 6.83 (d, J = 7.8 Hz, 1H), 5.84 (ddd, J = 22.4, 10.4, 5.2 Hz, 1H), 5.60 (s, 1H), 5.33 - 5.20 (m, 2H), 4.43 (dd, J = 16.4, 4.9 Hz, 1H), 4.26 (dd, J = 16.3, 4.6 Hz, 1H), 3.48 (q, J = 7.0 Hz, 1H), 5.60 (s, 1H), 5.60 (s, 1H), 5.84 (s, 1H

2H), 1.33 (s, 9H), 1.15 (t, J = 7.0 Hz, 3H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.2, 153.2, 142.9, 131.0, 130.3, 126.2, 125.8, 123.1, 117.9, 109.3, 84.3, 80.4, 59.6, 42.4, 28.1, 15.2. HRMS-ESI(m/z): [M+Na]⁺ calcd for C₁₈H₂₄N₂NaO₄⁺ 355.1628, found 355.1631. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 5.4 min for (*S*)-isomer and t_R = 12.7 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-3-methoxy-2-oxoindolin-3-yl)carbamate (3e)⁷

White solid, 95% yield, 96% ee, mp 132-134 °C. $[\alpha]_D^{20} = -4.41$ (c = 1.60, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 6.1 Hz, 1H), 7.33 (s, 4H), 7.27 – 7.20 (m, 2H), 7.08 (t, J = 7.3 Hz, 1H), 6.72 (d, J = 7.7 Hz, 1H), 5.66 (s, 1H), 4.99 (d, J = 15.7 Hz, 1H), 4.84 (d, J = 15.7 Hz, 1H), 3.30 (s, 3H), 1.36 (s, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.3, 153.4, 142.9, 135.3, 130.4, 128.9, 127.8, 127.3, 126.4, 125.7, 109.5, 84.6, 80.7, 51.7, 43.9, 28.2.The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 6.4 min for (*S*)-isomer and t_R = 14.5 min for (*R*)-isomer.

Peaks	Ret. Time	Area	Area%
1	6.367	16395031	98.147
2	14.537	309501	1.853

(S)-tert-butyl -(1-benzyl-2-oxo-3-propoxyindolin-3-yl)carbamate (3f)

White solid, 90% yield, 90% ee, mp 120-122 °C. $[\alpha]_D^{20} = -7.181$ (c = 1.30, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 5.6 Hz, 1H), 7.32 (d, J = 8.9 Hz, 4H), 7.27 – 7.18 (m, 2H), 7.07 (t, J = 7.1 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H), 5.61 (s, 1H), 5.01 (d, J = 15.6 Hz, 1H), 4.82 (d, J = 15.5 Hz, 1H), 3.43 – 3.33 (m, 2H), 1.55 (q, J = 6.6 Hz, 2H), 1.34 (s, 9H), 0.86 (t, J = 6.8 Hz, 3H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.7, 153.2, 143.0, 135.4, 130.3, 128.8, 127.7, 127.3, 126.3, 125.8, 123.1, 109.5, 84.4, 80.5, 65.6, 43.9, 28.2, 22.9, 10.5. HRMS-ESI(m/z): [M+Na]⁺ calcd for C₂₃H₂₈N₂NaO₄⁺ 419.1941, found 419.1945. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 5.1 min for (*S*)-isomer and t_R = 13.0 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-3-isopropoxy-2-oxoindolin-3-yl)carbamate (3g)

White solid, 70% yield, 83% ee, mp 103-105 °C. $[\alpha]_D^{20} = +1.025$ (c = 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 6.4 Hz, 1H), 7.32 (d, J = 6.6 Hz, 4H), 7.23 (dd, J = 15.2, 7.4 Hz, 2H), 7.06 (t, J = 7.6 Hz, 1H), 6.71 (d, J = 7.8 Hz, 1H), 5.55 (s, 1H), 5.06 (d, J = 15.7 Hz, 1H), 4.77 (d, J = 15.7 Hz, 1H), 4.08 (p, J = 6.1 Hz, 1H), 1.35 (s, 9H), 1.12 (d, J = 6.2 Hz, 3H), 1.05 (d, J = 6.1 Hz, 3H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 173.2, 153.2, 142.7, 135.4, 130.2, 128.8, 127.7, 127.3, 127.0, 126.1, 123.1, 109.4, 83.8, 80.5, 67.1, 43.9, 28.2, 23.8, 23.6. HRMS-ESI(m/z): [M+Na]⁺ calcd for C₂₃H₂₈N₂NaO₄⁺ 419.1941, found 419.1942. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 4.8 min for (*S*)-isomer and t_R = 7.8 min for(*R*)-isomer.

(S)-tert-butyl-(1-benzyl-3-butoxy-2-oxoindolin-3-yl)carbamate (3h)

White solid, 92% yield, 95% ee, mp 113-115 °C. $[\alpha]_D^{20} = -11.74$ (c = 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 6.0 Hz, 1H), 7.32 (d, J = 8.2 Hz, 4H), 7.24 (dt, J = 15.2, 6.6 Hz, 2H), 7.07 (t, J = 7.3 Hz, 1H), 6.71 (d, J = 7.6 Hz, 1H), 5.58 (s, 1H), 5.02 (d, J = 15.7 Hz, 1H), 4.82 (d, J = 15.6 Hz, 1H), 3.41 (q, J = 6.7 Hz, 2H), 1.54 - 1.74 (m, 2H), 1.34 (s, 9H), 0.84 (t, J = 7.2 Hz, 3H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.7, 153.2, 143.0, 130.3, 128.8, 127.7, 127.3, 126.3, 125.8, 123.1, 109.4, 84.4, 80.5, 63.7, 43.9, 31.6, 28.2, 19.1, 13.8.

HRMS-ESI(m/z): $[M+Na]^+$ calcd for $C_{24}H_{30}N_2NaO_4^+$ 433.2098, found 433.2101. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 5.1 min for (*S*)-isomer and t_R = 18.3 min for (*R*)-isomer.

Peaks	Ret. Time	Area	Area%
1	5.117	5086932	97.626
2	18.257	123716	2.374

(S)-tert-butyl-(1-benzyl-3-(benzyloxy)-2-oxoindolin-3-yl)carbamate (3i)⁸

White solid, 90% yield, 89% ee mp 110-112 °C. $[\alpha]_D^{20} = +0.434$ (c = 1.20, CH₂Cl₂). ¹H NMR

(400 MHz, CDCl₃) δ 7.81 (d, J = 6.9 Hz, 1H), 7.31 (d, J = 6.5 Hz, 4H), 7.29 – 7.20 (m, 7H), 7.08 (t, J = 7.5 Hz, 1H), 6.71 (d, J = 7.9 Hz, 1H), 5.70 (s, 1H), 4.96 (d, J = 15.7 Hz, 1H), 4.84 (d, J = 15.7 Hz, 1H), 4.60 – 4.51 (m, 2H), 1.36 (s, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.4, 153.3, 142.9, 137.2, 135.3, 130.5, 128.9, 128.3, 128.0, 127.8, 127.8, 127.3, 126.4, 126.2, 123.3, 109.6, 84.4, 80.7, 66.1, 44.0, 29.7, 28.2. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 6.8 min for (*S*)-isomer and t_R = 18.6 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-3-(but-3-en-1-yloxy)-2-oxoindolin-3-yl)carbamate (3j)

White solid, 96% yield, 97% ee, mp 100-102 °C. $[\alpha]_D^{20} = -3.315$ (c = 1.20, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.0 Hz, 1H), 7.32 (t, J = 8.3 Hz, 4H), 7.26 – 7.18 (m, 2H), 7.06 (t, J = 7.5 Hz, 1H), 6.70 (d, J = 7.8 Hz, 1H), 5.74 (dd, J = 17.0, 10.2, 6.7 Hz, 1H), 5.64 (s, 1H), 5.02 (dd, J = 15.6, 9.9 Hz, 3H), 4.81 (d, J = 15.7 Hz, 1H), 3.49 (t, J = 6.8 Hz, 2H), 2.29 (q, J = 6.8 Hz, 2H), 1.34 (s, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.5, 153.3, 142.9, 135.4, 134.6, 130.4, 128.8, 127.7, 127.3, 126.2, 125.9, 123.2, 116.8, 109.5, 84.4, 80.6, 63.4, 43.9, 34.0, 28.2. HRMS-ESI(m/z): [M+Na]⁺ calcd for C₂₄H₂₈N₂NaO₄⁺ 431.1941, found 431.1946. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 80/20 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 6.2 min for (*S*)-isomer and t_R = 23.4 min for (*R*)-isomer.

Peaks	Ret. Time	Area	Area%
1	6.202	17509036	98.651
2	23.358	239508	1.349

(S)-tert-butyl-(1-benzyl-2-oxo-3-((4-(trifluoromethyl)benzyl)oxy)indolin-3-yl)carbamate (3k)

White solid, 97% yield, 90% ee, mp 136-138 °C. $[\alpha]_D^{20} = -9.063$ (c = 1.20, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 6.3 Hz, 1H), 7.53 (d, J = 7.9 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.36 – 7.20 (m, 6H), 7.08 (t, J = 7.5 Hz, 1H), 6.74 (d, J = 7.8 Hz, 1H), 5.89 (s, 1H), 4.95 (d, J = 15.7 Hz, 1H), 4.83 (d, J = 15.7 Hz, 1H), 4.68 (s, 2H), 1.37 (s, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.2, 153.4, 142.7, 141.5, 135.2, 130.6, 129.8 (q, ²*J*_{C-F} = 32.5 Hz), 128.9, 127.9, 127.3, 126.8, 126.7, 126.2, 125.2 (q, ³*J*_{C-F} = 3.7 Hz), 124.2 (q, ¹*J*_{C-F} = 272.0 Hz), 123.5, 84.3, 80.9, 65.2, 44.0, 28.2. ¹⁹F NMR (CDCl₃) δ -62.5. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₈H₂₇F₃N₂NaO₄⁺ 535.1815, found 535.1821. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 6.7 min for (*S*)-isomer and t_R = 25.4 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-3-(cinnamyloxy)-2-oxoindolin-3-yl)carbamate (3l)

White solid, 94% yield, 93% ee, mp 106-108 °C. $[\alpha]_D^{20} = -7.66$ (c = 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 5.9 Hz, 1H), 7.30 (d, J = 11.3 Hz, 9H), 7.23 (d, J = 7.0 Hz, 2H), 7.09 (t, J = 7.3 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H), 6.49 (d, J = 15.9 Hz, 1H), 6.26 – 6.16 (m, 1H), 5.67 (s, 1H), 4.91 (d, J = 16.7 Hz, 2H), 4.22 (d, J = 5.7 Hz, 2H), 1.37 (s, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.5, 153.3, 142.8, 136.5, 135.3, 132.9, 130.5, 128.9, 128.5, 127.8, 127.3, 126.6, 126.4, 126.1, 125.0, 123.3, 109.6, 84.2, 80.7, 65.1, 44.0, 28.2. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₉H₃₀N₂NaO₄⁺ 493.2098, found 493.2101. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 8.0 min for (*S*)-isomer and t_R = 28.9 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-5-chloro-3-ethoxy-2-oxoindolin-3-yl)carbamate (3m)

White solid, 98% yield, 99% ee, mp 165-167 °C. $[\alpha]_D^{20} =+9.98$ (c = 1.20, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.65 (m, 1H), 7.35 – 7.27 (m, 5H), 7.19 (dd, J = 8.4, 2.2 Hz, 1H), 6.61 (d, J = 8.3 Hz, 1H), 5.57 (s, 1H), 4.98 – 4.82 (m, 2H), 3.52 (q, J = 7.0 Hz, 2H), 1.38 (s, 9H), 1.17 (t, J = 7.0 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.3, 153.2, 141.4, 134.9, 127.9, 127.2, 126.2, 110.5, 84.2, 80.9, 59.8, 44.1, 28.2, 15.2. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₂H₂₅ClN₂NaO₄⁺ 439.1395, found 439.1400. The ee value was determined by

chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 4.7 min for (*S*)-isomer and t_R = 11.4 min for (*R*)-isomer.

Peaks	Ret. Time	Area	Area%
1	4.733	15443537	99.277
2	11.377	112431	0.723

(S)-tert-butyl-(1-benzyl-6-chloro-3-ethoxy-2-oxoindolin-3-yl)carbamate (3n)

White solid, 97% yield, 97% ee, mp 148-150 °C. $[\alpha]_D^{20} = -7.13$ (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz,CDCl₃) δ 7.61 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 3.0 Hz, 5H), 7.04 (dd, J = 8.0, 1.8

Hz, 1H), 6.70 (d, J = 1.6 Hz, 1H), 5.60 (s, 1H), 4.95 (d, J = 15.8 Hz, 1H), 4.83 (d, J = 15.8 Hz, 1H), 3.49 (q, J = 7.0 Hz, 2H), 1.36 (s, 9H), 1.16 (t, J = 7.0 Hz, 3H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.7, 153.3, 144.2, 136.1, 134.8, 129.0, 127.9, 127.2, 126.9, 124.7, 123.1, 110.1, 83.9, 80.8, 59.8, 44.1, 28.2, 15.2. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₂H₂₅ClN₂NaO₄⁺ 439.1395, found 439.1397. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 4.7 min for (*S*)-isomer and t_R = 9.0 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-7-chloro-3-ethoxy-2-oxoindolin-3-yl)carbamate (30)

White solid, 97% yield, 99% ee, mp 143-145 °C. $[\alpha]_D^{20} = -7.13$ (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 7.1 Hz, 1H), 7.30 (d, J = 4.4 Hz, 4H), 7.22 (td, J = 8.3, 2.7 Hz, 2H), 7.05 – 7.00 (m, 1H), 5.54 (s, 1H), 5.35 (d, J = 3.2 Hz, 2H), 3.49 (q, J = 7.0 Hz, 2H), 1.35 (s, 9H), 1.15 (t, J = 7.0 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 173.3, 153.1, 139.1, 137.2, 133.0, 129.6, 128.6, 127.2, 126.5, 124.1, 123.9, 115.8, 83.6, 80.9, 59.8, 45.1, 28.1, 15.2. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₂H₂₅ClN₂NaO₄⁺ 439.1395, found 439.1400. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 4.9 min for (*S*)-isomer and t_R = 13.0 min for (*R*)-isomer.

Peaks	Ret. Time	Area	Area%
1	4.860	16841351	99.716
2	12.972	47945	0.284

(S)-tert-butyl-(1-benzyl-5-bromo-3-ethoxy-2-oxoindolin-3-yl)carbamate (3p)

White solid, 96% yield, 99% ee, mp 170-172 °C. $[\alpha]_D^{20} = +7.86$ (c = 1.40, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.77 (m, 1H), 7.35 – 7.27 (m, 6H), 6.56 (d, J = 8.3 Hz, 1H), 5.55 (s, 1H), 4.95 (d, J = 15.8 Hz, 1H), 4.85 (d, J = 15.8 Hz, 1H), 3.52 (q, J = 7.0 Hz, 2H), 1.38 (s, 9H), 1.17 (t, J = 7.0 Hz, 3H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.1, 153.2, 141.9, 134.9, 133.1, 128.9, 128.9, 128.4, 127.9, 127.2, 116.1, 111.0, 84.1, 80.9, 59.8, 44.0, 28.2, 15.2. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₂H₂₅BrN₂NaO₄⁺ 483.0890, found 483.0896. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 5.0 min for (*S*)-isomer and t_R = 12.6 min for (*R*)-isomer.

Peaks	Ret. Time	Area	Area%
1	5.102	3651149	49.373
2	14.583	3743865	50.627

(S)-tert-butyl-(1-benzyl-6-bromo-3-ethoxy-2-oxoindolin-3-yl)carbamate (3q)

White solid, 96% yield, 99% ee, mp 141-143 °C. $[\alpha]_D^{20} = -2.81$ (c = 1.10, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 7.8 Hz, 1H), 7.31 (d, J = 10.0 Hz, 5H), 7.22 – 7.19 (m, 1H), 6.86 – 6.83 (m, 1H), 5.61 (s, 1H), 4.94 (d, J = 15.8 Hz, 1H), 4.83 (d, J = 15.8 Hz, 1H), 3.49 (q, J = 7.0 Hz, 2H), 1.36 (s, 9H), 1.15 (t, J = 7.0 Hz, 3H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.6, 153.3, 144.3, 134.8, 129.0, 127.9, 127.2, 126.1, 125.2, 124.1, 112.9, 84.0, 80.8, 59.8, 44.1, 28.2, 15.2. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₂H₂₅BrN₂NaO₄⁺ 483.0890, found 483.0894. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 4.8 min for (*S*)-isomer and t_R = 9.3 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-7-bromo-3-ethoxy-2-oxoindolin-3-yl)carbamate (3r)

White solid, 95% yield, 97% ee, mp 143-147 °C. $[\alpha]_D^{20} = -11.00$ (c = 1.20, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.1 Hz, 1H), 7.42 – 7.38 (m, 1H), 7.33 – 7.28 (m, 4H), 7.24 (d, J = 6.0 Hz, 1H), 6.96 (t, J = 7.8 Hz, 1H), 5.55 (s, 1H), 5.44 (d, J = 16.5 Hz, 1H), 5.37 (d, J = 16.5 Hz, 1H), 3.50 (q, J = 7.0 Hz, 2H), 1.35 (s, 9H), 1.15 (t, J = 7.0 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 173.5, 153.1, 140.6, 137.1, 136.4, 130.0, 128.6, 127.1, 126.4, 124.5, 102.8, 83.5, 80.9, 59.8, 44.8, 28.1, 15.2. HRMS-ESI(m/z): [M+Na]⁺ calcd for C₂₂H₂₅BrN₂NaO₄⁺ 483.0890, found 483.0892. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 4.9 min for (*S*)-isomer and t_R = 14.3 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-3-ethoxy-5-fluoro-2-oxoindolin-3-yl)carbamate (3s)

White solid, 93% yield, 98% ee, mp 130-132 °C. $[\alpha]_D^{20} = -11.53$ (c = 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 6.1 Hz, 1H), 7.23 (d, J = 4.3 Hz, 4H), 7.20 – 7.16 (m, 1H), 6.82 (td, J = 8.8, 2.7 Hz, 1H), 6.52 (dd, J = 8.6, 4.0 Hz, 1H), 5.58 (s, 1H), 4.87 (d, J = 15.8 Hz, 1H), 4.77 (d, J = 15.8 Hz, 1H), 3.45 (q, J = 7.0 Hz, 2H), 1.29 (s, 9H), 1.09 (t, J = 7.0 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.4, 159.4 (d, ¹*J*_{*C*-*F*} = 242.0 Hz), 153.3, 138.7, 135.0, 128.9, 128.1 (d, ³*J*_{*C*-*F*} = 8.2 Hz), 127.8, 127.2, 116.6 (d, ²*J*_{*C*-*F*} = 23.7 Hz), 114.2 (d,
${}^{2}J_{C-F} = 25.3$ Hz), 110.1 (d, ${}^{3}J_{C-F} = 7.8$ Hz), 84.2, 80.8, 59.8, 44.1, 28.2, 15.2. 19 F NMR (CDCl₃) δ -119.4. HRMS-ESI(m/z): [M+Na]⁺ calcd for C₂₂H₂₅FN₂NaO₄⁺ 423.1691, found 423.1690. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 4.8min for (*S*)-isomer and t_R = 11.1 min for (*R*)-isomer.

White solid, 94% yield, 92% ee, mp 145-147 °C. $[\alpha]_D^{20} = +13.52$ (c = 1.00, CH₂Cl₂). ¹H

NMR (400 MHz, CDCl₃) δ 7.68 – 7.60 (m, 1H), 7.33 (d, J = 5.7 Hz, 5H), 6.77 – 6.70 (m, 1H), 6.46 – 6.40 (m, 1H), 5.55 (s, 1H), 4.95 (d, J = 15.8 Hz, 1H), 4.83 (d, J = 15.8 Hz, 1H), 3.49 (q, J = 7.0 Hz, 2H), 1.37 (s, 9H), 1.17 (t, J = 7.0 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 173.0, 164.1 (d, ¹*J*_{*C*-*F*} = 248.1 Hz), 153.3, 144.7 (d, ³*J*_{*C*-*F*} = 11.5 Hz), 134.8, 129.5, 129.0, 127.9, 127.4 (d, ³*J*_{*C*-*F*} = 14.9 Hz), 121.8, 109.3 (d, ²*J*_{*C*-*F*} = 22.5 Hz), 98.4 (d, ²*J*_{*C*-*F*} = 27.9 Hz), 83.9, 80.7, 59.7, 44.1, 28.2, 15.2. ¹⁹F NMR (CDCl₃) δ -108.6. HRMS-ESI(m/z): [M+Na]⁺ calcd for C₂₂H₂₅FN₂NaO₄⁺ 423.1691, found 423.1694. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 4.7min for (*S*)-isomer and t_R = 9.3 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-3-ethoxy-7-fluoro-2-oxoindolin-3-yl)carbamate (3u)

White solid, 89% yield, 96% ee, mp 150-152 °C. $[\alpha]_D^{20} = -3.32$ (c = 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.38 (d, J = 7.3 Hz, 2H), 7.34 – 7.27 (m, 3H), 7.05 – 6.98 (m, 2H), 5.52 (s, 1H), 5.11 (d, J = 15.3 Hz, 1H), 5.00 (d, J = 15.3 Hz, 1H), 3.45 (q, J = 7.0 Hz, 2H), 1.34 (s, 9H), 1.14 (t, J = 7.0 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.5, 153.1, 147.6 (d, ¹J_{C-F} = 244.9 Hz), 136.6, 129.6 (d, ³J_{C-F} = 8.8 Hz), 129.3, 128.6, 127.6 (d, ²J_{C-F} = 10.5 Hz), 123.9 (d, ³J_{C-F} = 6.3 Hz), 121.4, 118.6 (d, ²J_{C-F} = 19.6 Hz), 84.2, 80.8, 59.8, 45.7, 28.1, 15.2. ¹⁹F NMR (CDCl₃) δ -133.5. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₂H₂₅FN₂NaO₄⁺ 423.1691, found 423.1690. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 5.0 min for (*S*)-isomer and t_R = 15.2 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-3-ethoxy-5-methoxy-2-oxoindolin-3-yl)carbamate (3v)

White solid, 93% yield, 98% ee, mp 102-104 °C. $[\alpha]_D^{20} = +5.84$ (c = 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (t, J = 5.6 Hz, 5H), 7.24 (dd, J = 5.7, 1.8 Hz, 1H), 6.74 (dd, J = 8.5, 2.4 Hz, 1H), 6.59 (d, J = 8.5 Hz, 1H), 5.63 (s, 1H), 4.96 (d, J = 15.7 Hz, 1H), 4.83 (d, J = 15.6 Hz, 1H), 3.76 (d, J = 1.5 Hz, 3H), 3.51 (q, J = 7.0 Hz, 2H), 1.36 (s, 9H), 1.17 (t, J = 7.0 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.4, 156.3, 153.3, 136.2, 135.4, 128.8, 127.7, 127.5, 127.3, 115.0, 112.7, 110.0, 84.6, 80.6, 59.7, 55.8, 44.0, 29.7, 28.2, 15.3. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₃H₂₈N₂NaO₅⁺ 435.1890, found 435.1894. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 5.5 min for (*S*)-isomer and t_R = 19.2 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-3-ethoxy-6-methoxy-2-oxoindolin-3-yl)carbamate (3w)

White solid, 89% yield, 87% ee, mp 130-133 °C. $[\alpha]_D^{20}$ = +3.07 (c = 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.3 Hz, 1H), 7.25 – 7.13 (m, 5H), 6.45 (dd, J = 8.3, 2.2 Hz, 1H), 6.20 (d, J = 2.2 Hz, 1H), 5.55 (s, 1H), 4.86 (d, J = 15.7 Hz, 1H), 4.73 (d, J = 15.7 Hz, 1H), 3.62 (s, 3H), 3.38 (qd, J = 7.0, 5.2 Hz, 2H), 1.27 (s, 9H), 1.06 (t, J = 7.0 Hz, 3H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 173.3, 161.6, 153.4, 144.4, 135.4, 128.8, 127.7, 127.3, 127.0, 118.1, 106.5, 97.7, 84.3, 80.4, 59.6, 55.4, 44.0, 28.2, 15.3. HRMS-ESI (m/z): [M+Na]⁺ calcd

for $C_{23}H_{28}N_2NaO_5^+$ 435.1890, found 435.1892. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 5.6 min for (*S*)-isomer and t_R = 14.9 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-3-ethoxy-7-methoxy-2-oxoindolin-3-yl)carbamate (3x)

White solid, 92% yield, 96% ee, mp 143-145 °C. $[\alpha]_D^{20} = -6.47$ (c = 1.20, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 7.3 Hz, 2H), 7.27 (t, J = 7.3 Hz, 3H), 7.20 (t, J = 7.2 Hz,

1H), 7.03 (t, J = 7.9 Hz, 1H), 6.86 (d, J = 8.3 Hz, 1H), 5.58 (s, 1H), 5.18 (s, 2H), 3.64 (s, 3H), 3.43 (q, J = 7.0 Hz, 2H), 1.33 (s, 9H), 1.12 (t, J = 7.0 Hz, 3H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 173.1, 153.2, 145.2, 138.1, 131.0, 128.3, 128.0, 127.3, 127.0, 123.9, 118.1, 114.6, 84.3, 80.5, 59.6, 55.8, 46.0, 28.1, 15.2. HRMS-ESI(m/z): [M+Na]⁺ calcd for C₂₃H₂₈N₂NaO₅⁺ 435.1890, found 435.1893. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 5.4 min for (*S*)-isomer and t_R = 25.5 min for (*R*)-isomer.

25.452

2

458343

1.979

(S)-tert-butyl-(1-benzyl-3-ethoxy-5-methyl-2-oxoindolin-3-yl)carbamate (3y)

White solid, 89% yield, 98% ee, mp 132-136 °C. $[\alpha]_D^{20} = +1.31$ (c = 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.34 – 7.28 (m, 4H), 7.26 – 7.22 (m, 1H), 7.03 – 6.99 (m, 1H), 6.58 (d, J = 8.0 Hz, 1H), 5.57 (s, 1H), 4.96 (d, J = 15.7 Hz, 1H), 4.83 (d, J = 15.7 Hz, 1H), 3.50 (q, J = 7.0 Hz, 2H), 2.31 (s, 3H), 1.36 (s, 9H), 1.16 (t, J = 7.0 Hz, 3H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.6, 153.3, 140.5, 135.5, 132.8, 130.6, 128.8, 127.6, 127.3, 126.5, 109.2, 84.5, 80.5, 59.6, 43.9, 28.2, 21.1, 15.3. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₃H₂₈N₂NaO₄⁺ 419.1941, found 419.1946. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 4.8 min for (*S*)-isomer and t_R = 18.0 min for (*R*)-isomer.

Peaks	Ret. Time	Area	Area%
1	4.805	7550686	98.925
2	17.993	82084	1.075

(S)-tert-butyl-(1-benzyl-3-ethoxy-7-methyl-2-oxoindolin-3-yl)carbamate (3z)

White solid, 89% yield, 97% ee, mp 144-146 °C. $[\alpha]_D^{20} = -2.93$ (c = 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.47 (m, 1H), 7.34 – 7.27 (m, 3H), 7.26 – 7.21 (m, 2H), 7.02 – 6.98 (m, 2H), 5.58 (s, 1H), 5.19 (s, 2H), 3.54 (q, J = 7.0 Hz, 2H), 2.23 (s, 3H), 1.36 (s, 9H), 1.17 (t, J = 7.0 Hz, 3H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 173.7, 153.3, 141.1, 137.3, 134.5, 128.9, 127.2, 125.8, 123.3, 123.2, 120.1, 83.8, 80.5, 59.6, 45.3, 28.2, 18.8, 15.3. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₃H₂₈N₂NaO₄⁺ 419.1941, found 419.1941. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 5.0 min for (*S*)-isomer and t_R = 15.7 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-3-ethoxy-5-nitro-2-oxoindolin-3-yl)carbamate (3')

White solid, 92% yield, 96% ee, mp 120-122 °C. $[\alpha]_D^{20}$ = +6.72 (c = 1.20, CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 2.3 Hz, 1H), 8.18 (dd, J = 8.7, 2.3 Hz, 1H), 7.34 (d, J = 4.5 Hz, 4H), 7.29 (dd, J = 9.5, 4.5 Hz, 1H), 6.80 (d, J = 8.7 Hz, 1H), 5.75 (s, 1H), 5.04 – 4.93 (m, 2H), 3.59 (q, J = 7.0 Hz, 2H), 1.38 (s, 9H), 1.19 (t, J = 7.0 Hz, 3H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 172.8, 153.3, 148.5, 143.8, 134.3, 129.1, 128.1, 127.6, 127.2, 121.1, 109.4, 83.7, 81.3, 60.1, 44.3, 28.2, 15.2. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₂H₂₅N₃NaO₆⁺ 450.1636, found 450.1640. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 70/30 flow rate = 1.0 mL/min, λ = 220 nm). Retention times: t_R = 5.3 min for (*S*)-isomer and t_R = 11.0 min for (*R*)-isomer.

Peaks	Ret. Time	Area	Area%
1	5.278	2976587	50.158
2	11.353	2957798	49.842

(S)-tert-butyl-(3-(tert-butylperoxy)-1-methyl-2-oxoindolin-3-yl)carbamate (4a)⁹

White solid, 83% yield, 94% ee, mp 97-99 °C. $[\alpha]_D^{20} = +8.76$ (c = 2.60, CH₂Cl₂). $[\alpha]_D^{20} = +1.83$ (c = 2.00, CHCl₃). Reported results for (R)-**4a**: $[\alpha]_D^{22} = -3.8$ (c 1.0, CHCl₃, 84% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (s, 1H), 7.25 (t, J = 7.4 Hz, 1H), 6.97 (t, J = 7.5 Hz, 1H), 6.73 (d, J = 7.7 Hz, 1H), 5.83 (s, 1H), 3.09 (s, 3H), 1.23 (s, 9H), 1.07 (s, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 170.1, 153.0, 143.8, 130.6, 127.1, 125.3, 122.5, 108.2, 87.2, 81.3, 80.4, 28.0, 26.2. The ee value was determined by chiral HPLC analysis (Chiralcel AD-H, hexane/i-PrOH = 80/20 flow rate = 1.0 mL/min, λ = 254 nm). Retention times: t_R = 5.0 min for (*S*)-isomer and t_R = 7.0 min for (*R*)-isomer.

(S)-tert-butyl-(3-(tert-butylperoxy)-1-ethyl-2-oxoindolin-3-yl)carbamate (4b)

White solid, 84% yield, 92% ee, mp 108-110 °C. $[\alpha]_D^{20} = +7.50$ (c = 4.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 6.5 Hz, 1H), 7.34 (td, J = 7.8, 1.2 Hz, 1H), 7.08 – 7.03 (m, 1H), 6.84 (d, J = 7.8 Hz, 1H), 5.86 (s, 1H), 3.83 (dq, J = 14.4, 7.2 Hz, 1H), 3.68 (dt, J = 14.2, 7.1 Hz, 1H), 1.34 (s, 9H), 1.27 (t, J = 7.2 Hz, 3H), 1.15 (s, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 170.0, 153.2, 143.0, 130.6, 127.6, 125.4, 122.4, 108.3, 87.1, 81.3, 80.4, 34.9, 28.1, 26.2, 12.5. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₉H₂₈N₂NaO₅⁺ 387.1890, found 387.1893.

The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 80/20 flow rate = 1.0 mL/min, λ = 254 nm). Retention times: t_R = 4.4 min for (*S*)-isomer and t_R = 6.1 min for (*R*)-isomer.

(S)-tert-butyl-(1-allyl-3-(tert-butylperoxy)-2-oxoindolin-3-yl)carbamate (4c)

Yellow oil, 85% yield, 91% ee. $[\alpha]_D^{20} = +4.34$ (c = 1.20, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.66 (m, 1H), 7.23 (t, J = 7.5 Hz, 1H), 6.98 (t, J = 7.4 Hz, 1H), 6.72 (d, J =

7.6 Hz, 1H), 5.79 (s, 2H), 5.16 (dd, J = 28.3, 13.7 Hz, 2H), 4.40 (d, J = 16.3 Hz, 1H), 4.11 (d, J = 16.1 Hz, 1H), 1.27 (s, 9H), 1.07 (s, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 170.2, 153.1, 143.1, 130.8, 130.5, 127.3, 125.3, 122.5, 117.5, 109.1, 87.2, 81.4, 80.5, 42.3, 28.1, 26.2. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₀H₂₈N₂NaO₅⁺ 399.1890, found 399.1893. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 80/20 flow rate = 1.0 mL/min, λ = 254 nm). Retention times: t_R = 4.5 min for (*S*)-isomer and t_R = 6.6 min for (*R*)-isomer.

6.587

2

198900

4.643

(S)-tert-butyl-(1-benzyl-3-(tert-butylperoxy)-2-oxoindolin-3-yl)carbamate (4d)¹⁰

White solid, 86% yield, 97% ee, mp 107-109 °C. $[\alpha]_D^{20} = -6.87$ (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 6.5 Hz, 1H), 7.30 (d, J = 8.0 Hz, 4H), 7.26 – 7.18 (m, 2H), 7.04 (d, J = 7.3 Hz, 1H), 6.65 (d, J = 7.8 Hz, 1H), 5.89 (s, 1H), 5.09 (d, J = 15.9 Hz, 1H), 4.75 (d, J = 15.9 Hz, 1H), 1.36 (s, 9H), 1.16 (s, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 170.7, 153.2, 143.1, 135.2, 130.5, 128.9, 128.7, 127.6, 127.4, 127.1, 125.3, 122.6, 109.3, 87.3, 81.5, 80.7, 43.9, 28.1, 26.3. The ee value was determined by chiral HPLC analysis (Chiralcel AD-H, hexane/i-PrOH = 80/20 flow rate = 1.0 mL/min, λ = 254 nm). Retention times: t_R = 6.6 min for (*S*)-isomer and t_R = 21.4 min for (*R*)-isomer.

Peaks	Ret. Time	Area	Area%
1	6.555	8693882	98.299
2	21.415	150446	1.701

(S)-tert-butyl-(1-benzyl-3-(tert-butylperoxy)-5-chloro-2-oxoindolin-3-yl)carbamate (4e)

White solid, 87% yield, 97% ee, mp 140-142 °C. $[\alpha]_D^{20} = -7.30$ (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.29 (s, 5H), 7.17 (d, J = 8.3 Hz, 1H), 6.56 (d, J = 8.3 Hz, 1H), 5.88 (s, 1H), 5.06 (d, J = 15.9 Hz, 1H), 4.75 (d, J = 15.9 Hz, 1H), 1.39 (s, 9H), 1.17 (s, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 170.3, 153.2, 141.6, 134.8, 130.3, 128.8, 128.1, 127.8, 127.0, 110.3, 87.1, 81.8, 81.0, 53.5, 44.0, 29.7, 28.2, 26.3. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₄H₂₉ClN₂NaO₅⁺ 483.1657, found 483.1661. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 80/20 flow rate = 1.0 mL/min, λ = 254 nm). Retention times: t_R = 5.6 min for (*S*)-isomer and t_R = 8.8 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-3-(tert-butylperoxy)-6-chloro-2-oxoindolin-3-yl)carbamate (4f)

White solid, 74% yield, 92% ee, mp 114-116 °C. $[\alpha]_D^{20} = -2.59$ (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 1H), 7.30 (d, J = 4.0 Hz, 4H), 7.25 (s, 1H), 7.01 (d, J = 8.0 Hz, 1H), 6.65 (s, 1H), 5.90 (s, 1H), 5.06 (d, J = 16.0 Hz, 1H), 4.73 (d, J = 16.0 Hz, 1H), 1.38 (s, 9H), 1.16 (s, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 170.7, 153.2, 144.3, 136.3, 134.7, 128.9, 127.8, 127.0, 123.7, 122.6, 109.9, 86.8, 81.7, 80.9, 53.5, 44.0, 28.1, 26.3. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₄H₂₉ClN₂NaO₅⁺ 483.1657, found 483.1658. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 80/20 flow rate = 1.0 mL/min, λ = 254 nm). Retention times: t_R = 6.3 min for (*S*)-isomer and t_R = 9.0 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-3-(tert-butylperoxy)-7-chloro-2-oxoindolin-3-yl)carbamate (4g)

White solid, 84% yield, 90% ee, mp 125-127 °C. $[\alpha]_D^{20} = -3.81$ (c = 1.8, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 5.7 Hz, 1H), 7.20 (s, 4H), 7.10 (d, J = 8.2 Hz, 2H), 6.89 (t, J = 7.6 Hz, 1H), 5.81 (s, 1H), 5.31 (d, J = 16.3 Hz, 1H), 5.23 (d, J = 16.3 Hz, 1H), 1.28 (s, 9H), 1.07 (s, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 171.2, 153.1, 139.2, 137.1, 133.2, 129.5, 128.5, 127.1, 126.4, 125.5, 123.6, 115.5, 86.6, 81.8, 81.0, 45.1, 28.1, 26.3. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₄H₂₉ClN₂NaO₅⁺ 483.1657, found 483.1662. The ee value was

determined by chiral HPLC analysis (Chiralcel IA-H, hexane/i-PrOH = 80/20 flow rate = 1.0 mL/min, $\lambda = 254$ nm). Retention times: $t_R = 5.5$ min for (S)-isomer and $t_R = 10.6$ min for (R)-isomer.

(S)-tert-butyl-(1-benzyl-5-bromo-3-(tert-butylperoxy)-2-oxoindolin-3-yl) carbamate (4h)

White solid, 89% yield, 96% ee, mp 142-144 °C. $[\alpha]_D^{20} = -10.25$ (c = 2.4, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.32 (dd, J = 8.3, 2.1 Hz, 1H), 7.29 (d, J = 4.5 Hz, 4H), 7.25 (dd, J = 8.9, 4.7 Hz, 1H), 6.51 (d, J = 8.3 Hz, 1H), 5.87 (s, 1H), 5.06 (d, J = 16.0 Hz, 1H), 4.75 (d, J = 16.0 Hz, 1H), 1.39 (s, 9H), 1.17 (s, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ

170.2, 153.2, 142.1, 134.7, 133.3, 130.5, 128.8, 127.8, 127.0, 115.4, 110.9, 87.0, 81.8, 81.0, 44.0, 28.2, 26.3. HRMS-ESI (m/z): $[M+Na]^+$ calcd for $C_{24}H_{29}BrN_2NaO_5^+$ 527.1152, found 527.1157. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 80/20 flow rate = 1.0 mL/min, λ = 254 nm). Retention times: t_R = 5.7 min for (*S*)-isomer and t_R = 9.5 min for (*R*)-isomer.

Peaks	Ret. Time	Area	Area%
1	5.688	13622732	98.505
2	9.485	206735	1.495

S55

(S)-tert-butyl-(1-benzyl-6-bromo-3-(tert-butylperoxy)-2-oxoindolin-3-yl)carbamate (4i)

White solid, 75% yield, 86% ee, mp 114-116 °C. $[\alpha]_D^{20} =+4.50$ (c = 2.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 7.8 Hz, 1H), 7.30 (d, J = 4.4 Hz, 4H), 7.25 (d, J = 4.6 Hz, 1H), 7.17 (dd, J = 8.0, 1.6 Hz, 1H), 6.80 (d, J = 1.6 Hz, 1H), 5.91 (s, 1H), 5.05 (d, J = 16.0 Hz, 1H), 4.72 (d, J = 16.0 Hz, 1H), 1.38 (s, 9H), 1.16 (s, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 170.6, 153.2, 144.4, 134.6, 128.9, 127.8, 124.4, 112.7, 86.8, 81.7, 80.9, 43.9, 28.2, 26.3. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₄H₂₉BrN₂NaO₅⁺ 527.1152, found 527.1157. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 80/20 flow rate = 1.0 mL/min, λ = 254 nm). Retention times: t_R = 6.1 min for (*S*)-isomer and t_R = 8.1 min for (*R*)-isomer.

Peaks	Ret. Time	Area	Area%
1	6.078	6405098	92.727
2	8.085	502371	7.273

(S)-tert-butyl-(1-benzyl-3-(tert-butoxymethyl)-5-fluoro-2-oxoindolin-3-yl)carbamate (4j)

White solid, 89% yield, 94% ee, mp 113-115 °C. $[\alpha]_D^{20} = -15.34$ (c = 2.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 6.7 Hz, 1H), 7.29 (d, J = 4.4 Hz, 5H), 6.90 (td, J = 8.8, 2.7 Hz, 1H), 6.55 (dd, J = 8.6, 4.1 Hz, 1H), 5.89 (s, 1H), 5.07 (d, J = 16.0 Hz, 1H), 4.74 (d, J = 16.0 Hz, 1H), 1.39 (s, 9H), 1.17 (s, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 170.5, 159.0 (d, ¹*J*_{*C*-*F*} = 241.0 Hz), 153.2, 139.0, 134.9, 128.8, 127.7, 127.1, 116.7 (d, ²*J*_{*C*-*F*} = 23.2 Hz), 115.8 (d, ²*J*_{*C*-*F*</sup> = 25.5 Hz), 109.9 (d, ³*J*_{*C*-*F*} = 7.7 Hz), 87.1, 81.7, 80.9, 44.0, 28.2, 26.3. ¹⁹F NMR (CDCl₃) δ -120.0. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₄H₂₉FN₂NaO₅⁺ 467.1953, found 467.1958. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 80/20 flow rate = 1.0 mL/min, λ = 254 nm). Retention times: t_R = 6.2 min for (*S*)-isomer and t_R = 11.0 min for (*R*)-isomer.}

(S)-tert-butyl-(1-benzyl-3-(tert-butylperoxy)-6-fluoro-2-oxoindolin-3-yl)carbamate (4k)

White solid, 88% yield, 92% ee, mp 110-112 °C. $[\alpha]_D^{20} = -2.55$ (c = 2.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.65 (m, 1H), 7.25 – 7.13 (m, 5H), 6.65 – 6.55 (m, 1H), 6.29 (dd, J = 8.8, 2.1 Hz, 1H), 5.83 (s, 1H), 4.96 (d, J = 16.0 Hz, 1H), 4.63 (d, J = 15.9 Hz, 1H), 1.28 (s, 9H), 1.07 (s, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 171.0, 164.2 (d, ¹*J*_{*C*-*F*} = 247.8 Hz), 153.2, 144.9 (d, ³*J*_{*C*-*F*} = 11.4 Hz), 134.7, 129.1 (d, ³*J*_{*C*-*F*} = 8.7 Hz), 128.9, 127.8, 127.1, 120.8, 108.8 (d, ²*J*_{*C*-*F*} = 21.9 Hz), 98.2 (d, ²*J*_{*C*-*F*} = 27.5 Hz), 86.8, 81.6, 80.8, 44.0, 28.1, 26.3. ¹⁹F NMR (CDCl₃) δ -108.2. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₄H₂₉FN₂NaO₅⁺ 467.1953, found 467.1958. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 80/20 flow rate = 1.0 mL/min, λ = 254 nm). Retention times: t_R = 6.0 min for (*S*)-isomer and t_R = 8.5 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-3-(tert-butylperoxy)-7-fluoro-2-oxoindolin-3-yl)carbamate (4l)

White solid, 88% yield, 95% ee, mp 109-111 °C. $[\alpha]_D^{20} = -4.87$ (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.28 (d, J = 6.6 Hz, 2H), 7.19 (dt, J = 11.8, 7.4 Hz, 3H), 6.91 (d, J = 7.2 Hz, 2H), 5.79 (s, 1H), 5.09 (d, J = 15.5 Hz, 1H), 4.88 (d, J = 15.5 Hz, 1H), 1.27 (s, 9H), 1.06 (s, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 170.4, 153.1, 147.4 (d, ¹J_{C-F} = 244.2 Hz), 136.5, 129.7 (d, ³J_{C-F} = 8.9 Hz), 129.5, 128.5, 127.5, 127.2, 123.3 (d, ³J_{C-F} = 6.0 Hz), 123.0, 118.8 (d, ²J_{C-F} = 19.5 Hz), 87.1, 81.7, 80.9, 45.6, 28.1, 26.2. ¹⁹F NMR (CDCl₃) δ

-134.0. HRMS-ESI (m/z): $[M+Na]^+$ calcd for $C_{24}H_{29}FN_2NaO_5^+$ 467.1953, found 467.1956. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 80/20 flow rate = 1.0 mL/min, λ = 254 nm). Retention times: t_R = 5.7 min for (*S*)-isomer and t_R = 12.4 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-3-(tert-butylperoxy)-5-methoxy-2-oxoindolin-3-yl) carbamate

(4m)

White solid, 86% yield, 91% ee, mp 137-139 °C. $[\alpha]_D^{20}$ =-7.84 (c = 1.0, CH₂Cl₂). ¹H NMR

(400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.23 – 7.14 (m, 5H), 6.66 (dd, J = 8.5, 2.7 Hz, 1H), 6.45 (d, J = 8.5 Hz, 1H), 5.80 (s, 1H), 4.98 (d, J = 15.9 Hz, 1H), 4.65 (d, J = 15.9 Hz, 1H), 3.67 (s, 3H), 1.29 (s, 9H), 1.09 (s, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 170.5, 155.8, 153.2, 136.4, 135.3, 128.7, 127.6, 127.1, 126.6, 115.2, 114.4, 109.7, 87.6, 81.5, 80.7, 55.8, 43.9, 28.2, 26.3. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₅H₃₂N₂NaO₆⁺ 479.2153, found 479.2156. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 80/20 flow rate = 1.0 mL/min, λ = 254 nm). Retention times: t_R = 7.4 min for (*S*)-isomer and t_R = 21.2 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-3-(tert-butylperoxy)-7-methoxy-2-oxoindolin-3-yl) carbamate (S)-tert-butyl-(1-benzyl-3-(tert-butylperoxy)-7-methoxy-2-oxoindolin-3-yl) carbamate (S)-tert-butylperoxy)-7-methoxy-2-oxoindolin-3-yl) carbamate (S)-tert-butylperoxy-2-oxoindolin-3-yl) carbamate (S)-tert-butylp

(4n)

Yellow oil, 83% yield, 91% ee. $[\alpha]_D^{20} = -1.26$ (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃)) δ 7.38 (d, J = 6.6 Hz, 1H), 7.31 (d, J = 7.2 Hz, 2H), 7.27 – 7.17 (m, 3H), 6.98 (t, J = 7.9 Hz, 1H), 6.84 (d, J = 8.3 Hz, 1H), 5.88 (s, 1H), 5.25 – 5.10 (m, 2H), 3.58 (s, 3H), 1.34 (s, 9H), 1.14 (s, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 170.9, 153.2, 145.0, 138.0, 131.2, 128.2, 126.9, 123.2, 119.8, 115.0, 87.3, 81.4, 80.6, 55.8, 45.9, 29.7, 28.1, 26.3. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₅H₃₂N₂NaO₆⁺ 479.2153, found 479.2155. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 80/20 flow rate = 1.0 mL/min, λ = 254 nm). Retention times: t_R = 6.3 min for (*S*)-isomer and t_R = 20.6 min for (*R*)-isomer.

Peaks	Ret. Time	Area	Area%
1	6.390	5290982	95.282
2	20.572	261985	4.718

(S)-tert-butyl-(1-benzyl-3-(tert-butylperoxy)-5-methyl-2-oxoindolin-3-yl)carbamate (40)

White solid, 84% yield, 96% ee, mp 122-124 °C. $[\alpha]_D^{20} = -3.54$ (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.26 (dd, J = 16.3, 8.7 Hz, 5H), 6.99 (d, J = 7.5 Hz, 1H), 6.52 (d, J = 7.9 Hz, 1H), 5.92 (s, 1H), 5.03 (d, J = 15.9 Hz, 1H), 4.73 (d, J = 15.8 Hz, 1H), 2.29 (s, 3H), 1.37 (s, 9H), 1.17 (s, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 170.7, 153.3, 140.7, 135.4, 132.1, 130.8, 128.7, 128.1, 127.5, 127.1, 125.2, 109.1, 87.4, 81.4, 80.6, 43.8, 28.2, 26.3, 21.1. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₅H₃₂N₂NaO₅⁺ 463.2203, found 463.2205. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 80/20 flow rate = 1.0 mL/min, λ = 254 nm). Retention times: t_R = 5.6 min for (*S*)-isomer and t_R = 12.5 min for (*R*)-isomer.

(S)-tert-butyl-(1-benzyl-3-(tert-butylperoxy)-7-methyl-2-oxoindolin-3-yl)carbamate (4p)

White solid, 83% yield, 91% ee, mp 126-128 °C. $[\alpha]_D^{20} =+3.35$ (c = 2.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 6.6 Hz, 1H), 7.26 (p, J = 8.7, 8.1 Hz, 5H), 7.01 – 6.92 (m, 2H), 5.93 (s, 1H), 5.32 (d, J = 17.0 Hz, 1H), 5.05 (d, J = 17.0 Hz, 1H), 2.21 (s, 3H), 1.37 (s, 9H), 1.18 (s, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 171.6, 153.2, 141.1, 137.2, 134.7, 128.8, 127.2, 126.1, 125.7, 124.9, 122.7, 119.8, 86.9, 81.5, 80.6, 45.2, 28.2, 26.4, 25.9, 18.8. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₅H₃₂N₂NaO₅⁺ 463.2203, found 463.2203. The ee value was determined by chiral HPLC analysis (Chiralcel IA, hexane/i-PrOH = 80/20 flow rate = 1.0 mL/min, λ = 254 nm). Retention times: t_R = 6.0 min for (*S*)-isomer and t_R = 12.6 min for (*R*)-isomer.

Peaks	Ret. Time	Area	Area%
1	6.307	1379877	50.606
2	14.883	1346824	49.394

593373

4.724

Tert-butyl (1-benzyl-3-(tert-butylthio)-2-oxoindolin-3-yl)carbamate (5) ¹¹

12.568

2

White solid, 93% yield, 0 % ee. m p = 64-66 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.28 (m, 5H), 7.24 (s, 1H), 7.16 (t, J = 7.5 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.64 (d, J = 7.8 Hz, 1H), 5.62 (s, 1H), 5.26 (s, 1H), 4.69 (s, 1H), 1.50 (s, 9H), 1.26 (s, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 174.0, 153.1, 140.9, 135.8, 129.4, 128.8, 127.5, 127.1, 122.8, 109.0, 80.8, 64.8, 50.3, 44.0, 31.7, 28.1. The ee value was determined by chiral HPLC analysis (Chiralcel IC, hexane/i-PrOH = 90/10 flow rate = 1.0 mL/min, λ = 254 nm). Retention times: t_R = 6.7 min for (S)-isomer and t_R = 9.3 min for (R)-isomer.

Ethyl benzo[d]isothiazole-3-carboxylate 1,1-dioxide (6)

Compound **6** was synthesized according to the known procedures.¹² White solid, 93% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 6.4 Hz, 1H), 7.94 (d, *J* = 6.5 Hz, 1H), 7.81 (d, *J* = 12.6 Hz, 2H), 4.55 (q, *J* = 7.0 Hz, 2H), 1.48 (t, *J* = 7.0 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 160.4, 160.3, 140.2, 134.5, 134.3, 128.2, 127.7, 123.0, 63.9, 14.0.

3. Copies of NMR Spectra of the Products

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

fl (ppm)

-1.36

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

S78

S84

H₃CO N N Bn

$\begin{array}{c} 7.52 \\ 7.50 \\ 7.50 \\ 7.12 \\ 7.$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

7.47 7.28 7.28 7.22 7.19 7.19 7.16 6.92 6.92 $-5.79 \\ \int 5.11 \\ 5.07 \\ 7.4.90 \\ 1.86$

S113

4. References

- (a) C. Yao, Y. Chen, C. Wang, R. Sun, H. Chang, R. Jiang, L. Li, X. Wang and Y.-M. Li, *The Journal of Organic Chemistry*, 2022; (b) S. Yu, Q. Cai, C. Wang, J. Hou, J. Liang, Z. Jiao, C. Yao and Y.-M. Li, *The Journal of Organic Chemistry*, 2023, **88**, 3046-3053.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox. Gaussian 09, Revision D. 01. Gaussian, Inc., 2013.
- 3. Y. Zhao and D. G. Truhlar, J. Chem. Phys., 2006, 125, 194101.
- 4. (a) R. Ditchfield, W. J. Hehre and J. A. Pople, *J. Chem. Phys.*, 1971, 54, 724-728; (b) W. J. Hehre, R. Ditchfield and J. A. Pople, *J. Chem. Phys.*, 1972, 56, 2257-2261; (c) P. C. Hariharan and J. A. Pople, *Theoret. Chim. Acta*, 1973, 28, 213-222; (d) T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. V. R. Schleyer, *J. Comput. Chem.*, 1983, 4, 294-301.
- 5. M. Dolg, U. Wedig, H. Stoll and H. Preuss, *J. Chem. Phys.*, 1987, **86**, 866-872.
- 6. A. V. Marenich, C. J. Cramer and D. G. Truhlar, *J. Phys. Chem. B*, 2009, **113**, 6378-6396.
- 7. J. Lu, F. Sha and X.-Y. Wu, *Tetrahedron Letters*, 2019, **60**, 1161-1165.
- J. Liu, F.-M. Zhu, Y.-B. Chu, L.-H. Huang and Y.-F. Zhou, *Tetrahedron: Asymmetry*, 2015, 26, 1130-1137.
- 9. T. Arai, K. Tsuchiya and E. Matsumura, *Org. Lett.*, 2015, **17**, 2416-2419.
- 10. D.-L. Kong, L. Cheng, T. Yue, H.-R. Wu, W.-C. Feng, D. Wang and L. Liu, The Journal of

Organic Chemistry, 2016, **81**, 5337-5344.

- 11. C. Beceño, P. Chauhan, A. Rembiak, A. Wang and D. Enders, *Advanced Synthesis & Catalysis*, 2015, **357**, 672-676.
- H. Wang, T. Jiang and M.-H. Xu, *Journal of the American Chemical Society*, 2013, 135, 971-974.