Low-Temperature Solution-Processed LaNiO₃ Hole-Transport Layer

for UV-stable Inverted Perovskite Solar Cells

Xiaxia Cui,^a Junjun Jin,^a Zhenkun Zhu,^a Tonghui Guo,^a Qiang Tang,^b Yuan Zhou,^a Lin Li,^a Zhen Wang, ^a Guanqi Tang,^{*c} and Qidong Tai^{*a}

a. The Institute of Technological Sciences, Wuhan University Wuhan 430072, P. R. China. E-mail: qdtai@whu.edu.cn

b.School of artificial intelligence, Anhui University of Science and Technology, Huainan, Anhui 232000, China c.Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610500, P. R. China *Corresponding author: Qidong Tai and Guanqi Tang, E-mail: qdtai@whu.edu.cn and guanqitang13@swjtu.edu.cn

Experimental section

Synthesis of LNO NPs

The LNO NPs were prepared with a modified low-temperature solution-processed. In a typical procedure, Ni(NO₃)₂·6H₂O (50 mmol), La(NO₃)₃·6H₂O (50 mmol) and citric acid were first dissolved in H₂O₂ water (30% H₂O₂) with ice bath, then a certain amount of ammonia was added as precipitating agent. The precipitates were then centrifuged and rinsed with DI water three times and vacuum-dried overnight at 100 °C. Finally, the dried powder was ground and sintered at 600, 650 and 700 °C for 2 hours to form LNO-1, LNO-2, LNO-3 NPs, respectively. The as-prepared LNO NPs are then dispersed in 2-methoxyethanol at 2 mg/mL and filtered (0.45 μ m nylon filter). The LNO film is prepared by spin-coating the colloidal solution on the ITO at 4000 rpm for 30 s and annealed at 150 °C for 30 min. After that, a thin 2PACz film (3 mg/mL in ethanol) was spin-coated on LNO film at 8000 rpm for 30 s and annealed at 150 °C for 30 min.

Solar cell fabrication

First, perovskite precursor (1.5 M) consisting of PbI_2 , FAI and MAI in a mixture of DMF and DMSO (4:1 v/v) with a perovskite formula as $FA_{0.4}MA_{0.6}PbI_3$ was filtered with 0.2 µm nylon filter and coated onto the ITO/LNO substrate by using one-step deposition method with EA anti-solvent with a speed of 5000 rpm for 30 s, followed by annealing at 120 °C for 15 min. After that, a thin PCBM (2 wt% in CB) was spin-coated at 3000 rpm for 30 s on top of the perovskite film and annealed at 100 °C for 10 min.

Finally, The BCP solution (0.5 mg/mL in IPA) was spin-coated at 4000 rpm for 30 s

on top of the PCBM layer, followed by the deposition of a 100 nm Ag electrode by thermal evaporation.

Characterizations

The X-ray diffraction (XRD) and the transmission electron microscope (TEM) characterizations of the LNO NPs were carried out with Bruker Advanced D8 X-ray diffractometer using Cu K α (λ =0.154 nm) radiation and TEM, JEM-2100 (HR), JEOL Co.Ltd, respectively. The scanning electron microscope (SEM) characterization was obtained with FE-SEM, Hitachi SU8010. The UV-Vis spectra of the LNO film were measured with UV-2600 spectrophotometer (Shimadzu, Japan). The x-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) characterizations of the LNO films were obtained with the Thermo Fisher ESCALAB 250XL (USA). The photoluminescence (PL) characterization and time-resolved photoluminescence (TRPL) of the perovskite films were carried out with DW-PLE03 (Fluo Time 300) at a 635 nm excitation wavelength. Photocurrent density–voltage (*J–V*) curves of PSCs were measured with a Keithley 2400 source meter under 1 sunsimulated illumination (AM 1.5 G, 100 mW cm⁻²⁾ at a scan rate of 0.05 V s⁻¹. The external quantum efficiency (EQE) of the PSC was collected with a specialized EQE setup (Newport TLS130B-300X).

Figure S1. The LNO-2 NPs dispersed in

2ME at a concentration of 2 mg/mL.

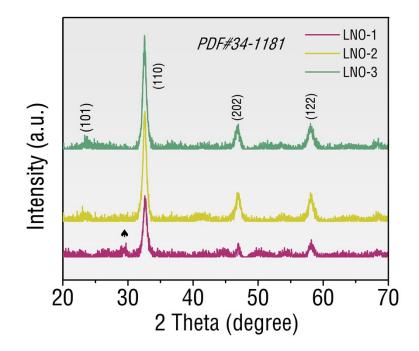


Figure S2. c) XRD spectra of the as prepared LNO-1, LNO-2 and LNO-3 NPs.

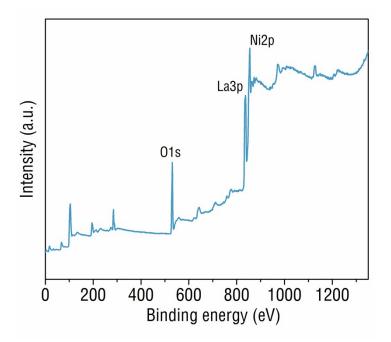


Figure S3.The survey XPS spectra of the LNO-2 NPs.

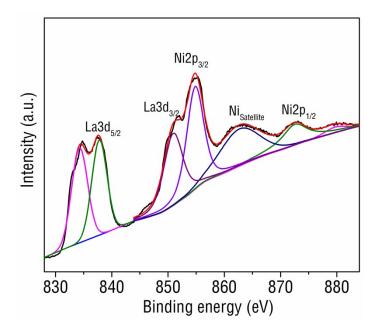


Figure S4.The overlapping La 3d, and Ni 2p XPS spectra of the LNO-2 NPs.

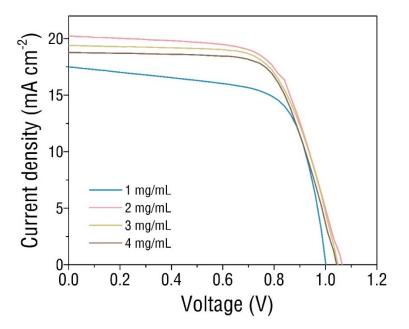


Figure S5. The J-V curves of devices with LNO HTL with different concentrations of colloidal solution at sintering temperature of 650°C.

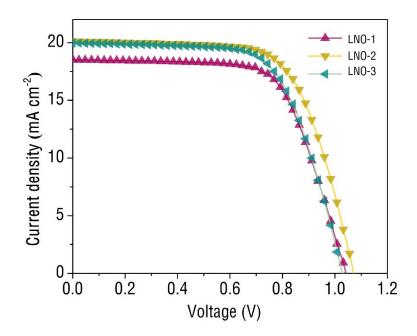


Figure S6. The representative J-V curves of devices with three LNO HTLs at concentration of 2

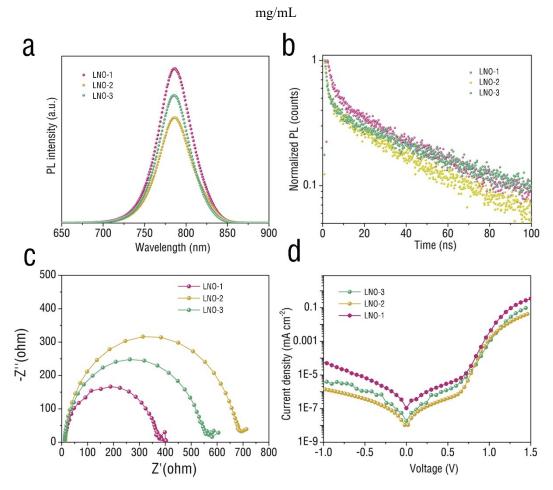


Figure S7. a) Normalized steady PL, b) TRPL, c) Nyquist plots, and d) dark *J–V* curves of the corresponding perovskite films on three different LNO HTL.

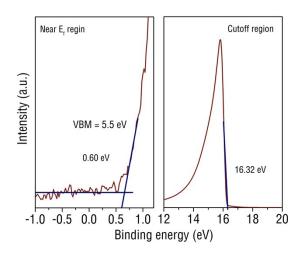


Figure S8. The UPS spectra of 2PACz on LNO HTL.

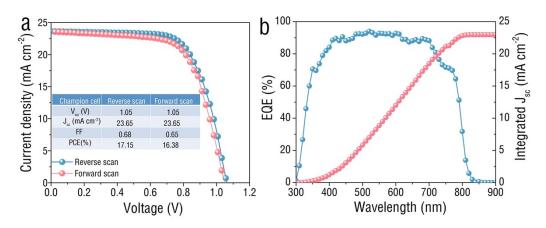


Figure S9. J-V curves and EQE spectra of the best-performed PSC with LNO-2 HTL with surface

passivating of 2PACz.

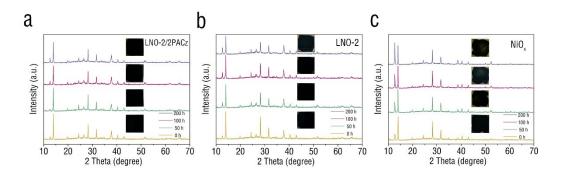


Figure S10. a-c) The evolution of XRD patterns and corresponding photographs of perovskite films deposited on different substrates under continuous UV light irradiance (365 nm, 8 W m⁻²) in ambient atmosphere with 43% relative humidity.

Table S1 The device performances of LNO-2 at different concentrations					
Concentrations (mg/mL)	$J_{\rm SC}$ [mA cm ⁻²]	$V_{\rm OC}$ [V]	FF	PCE [%]	

1	17.49	1.01	0.67	11.86
2	20.24	1.06	0.65	13.98
3	19.39	1.05	0.69	13.64
4	18.77	1.03	0.69	13.39

Table S2 The device performances of LNO NPs at different sintering temperatures.

Substrates	$J_{\rm SC}$ [mA cm ⁻²]	$V_{\rm OC}$ [V]	FF	PCE [%]
LNO-1	18.55	1.04	0.67	12.91
LNO-2	20.13	1.07	0.67	14.39
LNO-3	19.97	1.03	0.66	13.52

Table S3 PL decay curves of corresponding perovskite films on LNO HTL at different sintering temperatures fitted by a bi-exponential function $I(t)=A1exp(-t/\tau_1) + A2exp(-t/\tau_2)$, and $\tau avg = \tau_1 \times (A1/A1+A2) + \tau_2 \times (A2/A1+A2)$

Substrates	A1/A1+A2 (%)	$\tau_1 \ (ns)$	A2/A1+A2 (%)	$\tau_2 \ (ns)$	τavg (ns)
LNO-1	65.75	34.25	5.00	64.60	56.90
LNO-2	29.72	70.27	3.49	45.95	44.63
LNO-3	66.17	33.83	3.68	60.56	54.54