Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Emission efficiency of cationic solid state luminophores is directly proportional to intermolecular charge transfer intensity

Kaspars Leduskrasts, Artis Kinens, Edgars Suna*

Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia

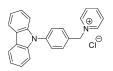
edgars@osi.lv

Contents

General considerations	S2
Synthesis of emitters 1–4	S3
Synthesis of emitter 2a	S3
Synthesis of emitter 3	S6
Synthesis of emitter 4a	S8
Synthesis of emitter 4b	S10
Luminescence spectra	S11
X-Ray Structure, crystal data and structure refinements for 2a	S20
X-Ray Structure, crystal data and structure refinements for 2b	S21
X-Ray Structure, crystal data and structure refinements for 3	S22
X-Ray Structure, crystal data and structure refinements for 4a	S23
X-Ray Structure, crystal data and structure refinements for 4b	S24
Quantum chemical calculations	S25
CTI analysis for luminophores 15–17	S35
¹ H and ¹³ C NMR data	S39

General considerations

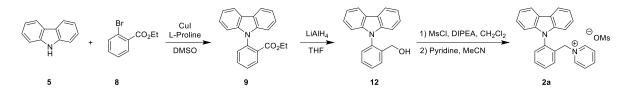
Column chromatography was performed using reversed phase C18-silica gel columns (RP18 25-40 µm) and direct phase silica gel columns.


Nuclear magnetic resonance spectra were recorded on NMR spectrometers at the following frequencies: ¹H, 400 MHz, 300 MHz; ¹³C{¹H}, 101 MHz. Chemical shifts are reported in parts per million (ppm) relative to TMS or with the residual solvent peak as an internal reference. High-resolution mass spectra (HRMS (ESI-TOF)) were recorded on a mass spectrometer with a time-of-flight (TOF) mass analyzer using the ESI technique. Melting points are uncorrected.

Unless otherwise noted, all chemicals were used as received from commercial sources. Anhydrous THF was obtained by passing commercially available solvent through activated alumina columns.

The luminescence data was collected with Edinburgh Instruments FS5Spectrofluorometer; photoluminescence quantum yields (Φ) were measured using an integrating sphere.

Single-crystal X-ray diffraction analyses were performed on Rigaku *XtaLAB Synergy S*, *Dualflex* apparatus with HyPix6000 detector and CuK_{α} /MoK_{α} radiation type.


Synthesis of emitters 1-4

1-(4-(9*H***-Carbazol-9-yl)benzyl)pyridin-1-ium chloride** (1) was synthesized according to a published protocol.¹ The ¹H NMR was fully consistent with the previous report.¹

¹**H NMR** (300 MHz, (CD₃)₂SO, ppm) δ 9.42–9.34 (m, 2H), 8.73–8.65 (m, 1H), 8.30–8.22 (m, 4H), 7.90–7.82 (m, 2H), 7.78–7.71 (m, 2H), 7.48–7.36 (m, 4H), 7.34–7.26 (m, 2H), 6.06 (s, 2H).

Synthesis of emitter 2a

Ethyl 2-(9*H*-carbazol-9-yl)benzoate (9). Anhydrous DMSO (21 mL) was added *via* septa to a mixture of 9*H*-carbazole (5, 1.0 g, 6.0 mmol, 1.0 equiv), ethyl 2-bromobenzoate (8, 1.6 g, 7.2 mmol, 1.2 equiv), CuI (0.2 g, 0.9 mmol, 0.15 equiv), L-Proline (0.2 g, 1.8 mmol, 0.3 equiv) and K₂CO₃ (2.5 g, 18 mmol, 3.0 equiv) in an argon-purged 100 mL round-bottom flask. The flask was sealed with rubber septa and heated at 140 °C for 72h. After cooling, the black suspension was diluted with water (100 mL), saturated aqueous ammonia (50 mL) and CH₂Cl₂ (50 mL). Phases were separated, and the water phase was extracted with CH₂Cl₂ (2×50 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and purified by silica gel column chromatography using 1:30 (v/v) EtOAc:petroleum ether as the mobile phase to obtain 9 as a colorless solid (1.1 g, 58%); analytical TLC on silica gel, 1:30 EtOAc/petroleum ether, R_f=0.15. Analytically pure material was obtained by crystallization from EtOAc/hexane: mp 106–107 °C (colorless rectangles).

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.17–8.13 (m, 3H), 7.79–7.73 (m, 1H), 7.65–7.57 (m, 2H), 7.42–7.36 (m, 2H), 7.30–7.25 (m, 2H), 7.16–7.12 (m, 2H), 3.66 (q, *J*=7.1 Hz, 2H), 0.39 (t, *J*=7.1 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 166.3, 141.8, 136.8, 133.4, 132.3, 130.9, 130.4, 128.6, 126.0, 123.3, 120.3, 119.9, 109.5, 61.2, 13.0.

HRMS m/z: $[M]^+$ calculated for $C_{21}H_{18}NO_2^+$: 316.1332; Found: 316.1331.

IR (KBr, cm⁻¹) 1720 (C=O).

(2-(9*H*-Carbazol-9-yl)phenyl)methanol (12). Anhydrous THF (10 mL) solution of to ethyl 2-(9*H*-carbazol-9-yl)benzoate (9, 1.0 g, 3.2 mmol, 1.0 equiv) was added to an anhydrous THF (10 mL) suspension of LiAlH₄ (0.5 g, 13 mmol, 4.0 equiv) in a sealed, Ar flushed 100 mL roundbottom flask at 0 °C. The sealed flask was heated at 70 °C for 1h. The reaction mixture was cooled and quenched by drop wise addition of water until gas evolution ceased, followed by addition of water (2 mL) and 15% aqueous NaOH solution (0.6 mL). The obtained suspension was filtered through a pad of ceilte, washed with EtOAc. The filtrate was dried over anhydrous Na₂SO₄ and the organics evaporated to yield the product **12** as a colorless amorphous material (0.85 g, 98 %).

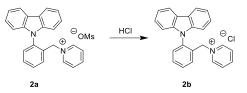
¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.19–8.14 (m, 2H), 7.82–7.78 (m, 1H), 7.63–7.57 (m, 1H), 7.55–7.50 (m, 1H), 7.42–7.36 (m, 3H), 7.32–7.27 (m, 2H), 7.06–7.02 (m, 2H), 4.34 (d, *J*=4.4 Hz, 2H), 1.53–1.47 (m, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 141.6, 140.1, 134.8, 129.6, 129.4, 129.3, 129.2, 126.3, 123.2, 120.6, 120.0, 109.7, 61.1.

HRMS m/z: [M]⁺ calculated for C₁₉H₁₅NO⁺: 273.1154; Found: 273.1153.

IR (KBr, cm⁻¹) 3447 (O–H).

1-(2-(9*H***-Carbazol-9-yl)benzyl)pyridin-1-ium methanesulfonate (2a)**. Anhydrous CH₂Cl₂ (30 mL) was added to (2-(9*H*-carbazol-9-yl)phenyl)methanol (**12**, 0.85 g, 3.1 mmol, 1.0 equiv) in a 50 mL roundbottom flask at 0 °C. To the cooled colorless solution MsCl (0.5 mL, 6.2 mmol, 2.0 equiv) followed by DIPEA (2.2 mL, 12 mmol, 4.0 equiv) was added. The pale yellow solution was stirred in an ice bath. After 1h the reaction mixture was diluted with CH₂Cl₂ (50 mL) and H₂O (50 mL), the layers seperated and the water layer washed with CH₂Cl₂ (30 mL) one more time. The combined organics were dried over Na₂SO₄ and evaporated to give a yellow oil. MeCN (15 mL) was added to the yellow solution and stirred at room temperature. After 72h the reaction mixture was diluted with EtOAc (150 mL) and stirred at 0 °C. After 1h the resulting precipitate was filtered and washed with EtOAc and Et₂O to give the product **2a** as a pale green solid (1.0 g, 75%). Analytically pure material was obtained by crystallization from MeCN/EtOAc: mp 227–228 °C (colorless plates).


¹**H NMR** (400 MHz, (CD₃)₂SO, ppm) δ 8.25–8.14 (m, 5H), 7.89–7.83 (m, 1H), 7.82–7.76 (m, 2H), 7.64–7.58 (m, 2H), 7.57–7.51 (m, 1H), 7.36–7.25 (m, 4H), 6.88–6.82 (m, 2H), 5.60 (s, 2H), 2.30 (s, 3H).

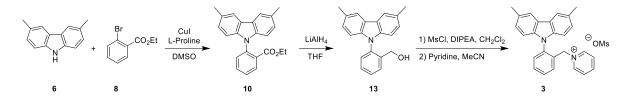
¹³C{¹H} NMR (101 MHz, (CD₃)₂SO, ppm) δ 145.2, 143.8, 140.0, 135.4, 133.1, 132.4, 132.1, 130.7, 130.2, 127.5, 126.5, 122.5, 120.8, 120.4, 109.1, 60.8, 39.8.

HRMS m/z: $[M]^+$ calculated for C₂₄H₁₉N₂⁺: 335.1543; Found: 335.1556.

IR (KBr, cm⁻¹) 1193 (S=O).

Synthesis of compound 2b

1-(2-(9*H***-Carbazol-9-yl)benzyl)pyridin-1-ium chloride (2b**). EtOH (6 mL) was added to 1-(2-(9*H*-carbazol-9-yl)benzyl)pyridin-1-ium methanesulfonate (**2a**, 0.20 g, 0.47 mmol). The pale green solution was subjected to reversed phase column chromatography using 0.1% HCl acidic water and MeCN as an eluent at a rate of 40 mL/min. Initial elution for 20 minutes with 5% MeCN followed by a 40 minute gradient from 5% to 95% MeCN afforded the desired material. After evaporation in *vacuo* the obtained oil was dissolved in MeCN (5 mL) to which EtOAc (50 mL) was slowly added. The formed precipitate was filtered, washed with EtOAc to give the product **2b** as a colorles crystals (0.16 g, 90%). Analytically pure material was obtained by crystallization from MeCN/Et₂O: mp 212–214 °C (colorless prisms).


¹**H NMR** (400 MHz, (CD₃)₂SO, ppm) δ 8.21–8.16 (m, 2H), 8.12–8.07 (m, 1H), 8.06–8.01 (m, 2H), 7.91–7.86 (m, 1H), 7.82–7.75 (m, 2H), 7.54–7.48 (m, 3H), 7.34–7.24 (m, 4H), 6.83–6.77 (m, 2H), 5.56 (s, 2H).

¹³C{¹H} NMR (101 MHz, (CD₃)₂SO, ppm) δ 145.3, 143.7, 140.2, 135.7, 133.3, 133.0, 132.6, 131.0, 130.6, 127.7, 127.0, 122.7, 121.1, 120.9, 109.3, 61.3.

HRMS m/z: $[M]^+$ calculated for C₂₄H₁₉N₂⁺: 335.1543; Found: 335.1551.

IR (KBr, cm⁻¹) 3049 (C–H).

Synthesis of emitter 3

Ethyl 2-(3,6-dimethyl-9*H*-carbazol-9-yl)benzoate (10). Anhydrous DMSO (21 mL) was added *via* septa to a mixture of 3,6-dimethyl-9*H*-carbazole (6, 0.8 g, 4.3 mmol, 1.0 equiv), ethyl 2-bromobenzoate (8, 1.3 g, 5.5 mmol, 1.3 equiv), CuI (0.1 g, 0.6 mmol, 0.15 equiv), L-Proline (0.1 g, 1.3 mmol, 0.3 equiv) and K₂CO₃ (1.8 g, 13 mmol, 3.0 equiv) in an argon-purged 100 mL round-bottom flask. The flask was sealed with rubber septa and heated at 140 °C for 72h. After cooling, the black suspension was diluted with water (100 mL), saturated aqueous ammonia (50 mL) and CH₂Cl₂ (50 mL). Phases were separated, and the water phase was extracted with CH₂Cl₂ (2×50 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and purified by silica gel column chromatography using 1:30 (v/v) EtOAc:petroleum ether as the mobile phase to obtain **10** as a viscous oil (1.0 g, 71%); analytical TLC on silica gel, 1:10 EtOAc/petroleum ether, R_f=0.40.

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.12–8.08 (m, 1H), 7.90–8.87 (m, 2H), 7.75–7.69 (m, 1H), 7.60–7.53 (m, 2H), 7.19–7.15 (m, 2H), 7.03–6.99 (m, 2H), 3.68 (q, *J*=7.1 Hz, 2H), 2.53 (s, 6H) 0.45 (t, *J*=7.1 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 166.5, 140.3, 137.3, 133.3, 132.1, 130.8, 130.2, 128.9, 128.2, 127.2, 123.4, 120.2, 109.1, 61.2, 21.6, 13.0.

HRMS m/z: [M]⁺ calculated for C₂₃H₂₂NO₂⁺: 344.1651; Found: 344.1656.

IR (KBr, cm⁻¹) 1713 (C=O).

(2-(3,6-Dimethyl-9*H*-carbazol-9-yl)phenyl)methanol (13). Anhydrous THF (10 mL) solution of to ethyl 2-(3,6-dimethyl-9*H*-carbazol-9-yl)benzoate (10, 0.8 g, 2.3 mmol, 1.0 equiv) was added to an anhydrous THF (10 mL) suspension of LiAlH₄ (0.4 g, 9.3 mmol, 4.0 equiv) in a sealed, Ar flushed 100 mL roundbottom flask at 0 °C. The sealed flask was heated at 70 °C for 1h. The reaction mixture was cooled and quenched by drop wise addition of water until gas evolution ceased, followed by addition of water (1.5 mL) and 15% aqueous NaOH solution (0.4 mL). The obtained suspension was filtered through a pad of ceilte, washed with EtOAc. The filtrate was dried over anhydrous Na₂SO₄ and the organics evaporated to yield the product **13** as a viscous oil (0.67 g, 95 %).

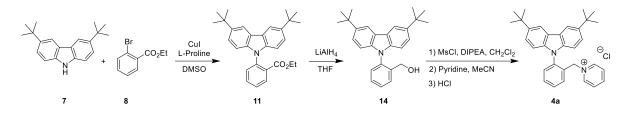
¹**H NMR** (400 MHz, CDCl₃, ppm) δ 7.95–7.91 (m, 2H), 7.80–7.75 (m, 1H), 7.60–7.54 (m, 1H), 7.53–7.47 (m, 1H), 7.38–7.33 (m, 1H), 7.22–7.16 (m, 2H), 6.94–6.89 (m, 2H), 4.33 (s, 2H), 2.55 (s, 6H).

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 140.2, 140.1, 135.3, 129.5, 129.3, 129.2, 129.1, 127.4, 123.2, 120.5, 109.3, 61.2, 21.5.

HRMS m/z: $[M]^+$ calculated for $C_{21}H_{19}NO^+$: 301.1467; Found: 301.1469.

IR (KBr, cm⁻¹) 3376 (O–H).

1-(2-(3,6-Dimethyl-9*H***-carbazol-9-yl)benzyl)pyridin-1-ium methanesulfonate (3).** Anhydrous CH₂Cl₂ (30 mL) was added to (2-(3,6-dimethyl-9*H*-carbazol-9-yl)phenyl)methanol (**13**, 0.6 g, 2.0 mmol, 1.0 equiv) in a 50 mL roundbottom flask at 0 °C. To the cooled colorless solution MsCl (0.3 mL, 4.0 mmol, 2.0 equiv) followed by DIPEA (1.4 mL, 8.0 mmol, 4.0 equiv) was added. The pale yellow solution was stirred in an ice bath. After 1h the reaction mixture was diluted with CH₂Cl₂ (50 mL) and H₂O (50 mL), the layers seperated and the water layer washed with CH₂Cl₂ (30 mL) one more time. The combined organics were dried over Na₂SO₄ and evaporated to give a yellow oil. MeCN (15 mL) was added to the yellow solution and stirred at room temperature. After 72h the reaction mixture was diluted with Et₂O (150 mL) and stirred at 0 °C. After 1h the resulting precipitate was filtered and washed with Et₂O to give the product **3** as a colorless solid (0.84 g, 92%). Analytically pure material was obtained by crystallization from MeCN/Et₂O: decomposition 230–250 °C (colorless prisms).


¹**H NMR** (400 MHz, CD₃OD, ppm) δ 8.00–7.94 (m, 2H), 7.90–7.88 (m, 2H), 7.84–7.76 (m, 4H), 7.55–7.50 (m, 1H), 7.39–7.33 (m, 2H), 7.14–7.11 (m, 2H), 6.70–6.65 (m, 2H), 5.56 (s, 2H), 2.67 (s, 3H), 2.51 (s, 6H).

¹³C{¹H} NMR (101 MHz, CD₃OD, ppm) δ 145.7, 144.2, 139.7, 137.6, 134.4, 134.3, 133.6, 132.4, 131.4, 131.2, 128.8, 128.5, 124.2, 121.6, 109.7, 63.5, 39.5, 21.4.

HRMS m/z: $[M]^+$ calculated for $C_{26}H_{23}N_2^+$: 363.1861; Found: 363.1861.

IR (KBr, cm^{-1}) 1192 (S=O).

Synthesis of emitter 4a

Ethyl 2-(3,6-di-*tert*-butyl-9*H*-carbazol-9-yl)benzoate (11). Anhydrous DMSO (18 mL) was added *via* septa to a mixture of 3,6-di-tert-butyl-9*H*-carbazole (7, 1.4 g, 5.0 mmol, 1.0 equiv), ethyl 2-bromobenzoate (8, 1.5 g, 6.5 mmol, 1.3 equiv), CuI (0.1 g, 0.8 mmol, 0.15 equiv), L-Proline (0.2 g, 1.5 mmol, 0.3 equiv) and K₂CO₃ (2.1 g, 15 mmol, 3.0 equiv) in an argon-purged 100 mL round-bottom flask. The flask was sealed with rubber septa and heated at 140 °C for 72h. After cooling, the black suspension was diluted with water (100 mL), saturated aqueous ammonia (50 mL) and CH₂Cl₂ (50 mL). Phases were separated, and the water phase was extracted with CH₂Cl₂ (2×50 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and purified by silica gel column chromatography using 1:30 (v/v) EtOAc:petroleum ether as the mobile phase to obtain **11** as an amorphous material (1.4 g, 67%); analytical TLC on silica gel, 1:10 EtOAc/petroleum ether, R_f=0.45.

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.13–8.08 (m, 3H), 7.75–7.69 (m, 1H), 7.59–7.54 (m, 2H), 7.43–7.39 (m, 2H), 7.07–7.02 (m, 2H), 3.69 (q, *J*=7.1 Hz, 2H), 1.45 (s, 18H) 0.42 (t, *J*=7.1 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 166.5, 142.7, 140.3, 137.3, 133.2, 132.1, 130.7, 130.2, 128.1, 123.7, 123.4, 116.3, 108.9, 61.2, 34.9, 32.2, 13.0.

HRMS m/z: [M]⁺ calculated for C₂₉H₃₄NO₂⁺: 428.2590; Found: 428.2582.

IR (KBr, cm⁻¹) 1716 (C=O).

(2-(3,6-Di-*tert*-butyl-9*H*-carbazol-9-yl)phenyl)methanol (14). Anhydrous THF (10 mL) solution of to ethyl ethyl 2-(3,6-di-tert-butyl-9*H*-carbazol-9-yl)benzoate (11, 1.2 g, 2.8 mmol, 1.0 equiv) was added to an anhydrous THF (10 mL) suspension of LiAlH₄ (0.4 g, 11 mmol, 4.0 equiv) in a sealed, Ar flushed 100 mL roundbottom flask at 0 °C. The sealed flask was heated at 70 °C for 1h. The reaction mixture was cooled and quenched by drop wise addition of water until gas evolution ceased, followed by addition of water (2 mL) and 15% aqueous NaOH solution (0.6 mL). The obtained suspension was filtered through a pad of ceilte, washed

with EtOAc. The filtrate was dried over anhydrous Na_2SO_4 and the organics evaporated to yield the product **15** as an amorphous material (0.83 g, 77 %).

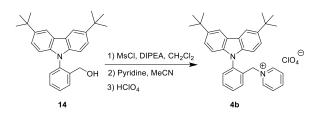
¹**H NMR** (400 MHz, CDCl₃, ppm) δ 8.18–8.13 (m, 2H), 7.83–7.76 (m, 1H), 7.61–7.54 (m, 1H), 7.53–7.46 (m, 1H), 7.45–7.40 (m, 2H), 7.37–7.32 (m, 1H), 6.98–6.92 (m, 2H), 4.38 (d, *J*=4.9 Hz, 2H), 1.47 (s, 18H).

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) δ 142.9, 140.2, 140.1, 135.4, 129.5, 129.3, 129.2, 129.1, 123.9, 123.2, 116.5, 109.1, 61.3, 34.9, 32.2.

HRMS m/z: [M]⁺ calculated for C₂₇H₃₁NO⁺: 385.2406; Found: 385.2411.

IR (KBr, cm⁻¹) 3348 (O–H).

1-(2-(3,6-Di-tert-butyl-9H-carbazol-9-yl)benzyl)pyridin-1-ium chloride (4a). Anhydrous CH₂Cl₂ (30 mL) was added to (2-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)methanol (14, 0.4 g, 1.0 mmol, 1.0 equiv) in a 50 mL roundbottom flask at 0 °C. To the cooled colorless solution MsCl (0.2 mL, 2.0 mmol, 2.0 equiv) followed by DIPEA (0.7 mL, 4.0 mmol, 4.0 equiv) was added. The pale yellow solution was stirred in an ice bath. After 1h the reaction mixture was diluted with CH₂Cl₂ (50 mL) and H₂O (50 mL), the layers seperated and the water layer washed with CH₂Cl₂ (30 mL) one more time. The combined organics were dried over Na₂SO₄ and evaporated to give a yellow oil. MeCN (15 mL) was added to the yellow oil to form a yellow solution. Pyridine (0.8 mL, 9.9 mmol, 10 equiv) was added to the yellow solution and stirred at room temperature. After 72h the reaction mixture was directly subjected to reversed phase column chromatography using 0.1% HCl acidic water and MeCN as an eluent at a rate of 40 mL/min. Initial elution for 20 minutes with 5% MeCN followed by a 40 minute gradient from 5% to 95% MeCN afforded the desired material. After evaporation in vacuo the obtained oil was dissolved in MeCN (5 mL) to which Et₂O (50 mL) was slowly added. The formed precipitate was filtered, washed with EtOAc to give the product 4a as a colorles crystals (0.41 g, 86%). Analytically pure material was obtained by crystallization from MeCN/EtOAc: mp 219-220 °C (colorless prisms).


¹**H NMR** (400 MHz, CD₃OD, ppm) δ 8.18–8.16 (m, 2H), 8.02–7.93 (m, 2H), 7.86–7.76 (m, 4H), 7.56–7.51 (m, 1H), 7.41–7.32 (m, 4H), 6.72–6.68 (m, 2H), 5.56 (s, 2H), 1.46 (s, 18H).

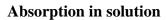
¹³C{¹H} NMR (101 MHz, CD₃OD, ppm) δ 145.7, 145.2, 144.3, 139.8, 137.7, 134.4, 133.7, 132.5, 131.3, 128.5, 125.5, 124.1, 117.8, 109.4, 63.4, 35.7, 32.4.

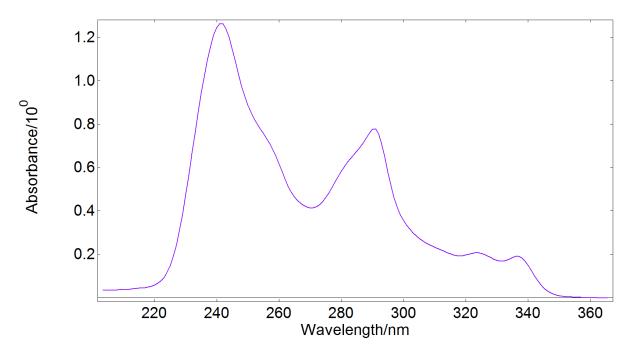
HRMS m/z: $[M]^+$ calculated for $C_{32}H_{35}N_2^+$: 447.2800; Found: 447.2815.

IR (KBr, cm⁻¹) 2957 (C–H).

Synthesis of emitter 4b

1-(2-(3,6-Di-tert-butyl-9H-carbazol-9-yl)benzyl)pyridin-1-ium perchlorate (**4b**). CH_2Cl_2 (30 mL) added to (2-(3,6-di-tert-butyl-9H-carbazol-9-Anhydrous was yl)phenyl)methanol (14, 0.4 g, 1.0 mmol, 1.0 equiv) in a 50 mL roundbottom flask at 0 °C. To the cooled colorless solution MsCl (0.2 mL, 2.0 mmol, 2.0 equiv) followed by DIPEA (0.7 mL, 4.0 mmol, 4.0 equiv) was added. The pale yellow solution was stirred in an ice bath. After 1h the reaction mixture was diluted with CH₂Cl₂ (50 mL) and H₂O (50 mL), the layers seperated and the water layer washed with CH₂Cl₂ (30 mL) one more time. The combined organics were dried over Na₂SO₄ and evaporated to give a vellow oil. MeCN (15 mL) was added to the vellow oil to form a yellow solution. Pyridine (0.8 mL, 9.9 mmol, 10 equiv) was added to the yellow solution and stirred at room temperature. After 72h the reaction mixture was directly subjected to reversed phase column chromatography using 0.1% HClO₄ acidic water and MeCN as an eluent at a rate of 40 mL/min. Initial elution for 20 minutes with 5% MeCN followed by a 40 minute gradient from 5% to 95% MeCN afforded the desired material. After evaporation in *vacuo* the obtained oil was crystallized from H_2O (25 mL). The formed precipitate was filtered, washed with H_2O to give the product **4b** as a colorles solid (0.40 g, 73%). Analytically pure material was obtained by crystallization H₂O: mp 198–199 °C (colorless plates).


¹**H NMR** (400 MHz, CD₃OD, ppm) δ 8.00–7.91 (m, 2H), 7.85–7.77 (m, 2H), 7.77–7.73 (m, 2H), 7.55–7.51 (m, 1H), 7.41–7.36 (m, 2H), 7.35–7.30 (m, 2H), 6.72–6.68 (m, 2H), 5.54 (s, 2H), 1.46 (s, 18H).


¹³C{¹H} NMR (101 MHz, CD₃OD, ppm) δ 145.7, 145.2, 144.2, 139.7, 137.7, 134.4, 134.3, 133.7, 132.5, 131.3, 128.5, 125.5, 124.1, 117.8, 109.4, 63.5, 35.7, 32.4.

HRMS m/z: $[M]^+$ calculated for $C_{32}H_{35}N_2^+$: 447.2800; Found: 447.2802.

IR (KBr, cm⁻¹) 2959 (C–H).

Luminescence spectra

Fig. S1. Absorption of **1** in MeCN solution (at 10⁻⁵ mol/L)

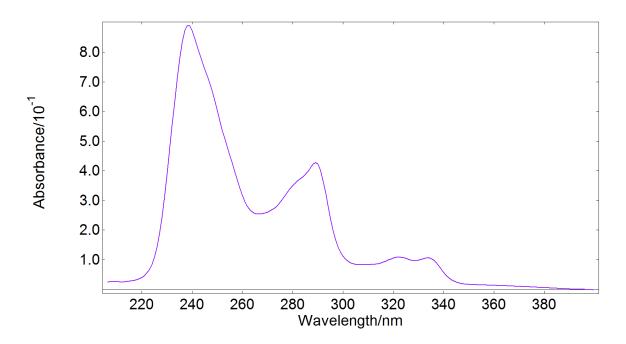
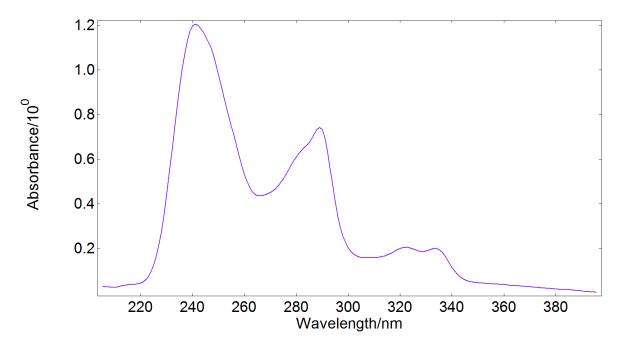
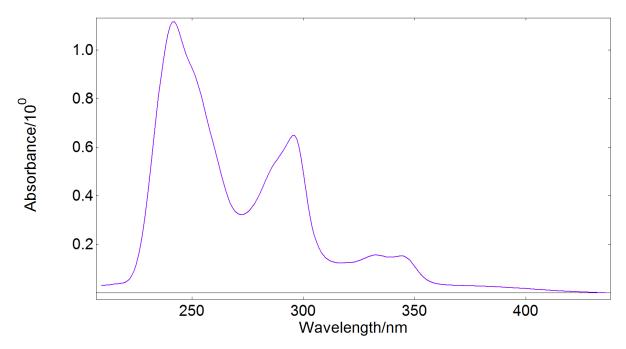




Fig. S2. Absorption of 2a in MeCN solution (at 10⁻⁵ mol/L)

Fig. S3. Absorption of **2b** in MeCN solution (at 10⁻⁵ mol/L)

Fig. S4. Absorption of **3** in MeCN solution (at 10^{-5} mol/L)

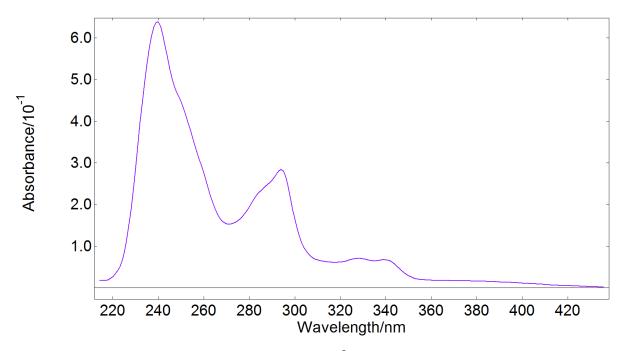
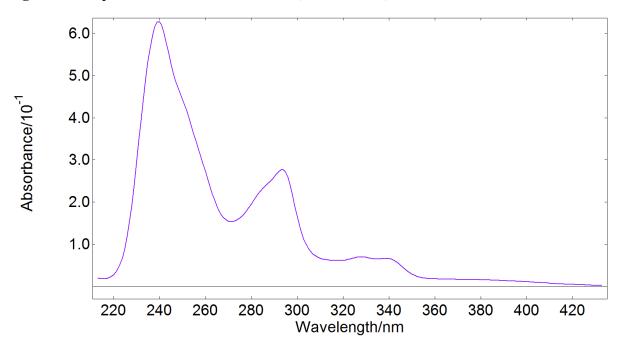
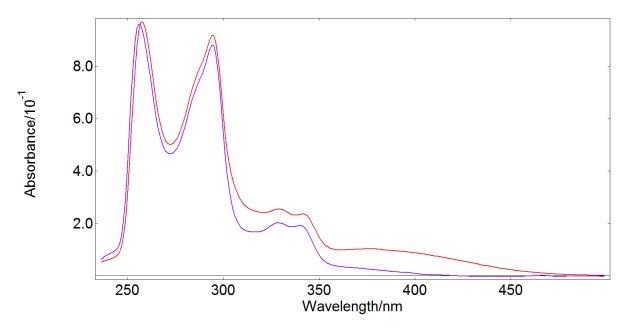




Fig. S5. Absorption of 4a in MeCN solution (at 10⁻⁵ mol/L)

Fig. S6. Absorption of **4b** in MeCN solution (at 10⁻⁵ mol/L)

Fig. S7. Absorption of **4b** in EtOAc solution before (blue) and after (red) addition of 2 equivalents tetra-*n*-butylammonium iodide (at 10^{-5} mol/L)

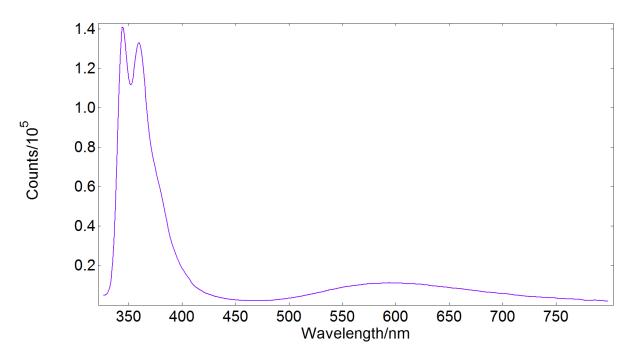


Fig. S8. Emission of 2a in MeCN solution (at 10⁻⁵ mol/L)

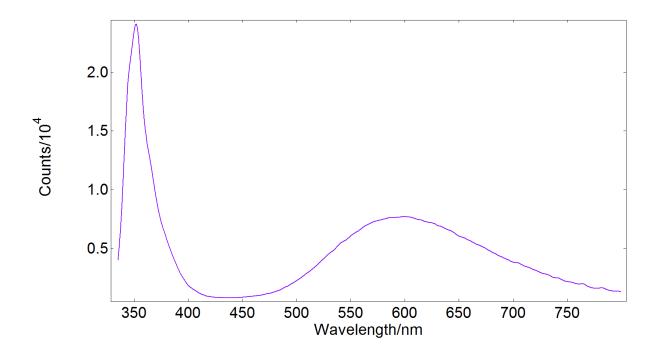


Fig. S9. Emission of 2b in MeCN solution (at 10⁻⁵ mol/L)

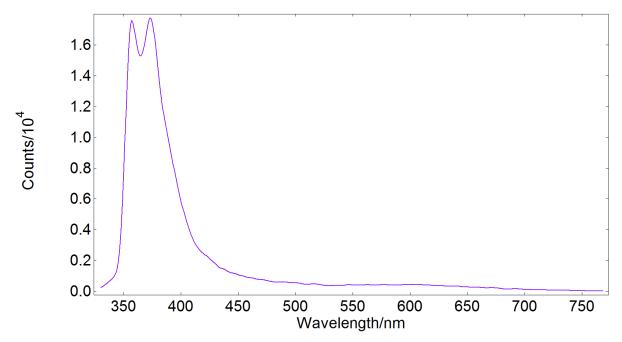


Fig. S10. Emission of 3 in MeCN solution (at 10⁻⁵ mol/L)

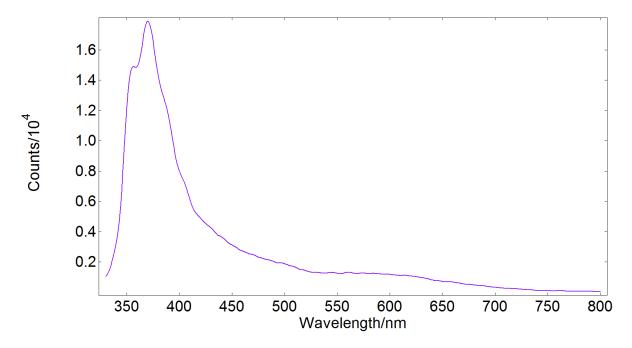


Fig. S11. Emission of 4a in MeCN solution (at 10⁻⁵ mol/L)

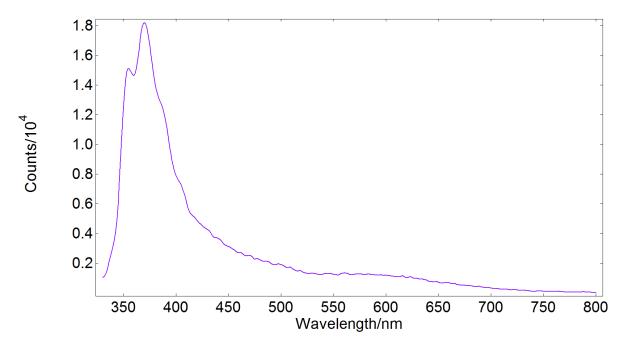


Fig. S12. Emission of 4b in MeCN solution (at 10⁻⁵ mol/L)

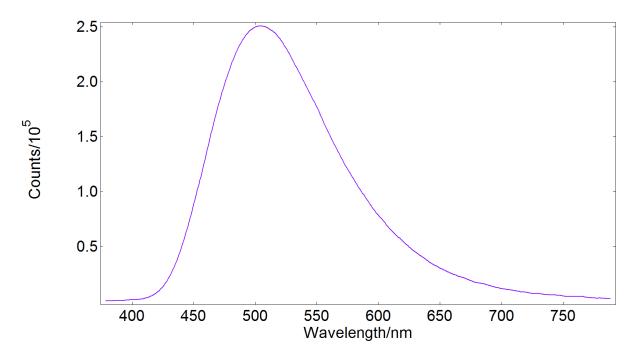


Fig. S13. Emission of 1 in the solid state

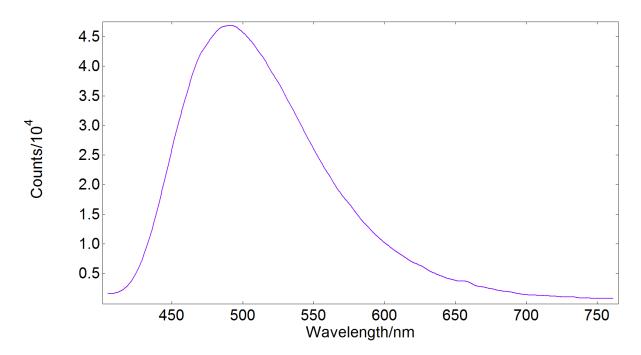


Fig. S14. Emission of 2a in the solid state

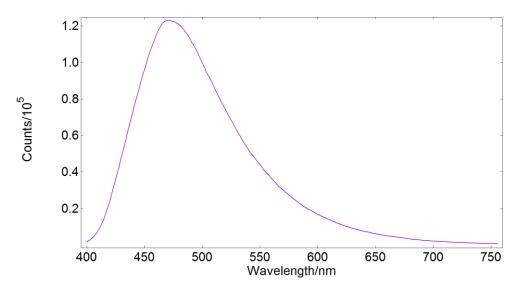


Fig. S15. Emission of 2b in the solid state

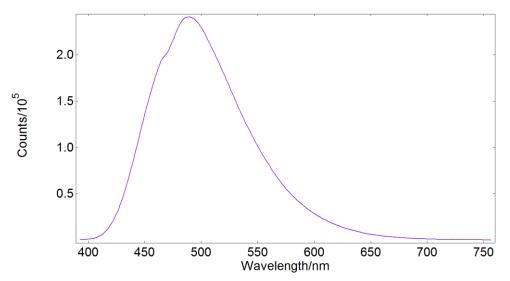


Fig. S16. Emission of 3 in the solid state

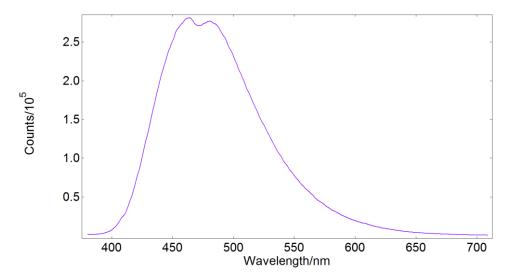
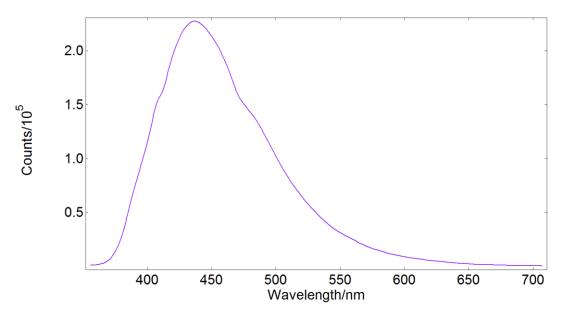
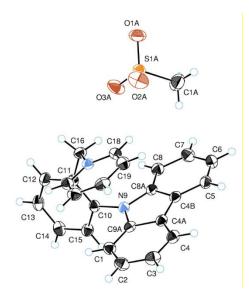


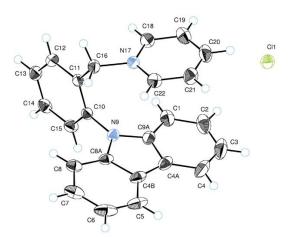
Fig. S17. Emission of 4a in the solid state



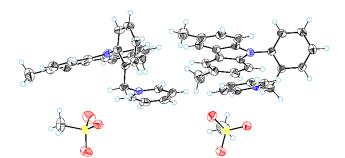

Fig. S18. Emission of 4b in the solid state

In repeated measurements under the same experimental conditions (excitation source, wavelength, batch of the material, experimental setup) the Φ values of solid state luminophores **1–4** did not differ by more than 2% of the Φ value given in Table 1 (see manuscript). Accordingly, four repeated measurements for each compound were conducted (see below). The standard deviation (σ) for the measurements is within the expected range and would be fully obscured by the marker of each point in Figure 4C (see manuscript).

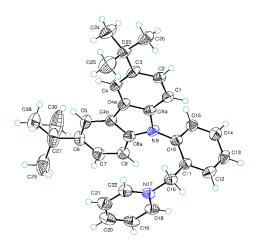
Compound	$\Phi_1, \%$	$\Phi_2, \%$	$\Phi_{3}, \%$	$\Phi_4, \%$	σ, %
1	16.9	17.2	17.1	17.7	0.3
2a	43.0	42.6	44.9	43.3	1.0
2b	34.9	34.3	35.8	35.1	0.6
3	83.6	87.0	84.9	85.2	1.4
4 a	42.8	41.7	43.3	41.4	0.9
4 b	18.5	19.7	18.8	19.3	0.5


Table S1. Repeated measurements of solid state Φ for compounds 1–4.

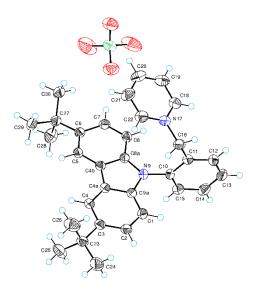
X-Ray Structure, crystal data and structure refinements for 2a


Identification code	KL-1291
Empirical formula	$C_{25}H_{22}N_2O_3S$
Formula weight	430.53
Temperature/K	150.0(1)
Crystal system	monoclinic
Space group	$P2_{1}/c$
a/Å	14.9750(1)
b/Å	19.7881(1)
c/Å	14.8102(1)
α/°	90
β/°	108.774(1)
γ/°	90
Volume/Å ³	4155.16(5)
Ζ	8
$\rho_{calc}g/cm^3$	1.3763
µ/mm ⁻¹	1.635
F(000)	1808
Crystal size/mm ³	$0.22 \times 0.13 \times 0.02$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ max. for data collection/°	155.0
Index ranges	$-18 \le h \le 18, -25 \le k \le 24, -18 \le l \le 17$
Reflections collected	63395
Independent reflections	8742 [$R_{\text{int}} = 0.0391$, $R_{\text{sigma}} = 0.0231$]
Data/restraints/parameters	8742/0/561
Goodness-of-fit on F^2	1.049
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0378, wR_2 = 0.1005$
Largest diff. peak/hole / e Å ⁻³	0.38/-0.48

X-Ray Structure, crystal data and structure refinements for 2b


Identification code	KL1321
Empirical formula	C ₂₄ H ₁₉ ClN ₂
Formula weight	370.86
Temperature/K	150.0(1)
Crystal system	monoclinic
Space group	$P2_{1}/c$
a/Å	8.90415(9)
b/Å	28.9401(2)
$c/\text{\AA}$	7.98398(8)
α/°	90
β/°	111.1157(11)
γ/°	90
Volume/Å ³	1919.22(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.283
µ/mm ⁻¹	1.825
Crystal size/mm ³	0.21×0.17×0.06
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ max. for data collection/°	155.0
Reflections collected	24065
Independent reflections	4073
Restraints/parameters	0/245
Goodness-of-fit on F^2	1.054
Final <i>R</i> indexes $[I > 2\sigma(I)]$	$R_1 = 0.0335, wR_2 = 0.0876$
Final <i>R</i> indexes [all data]	$R_1 = 0.0341, wR_2 = 0.0880$
Largest diff. peak/hole / e Å ⁻³	0.26/-0.23

X-Ray Structure, crystal data and structure refinements for 3



	IZI 1401A
Identification code	KL-1421A
Empirical formula	$C_{54}H_{52}N_4O_6S_2$
Formula weight	917.17
Temperature/K	150.0(3)
Crystal system	triclinic
Space group	$P \overline{1}$
a/Å	13.3101(3)
b/Å	13.4723(5)
c/Å	13.9252(3)
α/°	101.733(3)
β/°	102.111(2)
γ/°	100.527(3)
Volume/Å ³	2323.25(12)
Ζ	2
$\rho_{calc}g/cm^3$	1.3110
µ/mm ⁻¹	1.493
Crystal size/mm ³	$0.19 \times 0.06 \times 0.01$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ max. for data collection/°	160.0
Reflections collected	12221
Independent reflections	9928
Restraints/parameters	0/601
Goodness-of-fit on F^2	1.196
Final <i>R</i> indexes $[I > 2\sigma(I)]$	$R_1 = 0.0953, wR_2 = 0.2903$
Final <i>R</i> indexes [all data]	$R_1 = 0.1046, wR_2 = 0.2957$
Largest diff. peak/hole / e Å ⁻³	1.97/-0.70

X-Ray Structure, crystal data and structure refinements for 4a

X-Ray Structure, crystal data and structure refinements for 4b

Identification code	C1418
Empirical formula	C ₃₂ H ₃₅ ClN ₂ O ₄
Formula weight	547.10
Temperature/K	150.0(1)
Crystal system	orthorhombic
Space group	Pbca
a/Å	12.1430(4)
b/Å	11.0905(4)
c/Å	42.6477(15)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	5743.4(4)
Ζ	8
$\rho_{calc}g/cm^3$	1.2653
μ/mm ⁻¹	1.491
Crystal size/mm ³	$0.17 \times 0.16 \times 0.01$
Radiation	Cu Ka ($\lambda = 1.54184 \text{ Å}$)
2Θ max. for data collection/°	160.0
Reflections collected	30498
Independent reflections	6185
Restraints/parameters	0/358
Goodness-of-fit on F^2	1.060
Final <i>R</i> indexes $[I > 2\sigma(I)]$	$R_1 = 0.0664, wR_2 = 0.1566$
Final <i>R</i> indexes [all data]	$R_1 = 0.0859, wR_2 = 0.1670$
Largest diff. peak/hole / e Å ⁻³	0.55/-0.45

Quantum chemical calculations

Charge transfer integral calculations

Every considered charge transfer (CT) pathway for 1–4

Geometries of the molecules were obtained from the X-Ray analysis data.

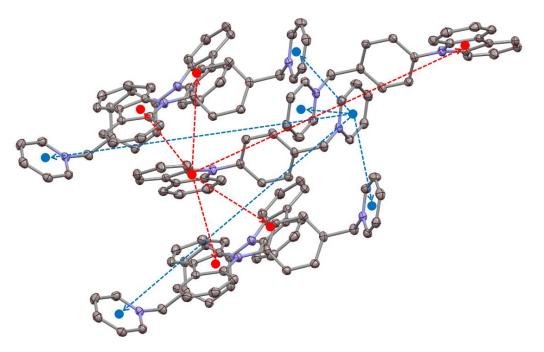


Fig. S19. Every electron (blue vectors) and hole (red vectors) CT pathway considered for 1

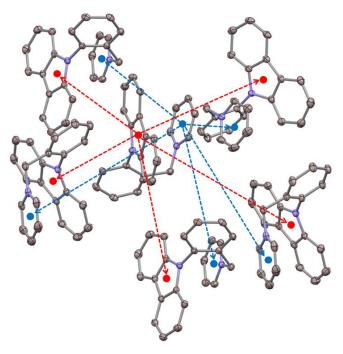


Fig. S20. Every electron (blue vectors) and hole (red vectors) CT pathway considered for 2a

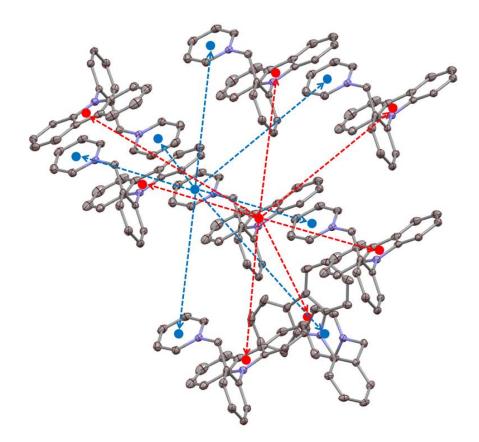


Fig. S21. Every electron (blue vectors) and hole (red vectors) CT pathway considered for 2b

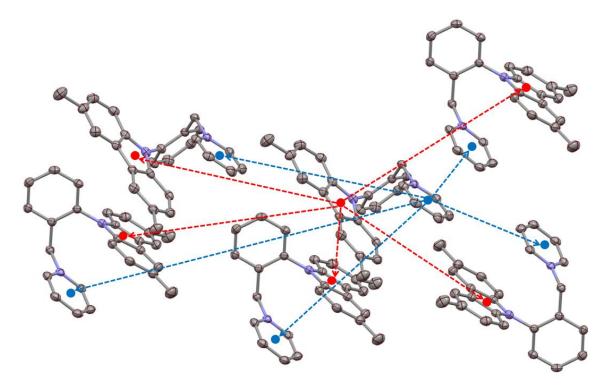


Fig. S22. Every electron (blue vectors) and hole (red vectors) CT pathway considered for 3

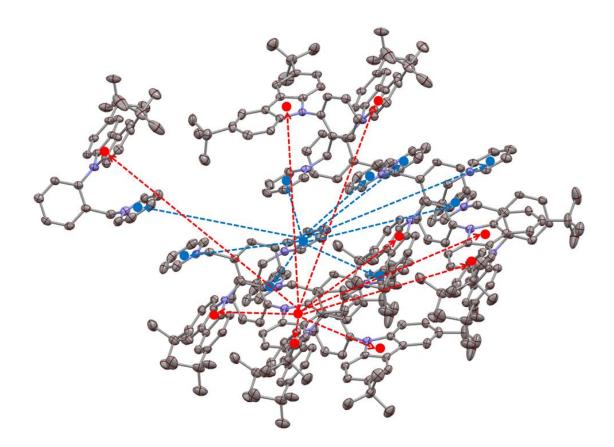


Fig. S23. Every electron (blue vectors) and hole (red vectors) CT pathway considered for 4a

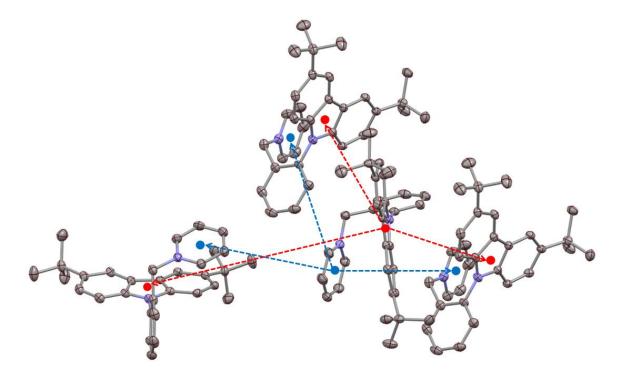


Fig. S24. Every electron (blue vectors) and hole (red vectors) CT pathway considered for 4b

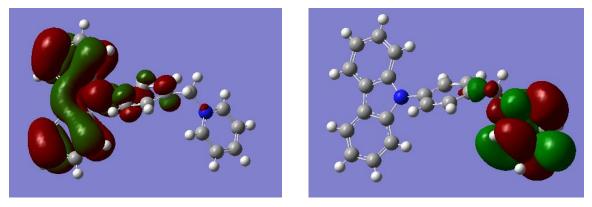
Calculation methodology for electronic coupling:

Luminophore molecules in their corresponding geometries were obtained from the X-ray analysis data. The geometries of dimers were obtained by selecting short contacts from X-ray analysis data. Only unique geometries of the short contact pairs were used in further calculations without additional geometry optimization. For each pair of the dimers HOMO and LUMO data of dimer and individual monomers were calculated. CTIs were calculated for both electron transfer (LUMO, blue vectors, E_{1-3}) and hole transfer (HOMO, red vectors, H_{1-3}) using CATNIP (Brown, J. S. Catnip (version 1.9), **2018** software. (Available from https://github.com/JoshuaSBrown/QC_Tools) For all CT pathways in compounds **1–4** the absolute value of electronic coupling (|V|) was claculated using dimers of the corresponding compound. Their absolute hole (HOMO-HOMO) and electron (LUMO-LUMO) coupling values were calculated using formula:

$$|V| = \left| \frac{J - S(\varepsilon_1 + \varepsilon_2)}{1 - S^2} \right|,$$

where

J – charge transfer integral; ε_1 – site energy for 1st luminophore of the chosen dimer; ε_2 – site energy for 2nd luminophore for the chosen dimer; S – overlap integral.


The calculations for HOMOs and LUMOs were performed using Gaussian 09^3 software using B3LYP/6-311++g(2df,p) level of theory. The use of CAM-B3LYP/6-311++g(2df,p) basis set afforded similar results.

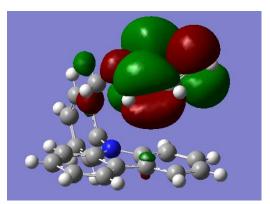
Hardware for calculations: the cluster for calculations consisted of: 2x Intel Xeon E5-2630 v2 (6 cores)/64 GB RAM/2x Nvidia Tesla K20M nodes. The calculations were performed on 10 cores with 50 GB RAM. The longest CPU time for a single dimer was 2d 1h 51min 20.2s.

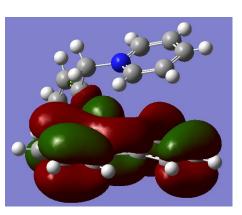
For simplicity, the number of charge transfer pathways for each compound were limited to three hole and three electron pathways with the highest |V| value. The disregarded pathways contributed less than 3% of the total sum of |V| ($\Sigma|V|$).

Data of the hole and electron CT pathways for luminophores 1-4

 H_n – hole transfer pathways, n = 1-3; E_n – electron transfer pathways, n = 1-3

HOMO

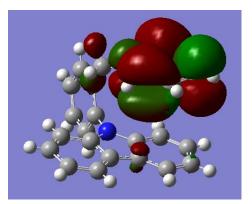

LUMO


Fig. S25. Representation of HOMO and LUMO orbitals of compound 1

		\mathbf{H}_{1}	H_2	H 3
номо-	J	-0.0099	0.0516	0.0380
	E 1	-9.6448	-9.4751	-9.1907
HOMO,	E 2	-9.6446	-9.1446	-9.2187
Hole	S	0.0006	-0.0034	-0.0033
transfer	V , eV	0.0042	0.0204	0.0077
E(RB3LYP)	, A.U.	-2070.388	-2070.433	-2070.401

Table S2. Electron coupling and energy calculation results for emitter 1

		E1	E2	E 3
LUMO-	J	0.1388	0.0006	-0.0048
	E 1	-8.8727	-7.6458	-8.2709
LUMO,	82	-8.8734	-7.5824	-8.2879
Electron	S	-0.0101	-0.0001	0.0003
transfer	V , eV	0.0494	0.0001	0.0023
E(RB3LYP)	, A.U.	-2070.388	-2070.433	-2070.401


HOMO

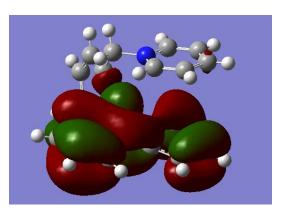
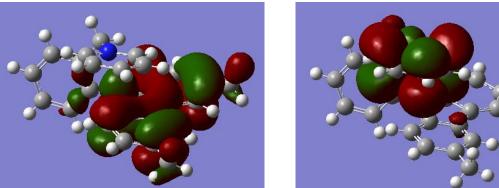
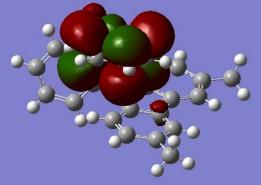


Fig. S26. Representation of HOMO and LUMO orbitals of compound 2aTable S3. Electron coupling and energy calculation results for emitter 2a

		\mathbf{H}_{1}	H ₂	H ₃
номо-	J	-0.0036	0.0722	-0.0085
	E 1	-10.0517	-10.3287	-10.2146
HOMO,	E 2	-10.4751	-10.4134	-9.8416
Hole	S	0.0001	-0.0047	0.0007
transfer	V , eV	0.0023	0.0236	0.0017
E(RB3LY)	P), A.U.	-2070.420	-2070.432	-2070.437

		E1	E2	E3
LUMO-	J	0.0110	-0.2184	-0.0001
	E 1	-7.9428	-8.5041	-7.6042
LUMO,	E 2	-7.8967	-8.4500	-7.5108
Electron	S	-0.0009	0.0154	0.00001
transfer	V , eV	0.0036	0.0877	0.00002
E(RB3LYI	?), A.U.	-2070.420	-2070.401	-2070.437

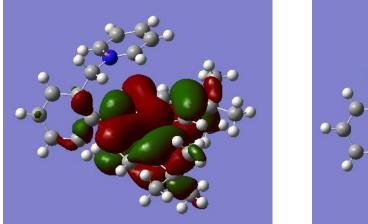

HOMO


Fig. S27. Representation of HOMO and LUMO orbitals of compound 2bTable S4. Electron coupling and energy calculation results for emitter 2b

		\mathbf{H}_{1}	H ₂	H ₃
номо-	J	0.0124	0.1001	-0.0328
	E 1	-10.0573	-10.0815	-10.0345
HOMO,	E 2	-9.9387	-10.1741	-10.2457
Hole	S	-0.0008	-0.0070	0.0021
transfer	V , eV	0.0043	0.0289	0.0113
E(RB3LY	P), A.U.	-2070.428	-2070.436	-2070.419

-		E1	E2	E3
LUMO-	J	-0.0863	-0.0552	0.0180
	E 1	-8.4170	-7.8138	-7.7625
LUMO,	82	-8.4167	-7.8140	-7.6842
Electron	S	0.0053	0.0048	-0.0016
transfer	V , eV	0.0413	0.0174	0.0055
E(RB3LYI	?), A.U.	-2070.400	-2070.415	-2070.419

HOMO



LUMO

		\mathbf{H}_{1}	H_2	H ₃
HOMO-	J	-0.0028	0.0083	0.0116
	E 1	-9.9012	-10.2161	-9.6254
HOMO,	E 2	-9.8988	-9.6118	-10.1842
Hole	S	0.0002	-0.0006	-0.0008
transfer	V , eV	0.0011	0.0022	0.0032
E _{(RB3LYF}	»), A.U.	-2227.860	-2227.874	-2227.874

Fig. S28. Representation of HOMO and LUMO orbitals of compound 3 Table S5. Electron coupling and energy calculation results for emitter 3

		E 1	E2	E 3
LUMO-	J	-0.7927	-0.0079	-0.0137
	E 1	-8.3375	-7.5282	-7.7939
LUMO,	82	-8.3346	-7.5165	-7.9365
Electron	S	0.0613	0.0007	0.0014
transfer	V , eV	0.2829	0.0025	0.0029
E(RB3LYF), A.U.	-2227.860	-2227.886	-2227.874

HOMO

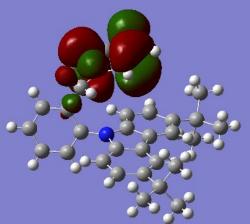
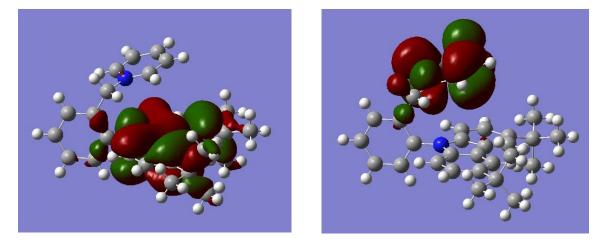



Fig. S29. Representation of HOMO and LUMO orbitals of compound 4a Table S6. Electron coupling and energy calculation results for emitter 4a

		\mathbf{H}_{1}	H ₂	H 3
номо-	J	0.0784	0.0557	0.0220
	E 1	-9.7809	-9.7064	-9.2895
HOMO,	82	-9.7401	-9.7946	-9.3578
Hole	S	-0.0049	-0.0036	-0.0016
transfer	V , eV	0.0307	0.0211	0.0075
E(RB3LYP), A.U.		-2699.503	-2699.504	-2699.525

		E1	E2	E3
LUMO-	J	-0.1029	0.0780	0.0867
	E 1	-8.3346	-8.0736	-7.9269
LUMO,	82	-8.3275	-7.9298	-8.1118
Electron	S	0.0075	-0.0063	-0.0069
transfer	V , eV	0.0403	0.0277	0.0317
E(RB3LYI	P), A.U.	-2699.500	-2699.503	-2699.504

HOMO

Fig. S30. Representation of HOMO and LUMO orbitals of compound 4bTable S7. Electron coupling and energy calculation results for emitter 4b

		H ₁	H ₂	H3
номо-	J	0.0847	-0.0007	-0.0047
	E 1	-9.6548	-9.3320	-9.2602
HOMO,	E 2	-9.8017	-9.3164	-9.3233
Hole	S	-0.0054	0.0001	0.0003
transfer	V , eV	0.0326	0.0003	0.0015
E(RB3LYI	P), A.U.	-2699.532	-2699.541	-2699.554

		E1	E 2	E3
LUMO-	J	0.0756	0.0495	-0.0021
	E 1	-7.8299	-7.6996	-7.4270
LUMO,	E 2	-7.9884	-7.8597	-7.4719
Electron	S	-0.0066	-0.0043	0.0002
transfer	V , eV	0.0237	0.0159	0.0008
E(RB3LYI	P), A.U.	-2699.532	-2699.541	-2699.554

Accordingly, the CTI analysis demonstrated that the sum of absolute electronic couplings $\Sigma(|V|)$ for each of the luminophores 1–4 correlated well (R²=0.95) with the corresponding solid state Φ (see manuscript for details).

CTI analysis for luminophores 15–17

CTI analysis (as described above) was also performed for luminophores **15–17** of completely distinct design, developed in 2020 by Shi, Lu and co-workers⁴ (Fig. S31).

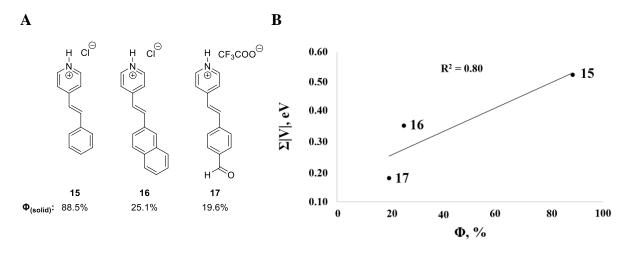


Fig. S31. A: Luminophores 15–17; B: Correlation between the $\Sigma |V|$ and Φ for 15–17

		\mathbf{H}_{1}	H2	H3
	J	-0.4088	0.0005	0.4140
HOMO-	E 1	-12.3148	-11.1400	-12.1624
HOMO, Hole	E 2	-12.3154	-11.3729	-12.1624
transfer	S	0.0220	-0.0000	-0.0228
ti unisi ei	V , eV	0.1386	0.0003	0.1373
E(RB3LYP), A.U.	-1113.994	-1114.002	-1114.001

Table S8. Electron coupling and energy calculation results for emitter 15

		E 1	E2	E3
LUMO-	J	0.1894	-0.0145	-0.3810
	E 1	-8.8479	-8.1884	-8.6213
LUMO,	E 2	-8.8471	-8.3241	-8.6213
Electron	S	-0.0123	0.0014	0.0252
transfer	V , eV	0.0809	0.0030	0.1641
E(RB3LYP), A.U.		-1113.994	-1114.002	-1114.001

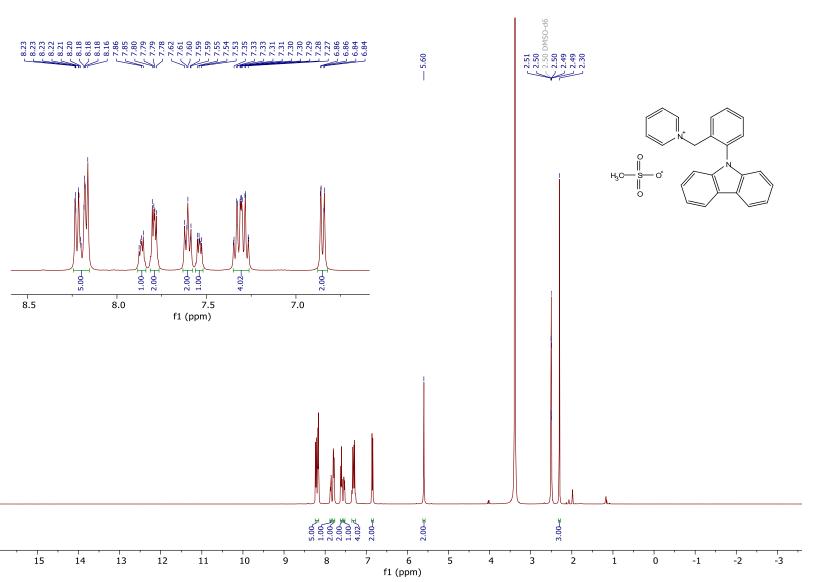
		H_1	H_2	H3
	J	-0.0023	-0.4172	-0.0098
HOMO-	E 1	-10.0394	-11.1654	-9.8120
HOMO, Hole	E 2	-10.0399	-11.1631	-9.8109
transfer	S	0.0004	0.0244	0.0008
	V , eV	0.0014	0.1449	0.0018
E _{(RB3LYE}	»), A.U.	-1421.344	-1421.315	-1421.351

 Table S9. Electron coupling and energy calculation results for emitter 16

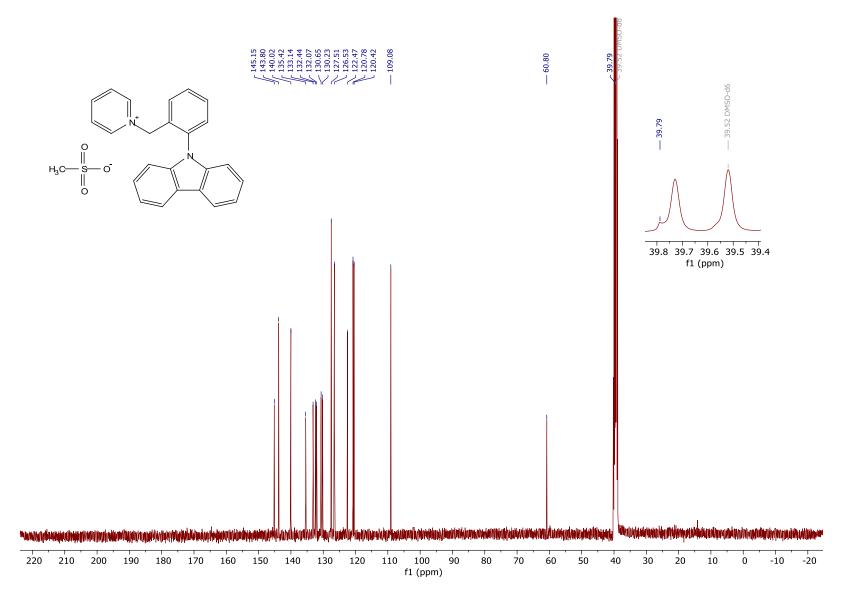
		E ₁	E ₂	E ₃
LUMO-	J	-0.4534	0.0021	0.0244
	E 1	-8.5060	-7.8924	-8.0894
LUMO,	E 2	-8.5066	-7.6158	-8.0905
Electron	S	0.0296	-0.0002	-0.0025
transfer	V , eV	0.2016	0.0005	0.0043
E(RB3LYI	P), A.U.	-1421.315	-1421.338	-1421.320

		\mathbf{H}_{1}	H ₂	H3
HOMO- HOMO, Hole transfer	J	-0.0173	0.0070	0.0020
	E 1	-11.9185	-11.1882	-11.8367
	E 2	-11.9191	-11.1882	-10.5221
	S	0.0010	-0.0004	-0.0002
	V , eV	0.0049	0.0021	0.0003
E _(RB3LYP) , A.U.		-1340.788	-1340.774	-1340.759

Table S10. Electron coupling and energy calculation results for emitter 17

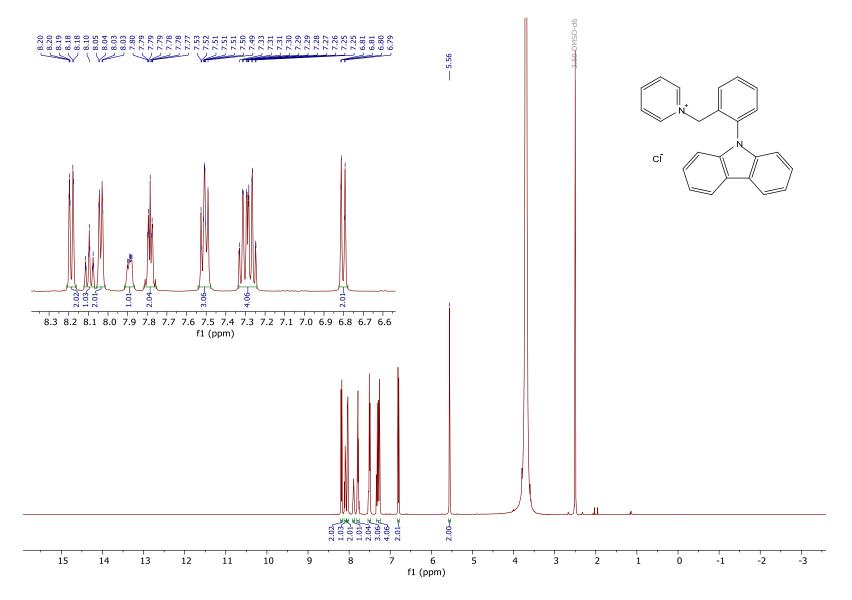

		\mathbf{E}_1	\mathbf{E}_2	E ₃
LUMO-	J	-0.4227	0.0072	-0.0071
	E 1	-9.1968	-8.0516	-8.5747
LUMO, Electron transfer	E 2	-9.1971	-8.0512	-8.0043
	S	0.0281	-0.0005	0.0004
	V , eV	0.1646	0.0033	0.0037
E(RB3LYP), A.U.		-1340.728	-1340.788	-1340.759

The CTI analysis demonstrated that the sum of absolute electronic couplings $\Sigma(|V|)$ for luminophores **15–17** correlated well with the corresponding solid state Φ values. The lower correlation value (R²=0.80) for **15–17** as compared to that for luminophores **1–4** possibly is a consequence of insufficient data points (only three are available) and overestimation of the CTI value for **16**, due to the larger total π -system of the molecule.

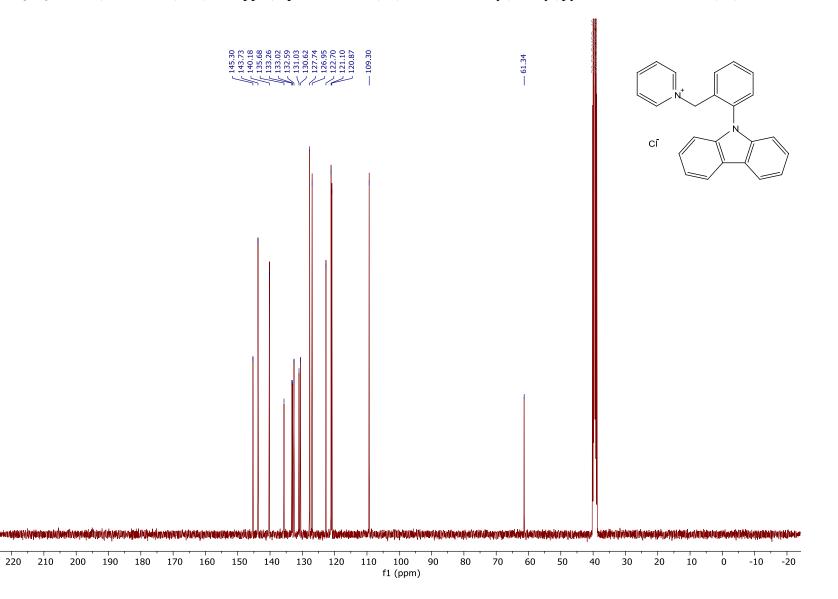

References

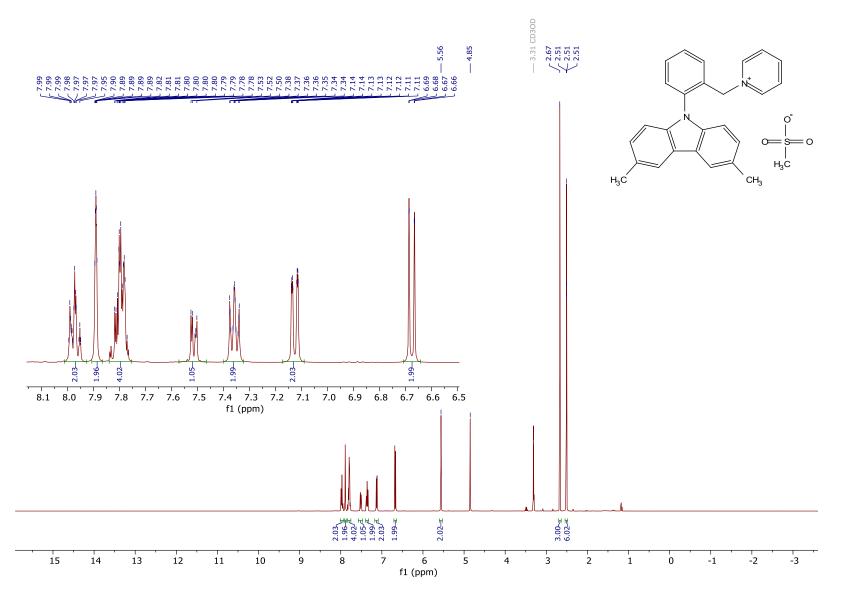
- 1. K. Leduskrasts, E. Suna, RSC Adv. 2019, 9, 460–465. DOI: 10.1039/C8RA08771G
- 2. Brown, J. S. Catnip (version 1.9), **2018**. Available from https://github.com/JoshuaSBr own/QC_Tools
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Jr., J. A. M.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, 2013.
- 4. X. Cui, Y. Hao, W. Guan, L. Liu, W. Shi, C. Lu, *Adv. Opt. Mater.*, 2020, **8**, 2000125. DOI: <u>10.1002/adom.202000125</u>

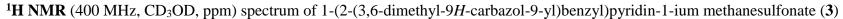
¹H and ¹³C NMR data

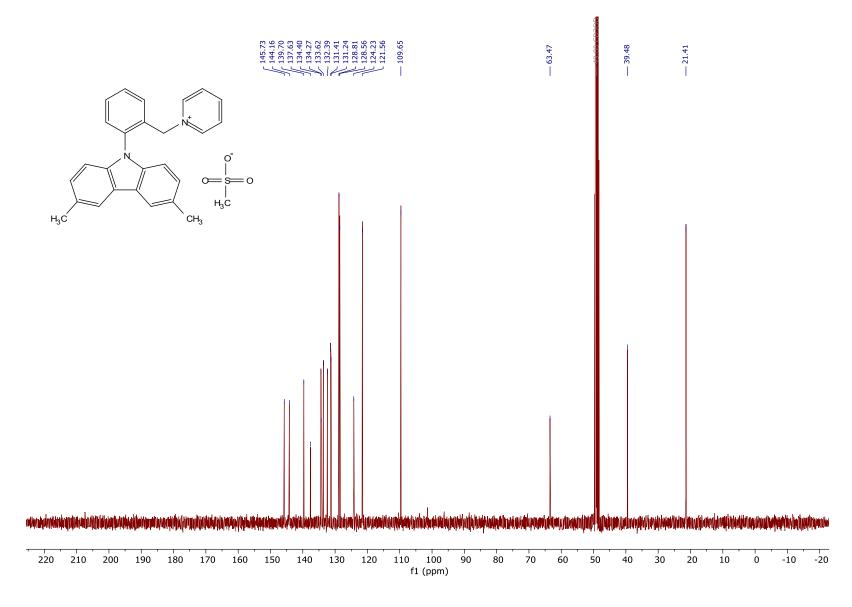


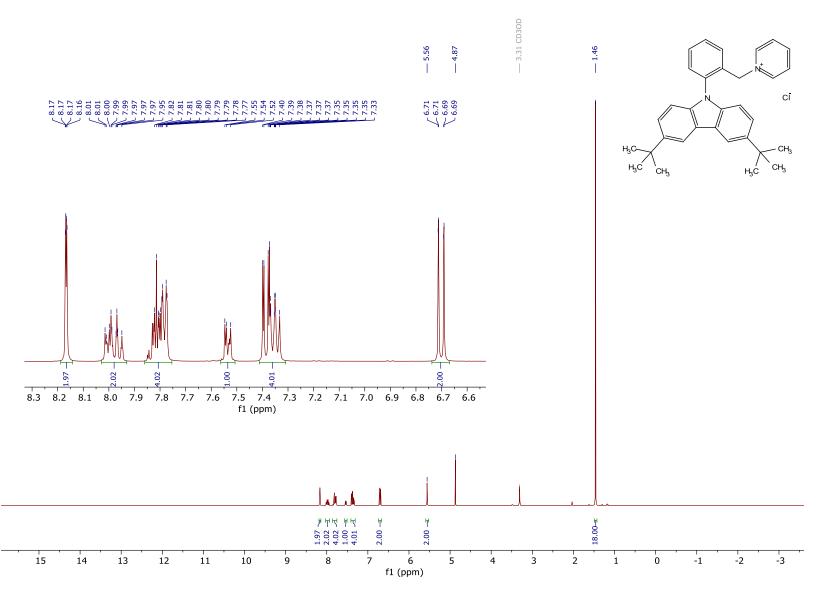
¹H NMR (400 MHz, (CD₃)₂SO, ppm) spectrum of 1-(2-(9*H*-carbazol-9-yl)benzyl)pyridin-1-ium methanesulfonate (**2a**)

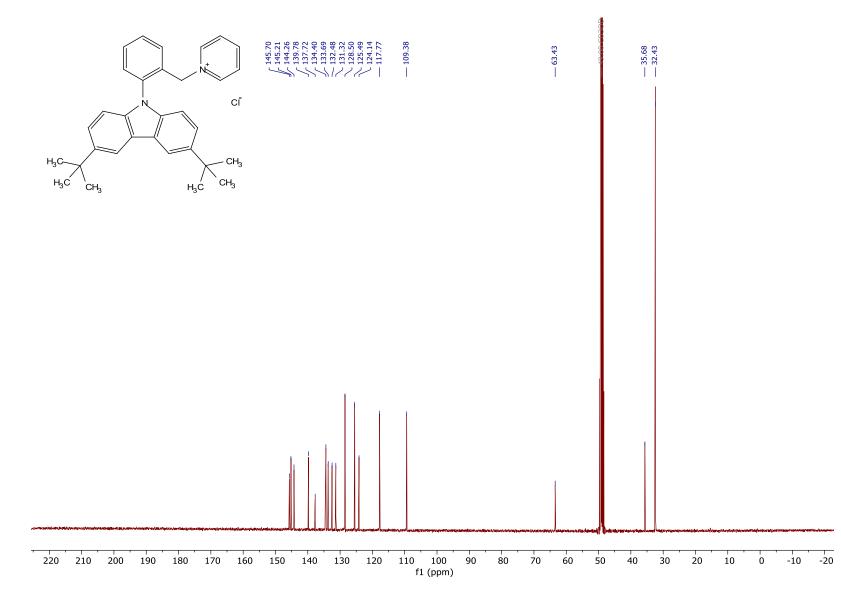


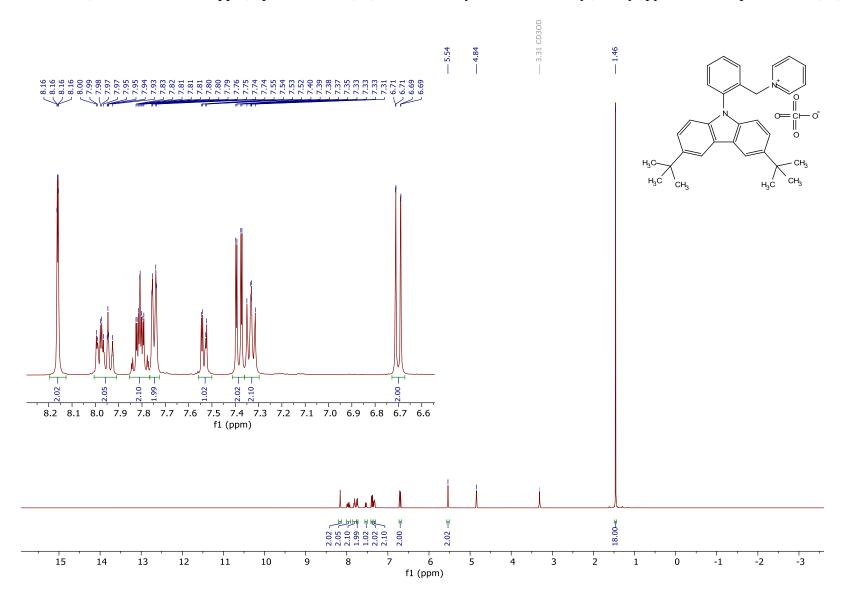

S42

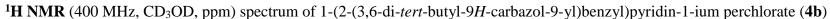

¹**H NMR** (400 MHz, (CD₃)₂SO, ppm) spectrum of 1-(2-(9*H*-carbazol-9-yl)benzyl)pyridin-1-ium chloride (**2b**)


¹³C{¹H} NMR (101 MHz, (CD₃)₂SO, ppm) spectrum of 1-(2-(9*H*-carbazol-9-yl)benzyl)pyridin-1-ium chloride (**2b**)

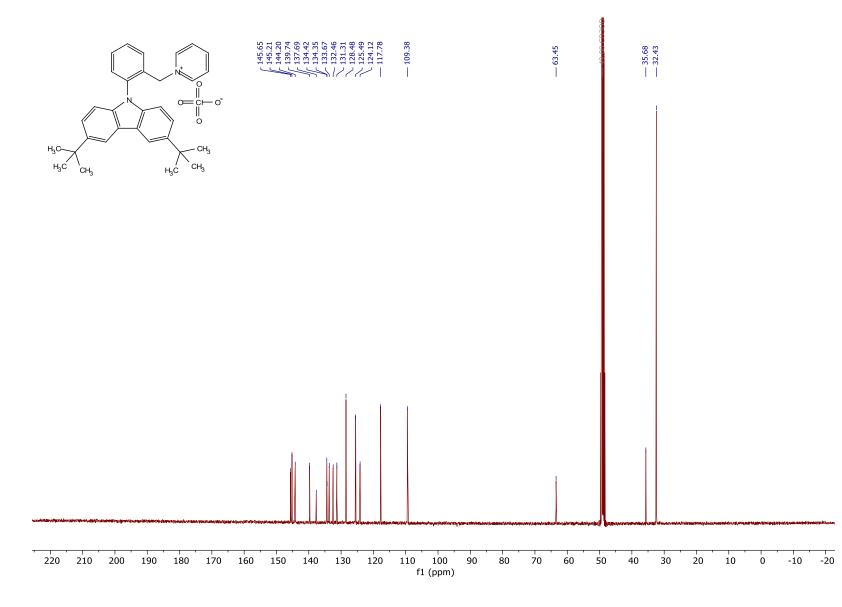


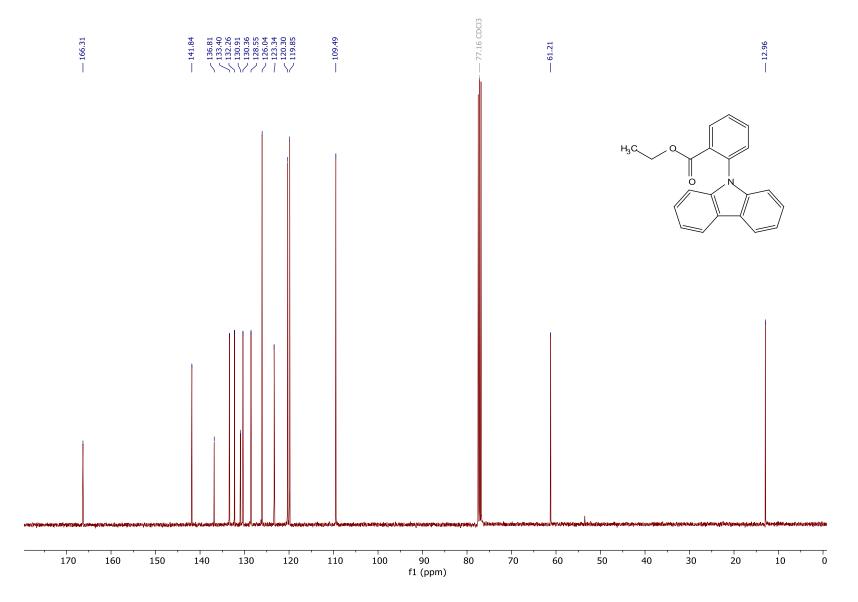

¹³C{¹H} NMR (101 MHz, CD₃OD, ppm) spectrum of 1-(2-(3,6-dimethyl-9*H*-carbazol-9-yl)benzyl)pyridin-1-ium methanesulfonate (3)

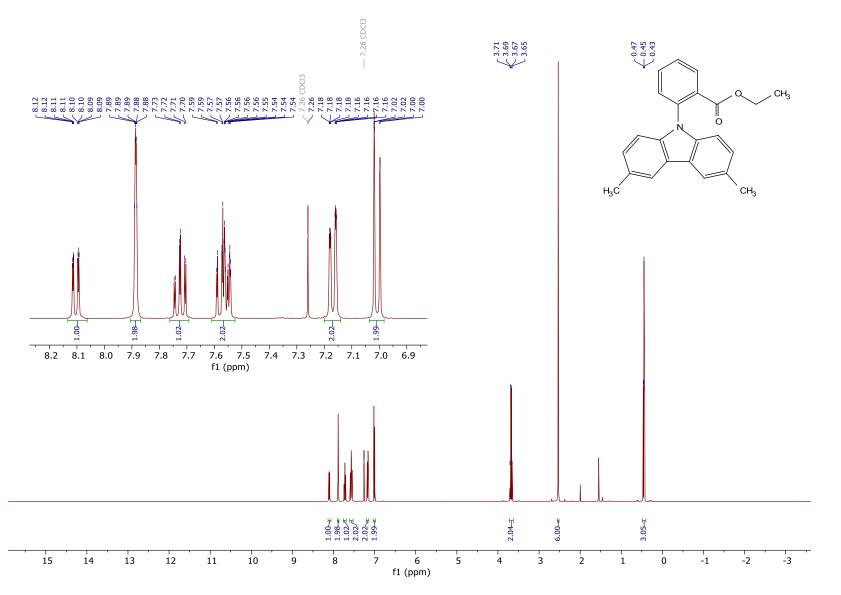




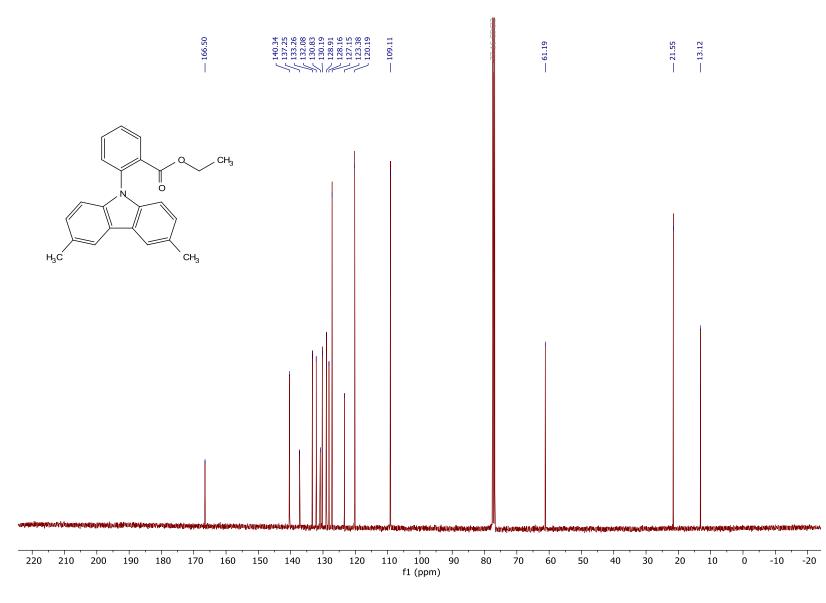
¹H NMR (400 MHz, CD₃OD, ppm) spectrum of 1-(2-(3,6-di-*tert*-butyl-9*H*-carbazol-9-yl)benzyl)pyridin-1-ium chloride (4a)

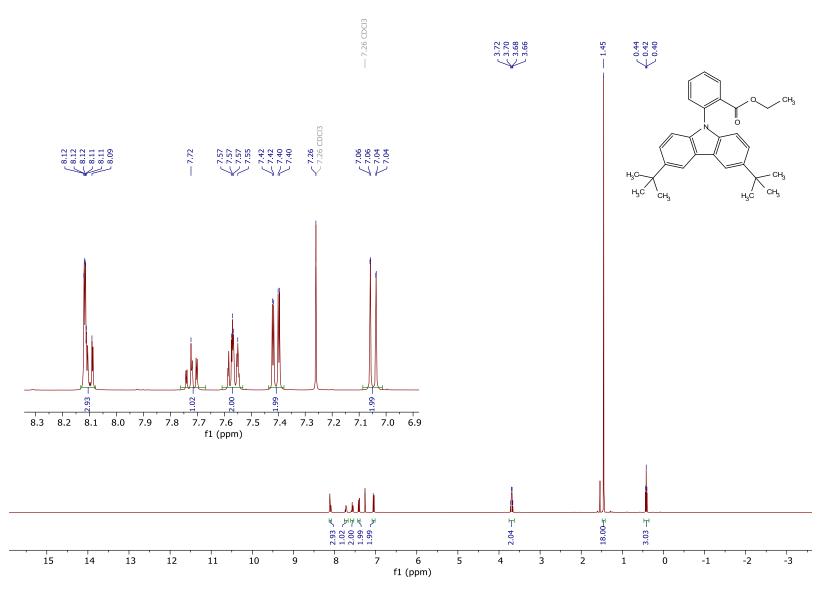

¹³C{¹H} NMR (101 MHz, CD₃OD, ppm) spectrum for 1-(2-(3,6-di-*tert*-butyl-9*H*-carbazol-9-yl)benzyl)pyridin-1-ium chloride (4a)


¹³C{¹H} NMR (101 MHz, CD₃OD, ppm) spectrum of 1-(2-(3,6-di-*tert*-butyl-9*H*-carbazol-9-yl)benzyl)pyridin-1-ium perchlorate (4b)



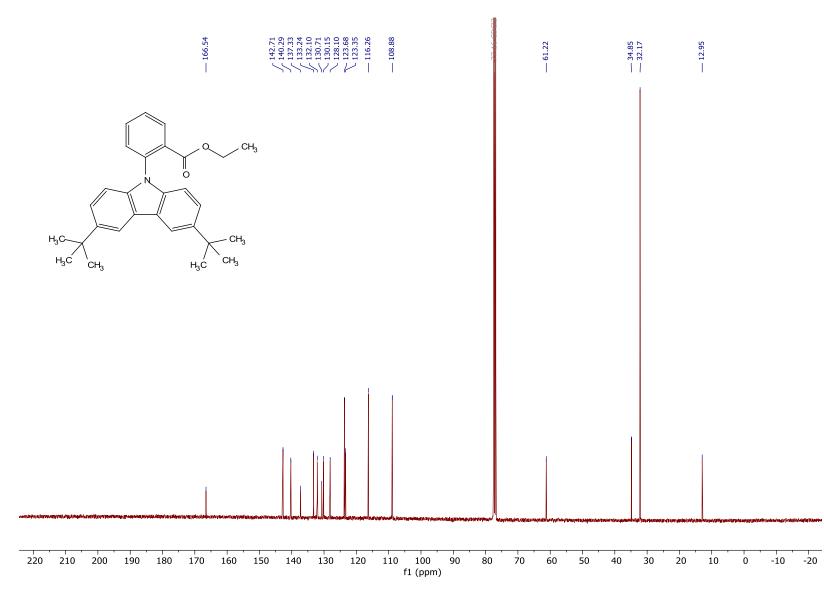
¹**H NMR** (400 MHz, CDCl₃, ppm) spectrum of ethyl 2-(9*H*-carbazol-9-yl)benzoate (**9**)

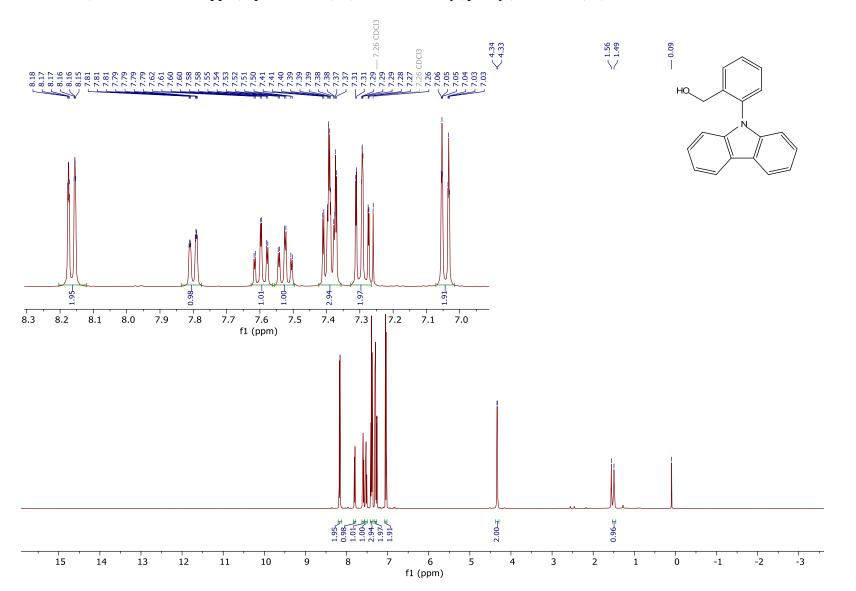

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) spectrum of ethyl 2-(9*H*-carbazol-9-yl)benzoate (9)



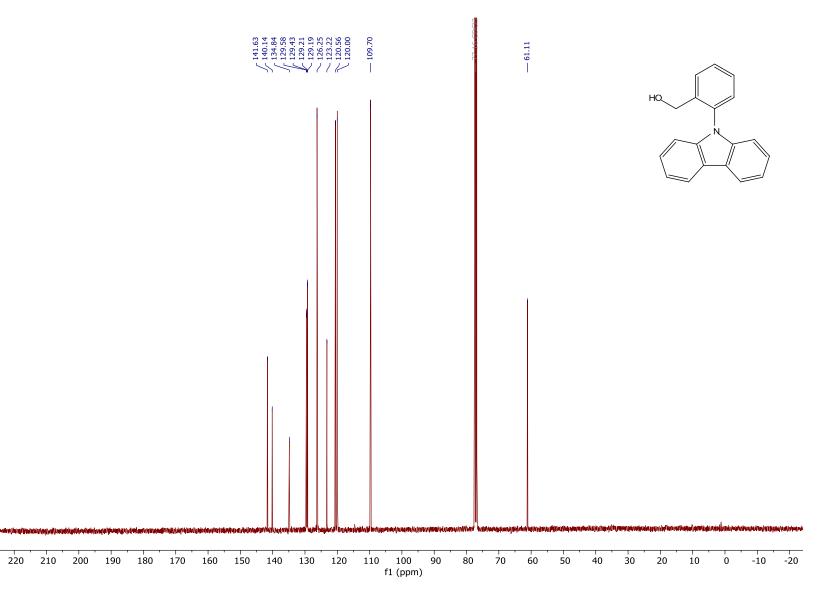
¹H NMR (400 MHz, CDCl₃, ppm) spectrum of ethyl 2-(3,6-dimethyl-9*H*-carbazol-9-yl)benzoate (10)

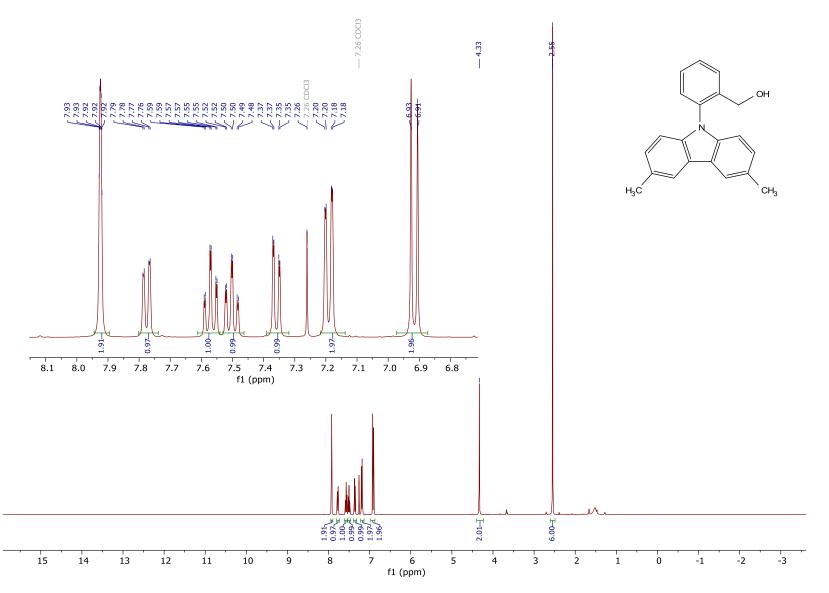
¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) spectrum of ethyl 2-(3,6-dimethyl-9*H*-carbazol-9-yl)benzoate (10)




Supporting Information

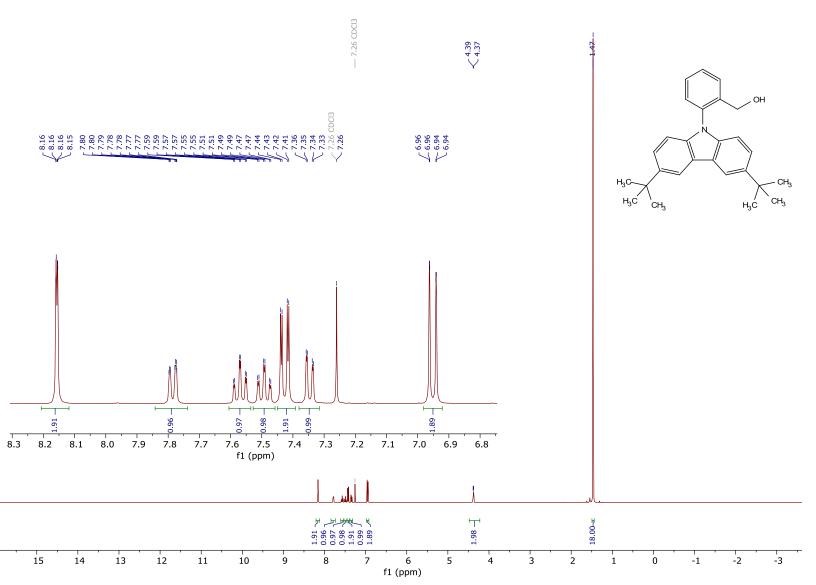
¹H NMR (400 MHz, CDCl₃, ppm) spectrum of ethyl 2-(3,6-di-*tert*-butyl-9*H*-carbazol-9-yl)benzoate (11)


¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) spectrum of ethyl 2-(3,6-di-*tert*-butyl-9*H*-carbazol-9-yl)benzoate (11)

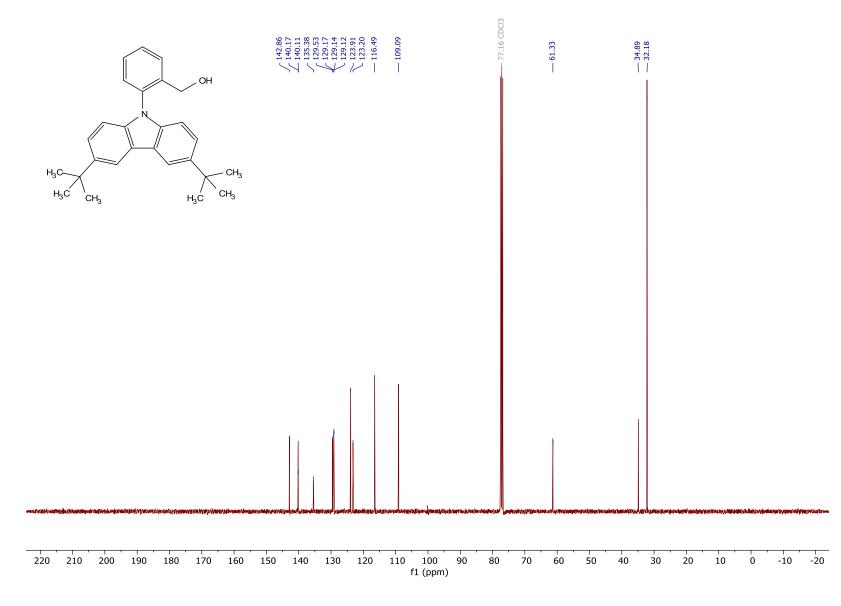


¹**H NMR** (400 MHz, CDCl₃, ppm) spectrum of (2-(9*H*-carbazol-9-yl)phenyl)methanol (**12**)

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) spectrum of (2-(9*H*-carbazol-9-yl)phenyl)methanol (12)



¹**H NMR** (400 MHz, CDCl₃, ppm) spectrum of (2-(3,6-dimethyl-9*H*-carbazol-9-yl)phenyl)methanol (**13**)


109.33 ОН `сн₃ H₃C AND A DEPENDENCE OF THE 220 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) 90 80 70 60 50 30 20 0 -10 -20 10 40

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) spectrum of (2-(3,6-dimethyl-9*H*-carbazol-9-yl)phenyl)methanol (13)

¹H NMR (400 MHz, CDCl₃, ppm) spectrum of (2-(3,6-di-*tert*-butyl-9*H*-carbazol-9-yl)phenyl)methanol (14)

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm) spectrum of (2-(3,6-di-*tert*-butyl-9*H*-carbazol-9-yl)phenyl)methanol (14)

S61