Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Synthesis of Open-[70]Fullerenes Bearing a Huge Orifice

Yoshifumi Hashikawa, Shumpei Sadai, and Yasujiro Murata*

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan Fax: (+81)774-38-3178 E-mail: yasujiro@scl.kyoto-u.ac.jp

Contents

1. General	S3
2. Computational Methods	S4
3. Synthesis	S5
3.1. Synthesis of 1	S5
3.2. Synthesis of 3	S6
3.3. Synthesis of 4–7	S7
3.4. Synthesis of 8	S18
3.5. Synthesis of 11 and 12	S21
4. Single Crystal X-Ray Structure of 3 •(CS ₂) _{2.5}	S27
5. DFT Calculations	S28
5.1. Orientation of H ₂ O inside 4'	S28
5.2. Molecular Orbitals of 8 and 11	S34
6. References	S38

1. General

The ¹H and ¹³C NMR measurements were carried out at room temperature unless otherwise noted with a JEOL JNM ECA500, Bruker Avance III 600US Plus, and Bruker Avance III 800US Plus instruments. The NMR chemical shifts were reported in ppm with reference to residual protons and carbons of acetone- d_6 (δ 2.05 ppm in ¹H NMR, δ 29.92 ppm in ¹³C NMR) and CDCl₃ (δ 7.26 ppm in ¹H NMR, δ 77.00 ppm in ¹³C NMR). APCI (atmospheric pressure chemical ionization) mass spectra were measured on a Bruker micrOTOF-Q II. UV-vis-NIR absorption spectra were measured with a Shimadzu UV-3150 spectrometer. Cyclic voltammetry was conducted on a BAS Electrochemical Analyzer ALS620C using a three-electrode cell with a glassy carbon working electrode, a platinum wire counter electrode, and an Ag/AgNO3 reference electrode. The measurements were carried out under N2 atmosphere using ODCB solutions of 1.0 mM samples and 0.10 M tetrabutylammonium tetrafluoroborate (*n*-Bu₄N·BF₄) as a supporting electrolyte. The redox potentials were calibrated with ferrocene used as an internal standard which was added after each measurement. Thin layer chromatography (TLC) was performed on glass plates coated with 0.25 mm thick silica gel 60F-254 (Merck). Column chromatography was performed using PSQ 60B (Fuji Silysia).

Fullerene C₆₀ was purchased from SES Research Co. *o*-Dichlorobenzene (ODCB) was purchased from Sigma-Aldrich Co. LLC. Elemental sulfur and tetrahydrofuran (THF) were purchased from Kanto Chemical Co., Inc. Tetrakis(dimethylamino)ethylene (TDAE) and 4,5-dimethyl-1,2-phenylenediamine were purchased from Tokyo Chemical Industry Co. Ltd. Benzene and toluene were purchased from Nakalai Tesque, Inc. Carbon tetrachloride, *N*-methylmorpholine *N*-oxide (NMO), carbon disulfide, acetone, and ethyl acetate were purchased from FUJIFILM Wako Pure Chemical Corporation.

All reactions were carried out under Ar atmosphere except for cases showing specific notation. Unless otherwise noted, materials purchased from commercial suppliers were used without further purification. Compounds 13^1 and 9^2 were synthesized according to literature procedures.

2. Computational Methods

All calculations were conducted using the Gaussian 09 program. All structures at the stationary and transition states were optimized at the B3LYP/6-31G(d) or B3LYP-D3/6-31G(d) level of theory without any symmetry assumptions and confirmed by the frequency analyses at the same level of theory. Using the geometries optimized at the B3LYP-D3/6-31G(d) level of theory, GIAO (gauge-independent atomic orbital) calculations were performed at the B3LYP-D3/6-311G(d,p) level of theory.

3. Synthesis

3.1. Synthesis of 1

Powdery **13** (280 mg, 242 μ mol) dissolved in CS₂/CCl₄ (80 mL/240 mL) was placed into a circular glass tank with an inner diameter of 17.5 cm. The solution was bubbled with O₂ at 0 °C (water/ice bath) for 8 min and then irradiated by four white LED lamps (16 W × 4) for 2 h. The resulting crude mixture was evaporated and purified by column chromatography using silica gel (CS₂ to toluene) to give unreacted **13** (19.1 mg, 16.5 μ mol, 7%) and **1** (248 mg, 208 μ mol, 86%) as black powders.

1: ¹H NMR (500 MHz, CDCl₃) δ 7.59 (t, 1H, J = 8.0 Hz), 7.52 (t, 1H, J = 8.0 Hz), 7.27 (d, 1H, J = 8.0 Hz), 7.24 (d, 1H, J = 8.0 Hz), 7.19 (d, 1H, J = 8.0 Hz), 7.11 (d, 1H, J = 8.0 Hz), 6.70 (d, 1H, J = 10.3 Hz), 6.54 (d, 1H, J = 10.3 Hz), 1.24 (s, 9H), 1.09 (s, 9H); HRMS (APCI) m/z: [M]⁻ Calcd for C₉₂H₂₆N₂O₂ (1) 1190.2000; Found 1190.1988. (These data matched well with the reported ones.¹)

3.2. Synthesis of 3

Powdery **1** (100 mg, 83.9 μ mol) was placed into a Schlenk tube and degassed through three vacuum–Ar cycles. ODCB (10.0 mL) and then distilled water (degassed, 3.34 μ L, $\rho = 0.997$ g/mL, 185 μ mol, 2.20 equiv) were added to the tube. NMO (21.9 mg, 187 μ mol, 2.23 equiv) dissolved in THF (20.0 mL) was transferred from a 50-mL two-neck flask to the Schlenk tube via a cannular. The resulting solution was cooled down to 0 °C (water/ice bath) and stirred for 3 h. The crude mixture was evaporated for removal of THF and then purified by column chromatography using silica gel (toluene/ethyl acetate (3:1)) to give **3** (78.1 mg, 62.9 μ mol, 75%) as a black powder.

3: ¹H NMR (500 MHz, CDCl₃) δ 7.68 (t, 1H, J = 7.9 Hz), 7.53 (d, 1H, J = 7.9 Hz), 7.51 (t, 1H, J = 7.9 Hz), 7.34 (d, 1H, J = 7.9 Hz), 7.25 (d, 1H, J = 7.9 Hz), 7.10 (d, 1H, J = 7.9 Hz), 6.96 (d, 1H, J = 10.3 Hz), 6.49 (d, 1H, J = 10.3 Hz), 5.69 (br s, 1H), 5.15 (br s, 1H), 1.25 (s, 9H), 1.06 (s, 9H); HRMS (APCI) m/z: [M–H₂O]^{•–} Calcd for C₉₂H₂₆N₂O₄ (**3**–H₂O) 1222.1898; Found 1222.1896. (These data matched well with the reported ones.¹)

3.3. Synthesis of 4–7

 $[x = 0.5 (150 \circ C, 15 \min)]$

Powdery **3** (10.0 mg, 8.06 µmol) and S₈ (2.13 mg, 8.30 µmol, 1.03 equiv) were placed into a Schlenk tube and degassed through three vacuum–N₂ cycles. ODCB (0.500 mL) and then TDAE (0.93 µL, $\rho = 0.868$ g/mL, 4.0 µmol, 0.50 equiv) were added and the resulting solution was heated at 150 °C for 15 min (aluminum block heater). The crude mixture was purified by column chromatography using silica gel (CS₂/acetone (100:1) to (50:1)) to give **7** (1.34 mg, 1.09 µmol, 14%) and **4** (2.47 mg, 1.97 µmol, 24%) as black powders.

$[x = 1.0 (180 \circ C, 30 \min)]$

Powdery **3** (10.0 mg, 8.06 µmol) and S₈ (2.14 mg, 8.34 µmol, 1.04 equiv) were placed into a Schlenk tube and degassed through three vacuum–N₂ cycles. ODCB (0.500 mL) and then TDAE (1.86 µL, $\rho = 0.868$ g/mL, 8.06 µmol, 1.00 equiv) were added and the resulting solution was heated at 180 °C for 30 min (aluminum block heater). The crude mixture was purified by column chromatography using silica gel (CS₂/acetone (200:1) to (100:1), then (50:1)) to give **6** (5.93 mg, 4.71 µmol, 58%), **5** (0.96 mg, 0.75 µmol, 9%), and **4** (0.77 mg, 0.61 µmol, 8%) as black powders.

4: ¹H NMR (500 MHz, CDCl₃) δ 7.64 (t, 1H, J = 7.7 Hz), 7.54 (d, 1H, J = 7.7 Hz), 7.52 (t, 1H, J = 7.7 Hz), 7.30 (d, 1H, J = 7.7 Hz), 7.25 (d, 1H, J = 7.7 Hz), 7.20 (d, 1H, J = 10.3 Hz), 7.09 (d, 1H, J = 7.7 Hz), 6.52 (d, 1H, J = 10.3 Hz), 1.22 (s, 9H), 1.04 (s, 9H), – 16.87 (s, 1.20H for entrapped H₂O); ¹³C NMR (151 MHz, CDCl₃) δ 192.21, 184.88, 179.87, 179.45, 168.56, 168.31, 163.17, 161.15, 155.45, 151.01, 149.72, 149.60, 149.59, 149.53, 149.28, 149.12, 149.04, 148.78, 148.68, 148.61, 148.51, 147.96, 147.89, 147.29, 147.27, 147.21, 146.69, 146.08, 145.31, 144.34, 144.10, 144.07, 143.80, 143.77, 141.74, 141.28, 141.09, 141.01, 140.48, 139.88, 139.84, 139.41, 137.94, 137.91, 137.49, 137.33, 137.16, 136.27, 135.83, 135.72, 135.70, 135.22, 134.75, 134.21, 133.67, 133.33, 133.22,

133.20, 132.87, 132.81, 132.58, 132.53, 132.33, 130.89, 130.60, 129.04, 128.17, 126.94, 126.06, 126.01, 125.54, 125.11, 120.01, 119.65, 117.50, 117.27, 58.58, 53.89, 37.71, 37.56, 29.94, 29.81 (The sum of carbon signals must be 88 in theory. Observed 82. The 6 sp² carbon signals are overlapped.); HRMS (APCI) m/z: [M]⁻ Calcd for C₉₂H₂₆N₂O₄S (4) 1254.1613; Found 1254.1607.

5: ¹H NMR (500 MHz, CDCl₃) δ 7.67 (t, 1H, J = 7.9 Hz), 7.57 (t, 1H, J = 7.9 Hz), 7.51 (t, 1H, J = 7.9 Hz), 7.24 (d, 1H, J = 7.9 Hz), 7.21 (d, 1H, J = 7.9 Hz), 7.15 (d, 1H, J = 7.9 Hz), 7.10 (d, 1H, J = 10.3 Hz), 6.36 (d, 1H, J = 10.3 Hz), 1.22 (s, 9H), 1.18 (s, 9H); ¹³C NMR (201 MHz, CDCl₃) δ 192.56 (2C), 168.47, 168.30, 163.92, 162.19, 157.26, 153.12, 152.26, 151.66, 151.29, 151.10, 151.04, 150.94, 150.87, 149.99, 149.94, 149.89, 149.72, 149.23, 149.12, 148.93, 148.90, 148.87, 148.79, 148.69, 148.68, 148.61, 148.52, 148.45, 148.23, 147.74, 147.50, 146.73, 146.57, 146.25, 144.96, 144.65, 144.49, 144.42, 143.54, 143.44, 143.15, 142.35, 141.64, 140.86, 140.43, 139.83, 139.78, 138.84, 137.76, 137.00, 136.94, 136.67, 136.07, 135.98, 135.13, 134.47, 134.15, 132.62, 132.46, 132.27, 132.17, 130.59, 130.55, 130.46, 130.39, 129.67, 129.27, 128.48, 126.73, 126.01, 125.99, 125.96, 125.75, 125.73, 119.88, 119.77, 117.28, 116.97, 91.84, 79.55, 57.45, 53.48, 37.68, 37.54, 29.94, 29.84 (The sum of carbon signals must be 88 in theory. Observed 88); HRMS (APCI) *m/z*: [M]⁻⁻ Calcd for C₉₂H₂₆N₂O4S₂ (**5**) 1286.1339; Found 1286.1367.

6: ¹H NMR (500 MHz, CDCl₃) δ 7.64 (t, 1H, J = 7.7 Hz), 7.58 (t, 1H, J = 7.7 Hz), 7.48 (d, 1H, J = 7.7 Hz), 7.26 (d, 1H, J = 7.7 Hz), 7.20 (d, 1H, J = 7.7 Hz), 7.16 (d, 1H, J = 7.7 Hz), 7.06 (d, 1H, J = 10.3 Hz), 6.45 (d, 1H, J = 10.3 Hz), 1.20 (s, 9H), 1.15 (s, 9H), – 18.20 (s, 1.20H for entrapped H₂O); ¹³C NMR (126 MHz, CDCl₃) δ 195.75, 184.84, 181.01, 168.53, 168.11, 163.49, 162.67, 161.27, 156.61, 152.90, 152.69, 152.08, 152.05, 151.97, 151.26, 151.14, 150.96, 150.62, 150.27, 150.08, 150.05, 149.00, 148.97, 148.92, 148.80, 148.65, 148.57, 148.45, 148.03, 147.86, 146.91, 145.45, 145.28, 145.22, 145.05, 143.51, 143.45, 143.18, 142.94, 142.31, 142.01, 141.23, 141.08, 140.94, 140.86, 139.70, 138.62, 138.47, 137.41, 137.03, 136.69, 136.64, 135.24, 134.33, 134.27, 134.07, 133.84, 133.49, 133.18, 132.65, 132.52, 131.82, 131.54, 131.00, 130.64, 130.18, 130.01, 129.12, 126.68, 126.64, 126.47, 126.26, 126.00, 125.77, 125.71, 125.11, 124.21, 119.82, 119.60, 117.48, 117.07, 58.10, 53.42, 37.64, 37.61, 29.90, 29.85 (The sum of carbon signals must be 87 in theory. Observed 87.); HRMS (APCI) *m*/*z*: [M]⁺⁻ Calcd for C₉₁H₂₆N₂O₃S₂ (**6**) 1258.1390; Found 1258.1338.

7: ¹H NMR (500 MHz, CDCl₃) δ 7.67 (t, 1H, J = 7.7 Hz), 7.53 (d, 1H, J = 7.7 Hz), 7.50 (t, 1H, J = 7.7 Hz), 7.29 (d, 1H, J = 7.7 Hz), 7.24 (d, 1H, J = 7.7 Hz), 7.10 (d, 1H, J = 7.7 Hz), 6.88 (d, 1H, J = 10.3 Hz), 6.67 (s, 1H), 6.38 (d, 1H, J = 10.3 Hz), 5.56 (br s, 1H), 1.24 (s, 9H), 1.07 (s, 9H), -19.62 (s, 0.28H for encapsulated H₂O); ¹³C NMR (151 MHz, CDCl₃) δ 193.43, 184.37, 184.30, 180.67, 169.00, 168.27, 163.47, 161.18, 154.94, 152.31, 152.28, 151.86, 151.75, 151.63, 151.59, 151.34, 151.31, 151.18, 150.18, 149.52, 149.47, 149.25, 148.87, 148.73, 148.70, 148.66, 148.52, 147.97, 147.87, 147.42, 145.71, 145.22, 144.85, 143.47, 143.14, 142.57, 142.43, 141.22, 140.77, 140.13, 139.61, 139.42, 139.19, 139.16, 139.10, 138.59, 137.88, 137.64, 137.14, 135.55, 134.33, 134.14, 133.95, 133.87, 130.31, 128.70, 127.78, 127.49, 126.41, 126.11, 125.90, 125.74, 123.79, 123.55, 122.48, 119.92, 119.53, 119.50, 119.19, 117.60, 117.19, 59.23, 53.59, 37.70, 37.45, 29.93, 29.83 (The sum of carbon signals must be 88 in theory. Observed 88.); HRMS (APCI) *m/z*: [M]⁻ Calcd for C₉₂H₂₈N₂O₄ (7) 1224.2055; Found 1224.2007.

Figure S1. (a) ¹H NMR spectra (500 MHz, CDCl₃) of 4 at room temperature. (b) ¹H NMR spectra (600 MHz, $CS_2/CD_2Cl_2(1:1)$) of $H_2O@4$ at variable temperatures.

Figure S2. ¹³C NMR spectra (151 MHz, CDCl₃) of 4.

Figure S3. APCI mass spectra (negative ion mode) of 4.

Figure S4. ¹H NMR spectra (500 MHz, CDCl₃) of 5.

Figure S5. ¹³C NMR spectra (201 MHz, CDCl₃) of 5.

Figure S6. APCI mass spectra (negative ion mode) of 5.

Figure S7. (a) ¹H NMR spectra (500 MHz, CDCl₃) of **6** at room temperature. (b) ¹H NMR spectra (600 MHz, $CS_2/CD_2Cl_2(1:1)$) of $H_2O@6$ at variable temperatures.

Figure S8. ¹³C NMR spectra (126 MHz, CDCl₃) of 6.

Figure S9. APCI mass spectra (negative ion mode) of 6.

Figure S10. ¹H NMR spectra (500 MHz, CDCl₃) of 7.

Figure S11. ¹³C NMR spectra (151 MHz, CDCl₃) of 7.

Figure S12. HMBC spectrum (600 MHz, CDCl₃) of 7.

Figure S13. APCI mass spectra (negative ion mode) of 7.

3.4. Synthesis of 8

Powdery **3** (10.0 mg, 8.06 μ mol) and 4,5-dimethyl-1,2-phenylenediamine (1.15 mg, 8.44 μ mol, 1.05 equiv) were placed into a Schlenk tube. ODCB (0.500 mL) was added and degassed through three vacuum–H₂ cycles. The resulting solution was heated at 180 °C for 2 h (aluminum block heater). The crude mixture was purified by column chromatography using silica gel (toluene to toluene/ethyl acetate (50:1)) to give 7 (trace) and **8** (7.94 mg, 5.92 μ mol, 73%) as brown powders.

8: ¹H NMR (500 MHz, acetone-*d*₆/CS₂ (1:5)) δ 8.09 (s, 1H), 8.06 (s, 1H), 7.71 (t, 1H, *J* = 7.9 Hz), 7.65 (d, 1H, *J* = 7.9 Hz), 7.61 (d, 1H, *J* = 10.7 Hz), 7.55 (d, 1H, *J* = 7.9 Hz), 7.37 (d, 1H, *J* = 7.9 Hz), 7.26 (d, 1H, *J* = 7.9 Hz), 7.12 (d, 1H, *J* = 7.9 Hz), 6.38 (d, 1H, *J* = 10.7 Hz), 4.52 (d, 1H, *J* = 20.2 Hz), 2.67 (s, 6H), 2.53 (d, 1H, *J* = 20.2 Hz), 1.20 (s, 9H), 1.09 (s, 9H); ¹³C NMR (126 MHz, acetone-*d*₆/CS₂ (1:5)) δ 190.77, 188.34, 180.70, 168.41, 168.30, 163.40, 162.80, 155.64, 155.03, 154.00, 152.92, 152.73, 152.59, 151.89, 151.67, 151.56, 151.53, 151.38, 151.35, 151.09, 150.67, 150.64, 150.49, 149.80, 149.62, 149.51, 149.43, 149.33, 149.29, 149.07, 148.90, 148.31, 147.78, 147.69, 147.55, 147.26, 146.54, 146.39, 145.18, 144.22, 143.40, 143.32, 142.80, 142.74, 142.06, 141.87, 141.38, 141.33, 140.53, 139.45, 138.68, 138.50, 137.84, 137.78, 137.68, 137.22, 137.10, 135.78, 135.59, 135.43, 135.20, 134.81, 134.29, 134.03, 133.37, 133.28, 132.23, 131.87, 131.63, 131.27, 130.15, 130.10, 129.88, 128.03, 126.66, 123.86, 120.94, 120.41, 117.94, 117.92, 57.35, 52.68, 40.95, 37.91, 37.83, 30.54, 30.40, 21.37, 20.99 (The sum of carbon signals must be 96 in theory. Observed 89. The 7 sp² carbon signals are overlapped.); HRMS (APCI) *m*/*z*: [M]⁻ Calcd for C₁₀₀H₃₆N₄O₃ (**8**) 1340.2793; Found 1340.2812.

Figure S14. ¹H NMR spectra (500 MHz, acetone- d_6/CS_2 (1:5)) of 8.

Figure S15. ¹³C NMR spectra (126 MHz, acetone- d_6 /CS₂ (1:5)) of 8.

Figure S16. APCI mass spectra (negative ion mode) of 8.

3.5. Synthesis of 11 and 12

Powdery **9** (10.0 mg, 8.06 μ mol) and 4,5-dimethyl-1,2-phenylenediamine (1.10 mg, 8.08 μ mol, 1.00 equiv) were placed into a Schlenk tube and degassed through three vacuum– Ar cycles. ODCB (0.500 mL) was added. The resulting solution was heated at 180 °C for 2 h (aluminum block heater). The crude mixture was purified by column chromatography using silica gel (toluene/ethyl acetate (200:1) to (3:1)) to give **12** (2.84 mg, 2.32 μ mol, 29%) and **11** (1.98 mg, 1.48 μ mol, 18%) as brown powders.

11: ¹H NMR (500 MHz, acetone-*d*₆/CS₂ (1:5)) δ 7.91 (t, 1H, *J* = 7.7 Hz), 7.73 (t, 1H, *J* = 7.7 Hz), 7.63 (s, 1H), 7.52 (d, 1H, *J* = 7.7 Hz), 7.51 (d, 1H, *J* = 7.7 Hz), 7.48 (d, 1H, *J* = 7.7 Hz), 7.34 (s, 1H), 7.26 (d, 1H, *J* = 7.7 Hz), 6.63 (d, 1H, *J* = 10.3 Hz), 6.38 (d, 1H, *J* = 10.3 Hz), 2.51 (s, 3H), 2.50 (s, 3H), 1.60 (s, 9H), 1.21 (s, 9H), -17.22 (s, 0.26H); ¹³C NMR (201 MHz, acetone-*d*₆/CS₂ (1:5)) δ 189.54, 180.45, 175.00, 168.90, 168.64, 164.38, 164.00, 156.09, 154.14, 153.15, 153.14, 152.24, 150.70, 150.45, 150.22, 150.00, 149.61, 149.57, 149.06, 148.69, 148.56, 147.99, 147.55, 147.45, 147.19, 147.07, 146.94, 146.85, 146.81, 146.42, 146.17, 146.01, 145.81, 145.80, 145.41, 145.39, 145.14, 144.29, 143.74, 143.12, 142.83, 142.45, 142.37, 141.03, 140.80, 140.60, 140.18, 140.13, 140.05, 139.63, 139.52, 139.34, 138.91, 138.51, 138.34, 137.82, 136.99, 136.79, 136.71, 136.02, 135.94, 135.51, 134.81, 134.51, 133.39, 133.13, 130.38, 130.32, 129.57, 128.63, 128.44, 128.15, 127.82, 127.31, 126.78, 125.03, 124.23, 122.63, 121.38, 121.31, 120.75, 118.95, 118.31, 117.80, 116.78, 58.60, 54.58, 38.40, 37.96, 31.05, 30.48, 21.57, 21.11 (The sum of carbon signals must be 96 in theory. Observed 93. The 3 sp² carbon signals are overlapped.); HRMS (APCI) *m*/*z*: [M]⁺ Calcd for C₁₀₀H₃₄N₄O₃ (**11**) 1338.2636; Found 1338.2652.

12: ¹H NMR (500 MHz, acetone- d_6 /CS₂ (1:5)) δ 7.80 (t, 1H, J = 7.9 Hz), 7.72 (t, 1H, J = 7.9 Hz), 7.59 (dd, 1H, J = 7.9, 0.9 Hz), 7.56 (dd, 1H, J = 7.9, 0.9 Hz), 7.37 (dd, 1H, J = 7.9, 0.9 Hz), 7.28 (dd, 1H, J = 7.9, 0.9 Hz), 7.16 (s, 1H), 6.82 (d, 1H, J = 9.9 Hz), 6.59 (s, 1H), 6.50 (d, 1H, J = 9.9 Hz), 1.44 (s, 9H), 1.26 (s, 9H); ¹³C NMR (151 MHz, acetone-

 d_6 /CS₂ (1:5)) δ 195.10, 191.70, 169.33, 168.61, 164.10, 163.57, 156.44, 153.98, 152.16, 152.14, 152.12, 151.11, 151.01, 150.40, 150.17, 149.92, 149.66, 149.29, 149.14, 149.06, 148.93, 148.88, 148.60, 148.45, 148.23, 148.13, 147.87, 147.56, 147.36, 146.82, 146.77, 146.60, 146.54, 146.42, 146.32, 145.76, 145.26, 145.15, 144.80, 144.53, 144.49, 144.24, 143.50, 142.60, 142.51, 142.19, 142.06, 141.52, 141.34, 141.27, 140.16, 139.96, 139.89, 138.01, 137.87, 137.63, 137.40, 137.12, 136.72, 136.61, 136.42, 135.76, 134.53, 132.16, 131.68, 131.38, 131.25, 130.72, 130.07, 129.87, 129.74, 127.48, 127.14, 125.31, 124.39, 120.74, 120.43, 117.97, 117.73, 94.99, 80.26, 59.11, 54.54, 38.33, 37.98, 30.79, 30.53 (The sum of carbon signals must be 88 in theory. Observed 87. One sp² carbon signal is overlapped.); HRMS (APCI) m/z: [M]⁺ Calcd for C₉₂H₂₈N₂O₄ (**12**) 1224.2055; Found 1224.2040.

Figure S17. ¹H NMR spectra (500 MHz, acetone-*d*₆/CS₂ (1:5)) of 11.

Figure S18. ¹³C NMR spectra (201 MHz, acetone- d_6 /CS₂ (1:5)) of 11.

Figure S19. APCI mass spectra (negative ion mode) of 11.

Figure S20. ¹H NMR spectra (500 MHz, acetone-*d*₆/CS₂ (1:5)) of **12**.

Figure S21. ¹³C NMR spectra (151 MHz, acetone-*d*₆/CS₂ (1:5)) of 12.

Figure S22. HMBC spectrum (600 MHz, acetone-*d*₆/CS₂ (1:5)) of 12.

Figure S23. APCI mass spectra (negative ion mode) of 12.

4. Single Crystal X-Ray Structure of 3•(CS₂)_{2.5}

Single crystals of **3** were obtained from a CS₂ solution by slow evaporation at room temperature. Intensity data were collected at 100 K on a Bruker Single Crystal CCD X-ray Diffractometer (SMART APEX II) with Mo K α radiation (λ = 0.71073 Å) and graphite monochromator. A total of 12557 reflections were measured at the maximum 2 θ angle of 49.5°, of which 9554 were independent reflections (R_{int} = 0.0505). The structure was solved by direct methods (SHELXT-97³) and refined by the full-matrix least-squares on F^2 (SHELXL-97³). All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed using AFIX instructions. Part of carbon atoms (C12, C62, and C74) was refined using ISOR instructions. The crystal data are as follows: C_{94.5}H₂₈N₂O₅S₅; FW = 1431.49, crystal size 0.17 × 0.08 × 0.04 mm³, triclinic, *P*-1, *a* = 13.25(2) Å, *b* = 13.47(2) Å, *c* = 17.15(3) Å, α = 82.98(5)°, β = 80.57(6)°, γ = 80.95(4)°, *V* = 2969(9) Å³, *Z* = 2, *D*_c = 1.601 g cm⁻³. The refinement converged to *R*₁ = 0.0949, *wR*₂ = 0.2425 (*I* > 2 σ (*I*)), GOF = 1.078. The data was deposited at the Cambridge Crystallographic Data Centre (CCDC 2249119).

Figure S24. Single crystal X-ray structure of $3 \cdot (CS_2)_{2.5}$. Thermal ellipsoids are shown at 50% probability.

5. DFT Calculations

5.1. Orientation of H₂O inside 4'

Figure S25. H₂O-insertion into 4' and two water orientation for H₂O@4' with simulated ¹H NMR chemical shifts of the encapsulated H₂O molecules (Ar = 2-pyridyl, GIAO-B3LYP-D3/6-311G(d,p)//B3LYP-D3/6-31G(d)). The ΔG values were shown with units in kcal/mol at 298 K.

Table S1. Optimized structure of H₂O (B3LYP-D3/6-31G(d))

Standard orientation:									
Center	Atomic	Atomic	Coord	linates (Angst	roms)				
Number	Number	Туре	Х	Y	Z				
1	8	0	-0.000000	0.119800	0.000000				
2	1	0	0.761330	-0.479202	-0.000000				
3	1	0	-0.761330	-0.479202	-0.000000				

The total electronic energy was calculated to be -76.4089616 Hartree.

Table S2. Optimized structure of 4' (B3LYP-D3/6-31G(d))

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	8	0	3.347873	1.015761	-3.317871		
2	8	0	1.340081	2.988624	-3.376959		
3	8	0	2.670785	5.082766	-1.303317		
4	8	0	4.581299	3.351418	0.044857		
5	6	0	3.537947	-0.623282	-1.549665		
6	6	0	4.547655	0.278372	-0.893678		
7	6	0	4.554649	0.567893	0.405078		
8	6	0	3.506789	0.113842	1.391010		
9	6	0	2.580020	1.262190	1.837484		
10	6	0	2.593873	2.553352	1.303749		
11	6	0	3.399642	3.337336	0.291550		
12	6	0	2.381304	4.344655	-0.393481		
13	6	0	1.102963	4.179434	0.345083		
14	6	0	-0.232301	4.334296	-0.019836		
15	6	0	-1.513446	3.395296	-2.043868		

6	0	-1.045430	2.515070	-2.995704
6	0	0.417722	2.215133	-3.340895
6	0	0.429622	0.674945	-3.425865
6	0	1.356188	-0.215100	-2.911201
6	0	2.782342	0.159800	-2.673541
6	0	2.534544	-1.177903	-0.565479
6	0	2.549181	-0.898247	0.773798
6	0	1.483500	-1.397361	1.622226
6	0	0.980813	-0.563250	2.669417
6	0	1.444804	0.837005	2.657525
6	0	0.504935	1.792278	3.056962
6	0	0.442504	3.039037	2.366764
6	0	1.417111	3.362627	1.468949
6	0	-0.928121	3.317104	2.065883
6	0	-1.298992	3.768482	0.789409
6	0	-2.560807	3.232003	0.233147
6	0	-2.629213	2.987824	-1.187645
6	0	-3.532729	1.987525	-1.704505
6	0	-3.108308	1.144868	-2.815579
6	0	-1.800515	1.345509	-3.287987
6	0	-0.930303	0.258478	-3.557963
6	0	-1.361946	-1.072947	-3.390934
6	0	-0.426372	-1.981570	-2.753055
6	0	0.866611	-1.483474	-2.371055
6	0	1.435821	-1.928269	-1.135301
6	0	0.703770	-2.792269	-0.273818
6	0	0.734265	-2.522757	1.158112
6	0	-0.337953	-2.986407	1.947772
6	0	-0.849158	-2.182671	3.005772
6	0	-0.283989	-0.914360	3.287497
6	0	-1.227721	0.135719	3.673957
6	0	-0.834157	1.460153	3.444889
6	0	-1.716209	2.402191	2.831346
6	0	-3.013022	2.051785	2.436928
6	0	-3.457351	2.488202	1.108555
6	0	-4.503469	1.724250	0.535288
6	0	-4.541280	1.475913	-0.863998
6	0	-5.151036	0.172690	-1.086998
6	0	-4.691021	-0.645734	-2.107048
6	0	-3.627056	-0.167645	-2.957116

56	6	0	-2.759762	-1.271507	-3.247329	80	6	0	5.318281	-2.459757	-1.563171
57	6	0	-3.284615	-2.438850	-2.571850	81	6	0	5.907441	-3.562022	-2.178044
58	6	0	-2.399953	-3.336484	-1.991264	82	6	0	5.420267	-3.986345	-3.414795
59	6	0	-0.967738	-3.082804	-2.049827	83	6	0	4.356947	-3.282528	-3.979481
60	6	0	-0.401141	-3.489381	-0.809238	84	7	0	3.781129	-2.224258	-3.396484
61	6	0	-1.460507	-4.009305	0.027204	85	6	0	4.252910	-0.476567	2.602231
62	6	0	-1.427270	-3.764599	1.388966	86	6	0	4.671328	-1.812575	2.608164
63	6	0	-2.640482	-3.428429	2.098499	87	6	0	5.400998	-2.278488	3.698752
64	6	0	-2.282062	-2.445323	3.101050	88	6	0	5.692653	-1.396629	4.740278
65	6	0	-3.162853	-1.414387	3.390974	89	6	0	5.240200	-0.081606	4.634173
66	6	0	-2.627224	-0.095498	3.627516	90	7	0	4.536039	0.377360	3.591776
67	6	0	-3.514251	0.857660	3.018995	91	16	0	-0.599600	4.875341	-1.675417
68	6	0	-4.601405	0.128445	2.416293	92	1	0	5.298970	0.699018	-1.553733
69	6	0	-5.101406	0.571014	1.202491	93	1	0	5.311519	1.228447	0.810127
70	6	0	-5.490418	-0.394239	0.197038	94	1	0	5.670595	-2.091847	-0.605093
71	6	0	-5.318487	-1.766456	0.427871	95	1	0	6.734968	-4.079560	-1.700332
72	6	0	-4.797509	-2.615157	-0.629769	96	1	0	5.851670	-4.838358	-3.930980
73	6	0	-4.501433	-2.064939	-1.877644	97	1	0	3.944976	-3.576426	-4.942894
74	6	0	-3.884100	-3.573044	-0.029502	98	1	0	4.421595	-2.466103	1.778016
75	6	0	-2.708591	-3.920950	-0.702274	99	1	0	5.734364	-3.312086	3.736159
76	6	0	-3.850267	-3.324631	1.401354	100	1	0	6.256613	-1.716278	5.611115
77	6	0	-4.749677	-2.218944	1.683252	101	1	0	5.449862	0.641310	5.420448
78	6	0	-4.410467	-1.286901	2.664445						
79	6	0	4.256923	-1.819761	-2.213439	The total elect	ronic energy w	as calculated	to be -4015.561	3515 Hartree.	

Table S3. Optimized structure of TS (B3LYP-D3/6-31G(d))

Standard orientation:

Center Atomic Atom		Coord	rdinates (Angstroms)			
Number	Туре	Х	Y	Z		
8	0	3.420978	0.423727	-3.608160		
8	0	1.373680	2.841746	-3.715990		
8	0	2.984472	5.246904	-0.854150		
8	0	4.756236	3.308270	0.478736		
6	0	3.430889	-0.827088	-1.525661		
6	0	4.429613	0.097647	-0.884819		
6	0	4.444238	0.405873	0.410004		
6	0	3.400056	-0.025353	1.413905		
6	0	2.544540	1.154453	1.926904		
6	0	2.651462	2.472766	1.476451		
6	0	3.552243	3.302614	0.596196		
6	0	2.609203	4.378813	-0.102370		
6	0	1.261247	4.146513	0.480879		
6	0	-0.049095	4.285243	0.026822		
	Atomic Number 8 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Atomic Number Atomic Type 8 0 8 0 8 0 8 0 6 0	Atomic Number Atomic Type Coord X 8 0 3.420978 8 0 1.373680 8 0 2.984472 8 0 2.984472 8 0 4.756236 6 0 3.430889 6 0 4.429613 6 0 2.544540 6 0 2.544540 6 0 2.651462 6 0 2.651462 6 0 2.609203 6 0 1.261247 6 0 -0.049095	Atomic Number Atomic Type Coordinates (Angstr X 8 0 3.420978 0.423727 8 0 1.373680 2.841746 8 0 2.984472 5.246904 8 0 2.984472 5.246904 8 0 4.756236 3.308270 6 0 3.430889 -0.827088 6 0 4.429613 0.097647 6 0 4.429613 0.097647 6 0 2.544540 1.154453 6 0 2.651462 2.472766 6 0 2.651462 2.472766 6 0 2.651462 2.472766 6 0 2.609203 4.378813 6 0 2.609203 4.378813 6 0 1.261247 4.146513 6 0 -0.049095 4.285243		

6	0	-1.332195	3.345311	-2.054570
6	0	-0.952310	2.459400	-3.043144
6	0	0.453856	2.087046	-3.489159
6	0	0.412982	0.551232	-3.493272
6	0	1.289159	-0.371646	-2.947597
6	0	2.762703	-0.160083	-2.776582
6	0	2.376136	-1.288879	-0.543946
6	0	2.389853	-0.987361	0.791800
6	0	1.307992	-1.451252	1.642719
6	0	0.842994	-0.609273	2.700656
6	0	1.375414	0.765629	2.718225
6	0	0.475641	1.755302	3.131941
6	0	0.478451	3.012180	2.460058
6	0	1.498646	3.319595	1.614854
6	0	-0.866700	3.334268	2.103015
6	0	-1.167126	3.768259	0.800106
6	0	-2.431583	3.272257	0.212692
6	0	-2.484025	3.013059	-1.205878
6	0	-3.454100	2.075701	-1.729896
6	0	-3.087953	1.207943	-2.841719
6	0	-1.779515	1.334863	-3.326606
6	0	-0.971598	0.202852	-3.599223
6	0	-1.470309	-1.099813	-3.411730
6	0	-0.583011	-2.039148	-2.752565
6	0	0.725644	-1.589366	-2.367503
6	0	1.258887	-2.015743	-1.110485
6	0	0.486785	-2.837668	-0.243860
6	0	0.519191	-2.552950	1.183954
6	0	-0.571079	-2.976476	1.972572
6	0	-1.054828	-2.153282	3.027644
6	0	-0.437239	-0.912049	3.315777
6	0	-1.338762	0.173839	3.702622
6	0	-0.884181	1.479576	3.486844
6	0	-1.710553	2.456654	2.850360
6	0	-3.008605	2.159463	2.425146
6	0	-3.393004	2.596854	1.079128
6	0	-4.469613	1.886340	0.496820
6	0	-4.502975	1.630705	-0.900273
6	0	-5.187560	0.363151	-1.121285

80	6	0	5.253081	-2.633071	-1.360473	An imaginary f	An imaginary frequency was found at -91.23 cm ⁻¹ .				
79	6	0	4.148693	-2.103491	-2.036877	The total electr	onic energy w	as calculated	to be -4091.987	8154 Hartree.	
78	6	0	-4.568042	-1.104554	2.649982						
77	6	0	-4.939566	-2.024241	1.669891	104	1	0	2.858307	2.728595	-2.676386
76	6	0	-4.089539	-3.172504	1.403868	103	1	0	4.120884	2.974506	-1.820761
75	6	0	-2.961778	-3.839140	-0.685612	102	8	0	3.262046	2.525077	-1.813878
74	6	0	-4.124783	-3.431471	-0.024880	101	1	0	5.377391	0.233956	5.457495
73	6	0	-4.658000	-1.913970	-1.891489	100	1	0	6.150547	-2.141981	5.500604
72	6	0	-4.987463	-2.436699	-0.640160	99	1	0	5.590900	-3.615047	3.537313
71	6	0	-5.472734	-1.553378	0.405653	98	1	0	4.282854	-2.632924	1.641656
70	6	0	-5.570362	-0.175139	0.162856	97	1	0	3.700751	-4.260553	-4.442568
69	6	0	-5.143000	0.775417	1.165805	96	1	0	5.680779	-5.344884	-3.365800
68	6	0	-4.686439	0.316787	2.390676	95	1	0	6.680127	-4.249255	-1.332603
67	6	0	-3.577645	0.996801	3.008105	94	1	0	5.654119	-2.124375	-0.490922
66	6	0	-2.746167	0.006339	3.636091	93	1	0	5.212367	1.061817	0.801857
65	6	0	-3.337360	-1.286988	3.393992	92	1	0	5.190772	0.486990	-1.552400
64	6	0	-2.498611	-2.355362	3.114075	91	16	0	-0.304757	4.747902	-1.675888
63	6	0	-2.891046	-3.325034	2.111564	90	7	0	4.448316	0.093949	3.622693
62	6	0	-1.687526	-3.714596	1.412323	89	6	0	5.152398	-0.437364	4.630686
61	6	0	-1.722864	-3.971257	0.053508	88	6	0	5.585910	-1.762386	4.654594
60	6	0	-0.637663	-3.504085	-0.780305	87	6	0	5.273665	-2.575993	3.564090
59	6	0	-1.177445	-3.099959	-2.033292	86	6	0	4,544975	-2.034767	2.508800
58	6	0	-2.620569	-3.287419	-1.980486	85	6	0	4,147537	-0.693612	2.584957
57	6	0	-3.459804	-2.356600	-2.577328	84	7	0	3.610933	-2.688765	-3.113783
56	6	0	-2 875918	-1 224540	-3 264859	83	6	0	4 164733	-3 820454	-3 561889
55	6	0	-3 681073	-0.074062	-2.981532	82	6	0	5 268853	-4 425683	-2 960917
54	6	0	-4 770417	-0 488046	-2 132275	81	6	0	5 819776	-3 815009	-1 834777

Table S4. Optimized structure of H₂O-I@4' (B3LYP-D3/6-31G(d))

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)					
Number	Number Type		Х	Y	Z			
1	8	0	3.392544	1.024872	-3.310658			
2	8	0	1.393188	3.006076	-3.366881			
3	8	0	2.732106	5.085217	-1.285328			
4	8	0	4.632268	3.338777	0.058174			
5	6	0	3.572041	-0.623734	-1.550574			
6	6	0	4.585719	0.269832	-0.889735			
7	6	0	4.592890	0.554275	0.410167			
8	6	0	3.541580	0.101989	1.393302			
9	6	0	2.619598	1.253389	1.842153			
10	6	0	2.639609	2.546320	1.312246			
11	6	0	3.450324	3.330044	0.303365			

12	6	0	2.437731	4.345021	-0.378875
13	6	0	1.157706	4.183190	0.357714
14	6	0	-0.176388	4.345857	-0.008134
15	6	0	-1.460198	3.420379	-2.035341
16	6	0	-0.994583	2.541613	-2.989293
17	6	0	0.466657	2.237333	-3.334522
18	6	0	0.471727	0.696903	-3.425024
19	6	0	1.394346	-0.198575	-2.912964
20	6	0	2.821325	0.168345	-2.672030
21	6	0	2.565099	-1.176975	-0.569518
22	6	0	2.580086	-0.903112	0.770923
23	6	0	1.510232	-1.399839	1.615667
24	6	0	1.010329	-0.566775	2.665135
25	6	0	1.481562	0.831225	2.659251
26	6	0	0.545111	1.789522	3.060144
27	6	0	0.489424	3.039030	2.374557
28	6	0	1.466958	3.360829	1.478986
29	6	0	-0.879482	3.325436	2.073432
30	6	0	-1.246960	3.781552	0.797762
31	6	0	-2.510345	3.252973	0.238331
32	6	0	-2.577841	3.013383	-1.182385
33	6	0	-3.484068	2.018482	-1.702372
34	6	0	-3.062876	1.179486	-2.815010
35	6	0	-1.754798	1.376675	-3.285932
36	6	0	-0.889603	0.287269	-3.560288
37	6	0	-1.328538	-1.041903	-3.397964
38	6	0	-0.398347	-1.956977	-2.762433
39	6	0	0.896876	-1.466107	-2.377497
40	6	0	1.462932	-1.919287	-1.143276
41	6	0	0.726491	-2.785411	-0.286266
42	6	0	0.755706	-2.520664	1.147441
43	6	0	-0.320963	-2.982146	1.932737
44	6	0	-0.829754	-2.179072	2.992281
45	6	0	-0.257603	-0.914905	3.279409
46	6	0	-1.196365	0.138724	3.669948
47	6	0	-0.796019	1.462350	3.445128

48	6	0	-1.673093	2.411082	2.833933	78	6	0	-4.385261	-1.264464	2.649776
49	6	0	-2.971395	2.067879	2.435878	79	6	0	4.284869	-1.821707	-2.218405
50	6	0	-3.412293	2.510808	1.108693	80	6	0	5.344257	-2.468169	-1.571405
51	6	0	-4.461042	1.753644	0.531840	81	6	0	5.927614	-3.571382	-2.190200
52	6	0	-4.496979	1.509817	-0.867370	82	6	0	5.436693	-3.990178	-3.427317
53	6	0	-5.112703	0.211616	-1.096068	83	6	0	4.375594	-3.280151	-3.988489
54	6	0	-4.655631	-0.604432	-2.117295	84	7	0	3.805436	-2.220925	-3.401740
55	6	0	-3.587861	-0.128572	-2.961959	85	6	0	4.282480	-0.496882	2.603550
56	6	0	-2.726231	-1.234639	-3.255278	86	6	0	4.696070	-1.834387	2.603680
57	6	0	-3.257567	-2.401326	-2.585766	87	6	0	5.420744	-2.308608	3.694021
58	6	0	-2.379546	-3.306541	-2.008937	88	6	0	5.712484	-1.433175	4.740928
59	6	0	-0.946448	-3.058499	-2.064553	89	6	0	5.265194	-0.115948	4.640313
60	6	0	-0.382802	-3.474681	-0.825329	90	7	0	4.565684	0.350924	3.598261
61	6	0	-1.446207	-3.991098	0.007625	91	16	0	-0.540760	4.895876	-1.660893
62	6	0	-1.413227	-3.752996	1.370167	92	1	0	5.339816	0.689260	-1.547360
63	6	0	-2.624819	-3.413359	2.078843	93	1	0	5.352643	1.209446	0.818548
64	6	0	-2.263652	-2.435742	3.084066	94	1	0	5.699780	-2.104544	-0.612867
65	6	0	-3.139892	-1.401935	3.377366	95	1	0	6.753557	-4.093864	-1.715150
66	6	0	-2.597469	-0.086874	3.619818	96	1	0	5.863503	-4.842706	-3.946444
67	6	0	-3.479878	0.873556	3.012915	97	1	0	3.960805	-3.569631	-4.952037
68	6	0	-4.570490	0.151730	2.407186	98	1	0	4.446727	-2.482666	1.769292
69	6	0	-5.064455	0.600771	1.193424	99	1	0	5.750254	-3.343581	3.727076
70	6	0	-5.457242	-0.358302	0.184435	100	1	0	6.272669	-1.759397	5.611752
71	6	0	-5.290765	-1.730626	0.410505	101	1	0	5.475219	0.602142	5.430907
72	6	0	-4.772368	-2.577345	-0.648970	102	8	0	-2.107736	-0.625815	0.118606
73	6	0	-4.473434	-2.024656	-1.893142	103	1	0	-1.220833	-0.938759	-0.113880
74	6	0	-3.864986	-3.540800	-0.051240	104	1	0	-1.979500	-0.150321	0.952790
75	6	0	-2.691948	-3.893746	-0.723358						
76	6	0	-3.831336	-3.297553	1.379131	The total electro	onic energy v	vas calculated	to be -4091.999	1903 Hartree.	
77	6	0	-4.725519	-2.190139	1.663793						

Table S5. Optimized structure of H₂O-II@4' (B3LYP-D3/6-31G(d))

Standard orientation:

Center	Atomic	Atomic	Coord	inates (Angstroms)			
Number	Number	Туре	Х	Y	Z		
1	8	0	3.355202	1.055078	-3.299157		
2	8	0	1.340071	3.021592	-3.279938		
3	8	0	2.653320	5.101298	-1.249911		
4	8	0	4.566719	3.341479	0.055352		
5	6	0	3.549612	-0.609756	-1.556588		
6	6	0	4.558684	0.284563	-0.890051		

6	0	4.566244	0.558326	0.412093
6	0	3.519704	0.089951	1.392591
6	0	2.584565	1.229238	1.843644
6	0	2.585530	2.523181	1.311834
6	0	3.386247	3.323748	0.305676
6	0	2.364125	4.342147	-0.357850
6	0	1.088292	4.160602	0.380631
6	0	-0.248109	4.322458	0.027049
6	0	-1.531478	3.412231	-1.999524
6	0	-1.051947	2.542584	-2.953323
6	0	0.415276	2.249659	-3.279692
6	0	0.432652	0.712791	-3.397340
6	0	1.364443	-0.182711	-2.903830
6	0	2.789502	0.189886	-2.667074
6	0	2.547910	-1.178724	-0.579339
6	0	2.565451	-0.918514	0.764974
6	0	1.501646	-1.432408	1.608164
6	0	0.997067	-0.611363	2.665572
6	0	1.454621	0.792353	2.665529
6	0	0.508845	1.741056	3.069367
6	0	0.439467	2.993719	2.391078
6	0	1.407904	3.326489	1.490028
6	0	-0.932508	3.275481	2.100668
6	0	-1.309592	3.741335	0.832284
6	0	-2.572165	3.212667	0.273759
6	0	-2.641870	2.987162	-1.148878
6	0	-3.537196	1.986320	-1.675978
6	0	-3.106219	1.159590	-2.794834
6	0	-1.798252	1.372493	-3.259697
6	0	-0.923345	0.293486	-3.539831
6	0	-1.349590	-1.041428	-3.394565
6	0	-0.411696	-1.955515	-2.771018
6	0	0.879429	-1.460303	-2.383982

40	6	0	1.451040	-1.923962	-1.157844	74	6	0	-3.862600	-3.598948	-0.073150
41	6	0	0.723429	-2.801272	-0.307609	75	6	0	-2.686065	-3.933403	-0.750519
42	6	0	0.753662	-2.551429	1.127510	76	6	0	-3.829429	-3.368855	1.360673
43	6	0	-0.317772	-3.027887	1.910968	77	6	0	-4.732419	-2.270424	1.656973
44	6	0	-0.831508	-2.238457	2.978577	78	6	0	-4.396828	-1.349551	2.650364
45	6	0	-0.269162	-0.972150	3.276359	79	6	0	4.268867	-1.796216	-2.237576
46	6	0	-1.217211	0.071195	3.672371	80	6	0	5.332811	-2.442423	-1.597851
47	6	0	-0.828400	1.399760	3.455759	81	6	0	5.923454	-3.534982	-2.228595
48	6	0	-1.714952	2.346605	2.854796	82	6	0	5.435044	-3.943559	-3.470057
49	6	0	-3.012039	1.996790	2.459925	83	6	0	4.368954	-3.234606	-4.023231
50	6	0	-3.462242	2.451654	1.139948	84	7	0	3.791723	-2.185822	-3.424895
51	6	0	-4.506014	1.689773	0.559624	85	6	0	4.264678	-0.505023	2.601343
52	6	0	-4.542929	1.458763	-0.842353	86	6	0	4.685195	-1.840241	2.602061
53	6	0	-5.146159	0.155735	-1.081884	87	6	0	5.413408	-2.309574	3.692234
54	6	0	-4.681164	-0.646834	-2.111731	88	6	0	5.701414	-1.431681	4.738080
55	6	0	-3.618516	-0.152880	-2.954189	89	6	0	5.247092	-0.116871	4.636871
56	6	0	-2.746174	-1.248708	-3.257927	90	7	0	4.544218	0.345277	3.595037
57	6	0	-3.266239	-2.427199	-2.599028	91	16	0	-0.628565	4.894680	-1.612966
58	6	0	-2.379230	-3.330076	-2.031120	92	1	0	5.307347	0.716217	-1.545909
59	6	0	-0.948413	-3.069113	-2.084605	93	1	0	5.320543	1.217167	0.824722
60	6	0	-0.379833	-3.493750	-0.851434	94	1	0	5.686367	-2.086702	-0.635605
61	6	0	-1.437537	-4.027073	-0.022193	95	1	0	6.752974	-4.057029	-1.759333
62	6	0	-1.404952	-3.802540	1.343045	96	1	0	5.867440	-4.787492	-3.998526
63	6	0	-2.618878	-3.478404	2.056454	97	1	0	3.955839	-3.516483	-4.989750
64	6	0	-2.263646	-2.506558	3.070571	98	1	0	4.438326	-2.490705	1.768644
65	6	0	-3.147768	-1.481833	3.373328	99	1	0	5.748419	-3.342743	3.725970
66	6	0	-2.616184	-0.164232	3.625001	100	1	0	6.264111	-1.754204	5.608656
67	6	0	-3.507221	0.793221	3.028357	101	1	0	5.454004	0.602988	5.426659
68	6	0	-4.593687	0.067828	2.420062	102	8	0	-0.425271	0.751508	-0.173542
69	6	0	-5.095733	0.524324	1.212168	103	1	0	0.523392	0.745086	0.022931
70	6	0	-5.482002	-0.429765	0.194755	104	1	0	-0.836606	0.578793	0.686327
71	6	0	-5.303838	-1.803749	0.407988						
72	6	0	-4.779724	-2.636590	-0.661017	The total elect	ronic energy w	as calculated	to be -4091.996	5452 Hartree.	
73	6	0	-4.485333	-2.068224	-1.900594						

5.2. Molecular Orbitals of 8 and 11

Figure S26. Molecular orbitals of 8 (B3LYP/6-31G(d)).

Figure S27. Molecular orbitals of 11 (B3LYP/6-31G(d)).

38

56

Center	Atomic	Atomic	Coord	linates (Angsti	roms)	58
Number	Number	Туре	Х	Y	Z	59
1	6	0	5.122242	-2.817385	2.559142	60 61
2	6	0	5.507804	-3.315331	1.252315	62
3	6	0	6.050566	-2.203031	0.492801	63
4	6	0	6.002101	-1.018531	1.331179	64
5	6	0	5.423732	-1.397921	2.607884	65
6	6	0	4.713880	-4.273577	0.613221	66
7	6	0	4.425591	-4.152664	-0.799965	67
8	6	0	4.944372	-3.088091	-1.526019	68
9	6	0	5.777973	-2.098042	-0.873432	69
10	6	0	5.433456	-0.813829	-1.449177	70
11	6	0	5.381709	0.318229	-0.649519	71
12	6	0	5.680074	0.218801	0.763858	72
13	6	0	4.773152	1.116244	1.447534	73
14	6	0	4.216167	0.751058	2.662711	74
15	6	0	4.545673	-0.524506	3.259787	75
16	6	0	3.334284	-1.027868	3.870768	76
17	6	0	3.060311	-2.387094	3.838152	77
18	6	0	3.963744	-3.301878	3.172193	78
19	6	0	3.141869	-4.290646	2.501600	79
20	6	0	3.509314	-4.768600	1.249928	80
21	6	0	1.704173	-2.823218	3.595353	81
22	6	0	1.747932	-3.999038	2.776265	82
23	6	0	3.058499	-4.587045	-1.028269	83
24	6	0	2.495705	-4.968024	0.230568	84
25	6	0	2.269115	-0.058613	3.651335	85
26	6	0	2.818775	1.034550	2.919210	86
27	6	0	3.941538	1.770774	0.460697	87
28	6	0	4.306732	1.280839	-0.825887	88
29	6	0	4.411821	-1.017793	-2.454077	89
30	6	0	4.113657	-2.415652	-2.504580	90
31	6	0	2.800490	-2.875007	-2.791730	91
32	6	0	2.254362	-3.989589	-2.030402	92
33	6	0	1.118004	-4.766621	0.506528	93
34	6	0	0.733759	-4.275818	1.819196	94
35	6	0	0.652297	-1.887054	3.445792	95
36	6	0	0.923512	-0.447642	3.450611	96

37

6

0

2.603649

2.136983

6	0	2.018187	1.751823	2.005900
6	0	3.394788	-0.050991	-2.674573
6	0	3.324829	1.134007	-1.833712
6	0	1.880239	-1.913278	-3.268053
6	0	2.176400	-0.520608	-3.213176
6	0	0.276514	-4.409108	-0.585678
6	0	0.843824	-4.025503	-1.837892
6	0	-0.446546	-3.495330	1.895943
6	0	-0.448789	-2.323676	2.691399
6	0	2.057703	1.790015	-1.658177
6	0	1.724082	2.331133	-0.373884
6	0	0.601104	1.577380	2.066092
6	0	0.047861	0.454992	2.745238
6	0	-1.242612	-0.015159	2.218980
6	0	-1.385020	-1.406874	2.129867
6	0	-1.396619	-3.300488	0.801003
6	0	-1.010540	-3.753608	-0.443760
6	0	-0.071204	-3.124575	-2.501117
6	0	0.452825	-2.079375	-3.222872
6	0	0.973022	0.255969	-3.214798
6	ů	0.940351	1 464842	-2 539562
6	0	-0.227412	2 267333	1.092026
6	0	0.336076	2.207555	-0.095238
6	0	-0.187213	-0.723735	-3.427497
6	0	-0.18/213	-0.725755	-3.42/43/
6	0	-0.281070	0.805626	-2.495/56
6	0	-2.135051	2.041242	1.4/065/
6	0	-2.120993	-2.041343	1.098089
6	0	-1.419694	-3.210234	-1.80/436
6	0	-3.112360	-1.264693	0.506729
6	0	-4.229028	-1.644024	-0.368709
6	0	-5.059228	-0.501068	-0.556766
6	0	-3.168355	0.150542	0.773253
6	0	-4.469236	0.660829	0.196513
6	0	-1.735210	2.302659	1.359351
6	0	-2.071409	3.043884	2.674304
6	0	-2.457670	3.025230	0.240868
6	0	-0.444169	3.250662	-1.246174
6	0	-1.903063	3.408203	-0.908656
6	0	0.150131	4.637188	-1.606325
6	0	-0.130578	5.756098	-0.813373
6	0	0.432056	6.971905	-1.184420
7	0	0.931432	4.698452	-2.684893
7	0	-3.156400	2.613844	3.317645
6	0	-1.327435	4.147737	3.107413
6	0	-3.574772	3.243752	4.430541
6	0	-1.742623	4.799164	4.263912
6	0	1.473664	5.873052	-3.059793
6	0	-2.877532	4.347051	4.937795
6	0	1.240354	7.037988	-2.320072
6	0	2.338360	5.822739	-4.327313
6	0	-4.851582	2.672215	5.063154
8	0	-1.102228	2.327139	-3.387686
8	0	-5.028401	1.726467	0.373051
6	0	3.531265	4.873174	-4.071715
6	0	1.479889	5.265873	-5.486285
6	0	2.878987	7.208136	-4.722995
6	0	-5.241087	3.402367	6.360128
6	0	-6.000735	2.810483	4.036748
6	0	4.621100	1 176085	5 275174

97

7

0

-6.169515

-0.504091

-1.248142

0.728554

98	7	0	-4.497092	-2.826476	-0.877377	122	1	0	1.059066	4.291227	-5.226088
99	6	0	-6.477628	-1.715258	-1.810768	123	1	0	0.649046	5.942009	-5.720537
100	6	0	-5.646281	-2.869981	-1.625111	124	1	0	3.479614	7.120288	-5.635107
101	6	0	-6.034906	-4.086292	-2.230021	125	1	0	2.070496	7.919480	-4.928970
102	6	0	-8.014586	-3.031142	-3.177655	126	1	0	3.524355	7.635370	-3.946247
103	6	0	-7.650392	-1.834744	-2.590801	127	1	0	-6.151935	2.956312	6.774853
104	6	0	-7.184686	-4.186420	-2.991261	128	1	0	-4.458953	3.324940	7.125016
105	6	0	-9.272948	-3.120127	-4.005969	129	1	0	-5.447947	4.464957	6.186228
106	6	0	-7.562784	-5.504074	-3.621732	130	1	0	-6.913675	2.342957	4.425254
107	8	0	-1.373108	-0.507451	-3.553747	131	1	0	-6.222020	3.865697	3.835340
108	1	0	-2.111201	-3.892599	-2.319935	132	1	0	-5.737731	2.334098	3.088460
109	1	0	-1.920092	-2.242639	-1.762905	133	1	0	-5.538049	0.727282	5.775344
110	1	0	-3.511048	3.198790	0.414965	134	1	0	-4.332156	0.634477	4.470899
111	1	0	-2.511119	3.888962	-1.668928	135	1	0	-3.826842	1.045174	6.120343
112	1	0	-0.779440	5.671309	0.051738	136	1	0	-5.394879	-4.950371	-2.074392
113	1	0	0.238934	7.867098	-0.598757	137	1	0	-8.258981	-0.943350	-2.713483
114	1	0	-0.450329	4.477589	2.560283	138	1	0	-9.972813	-3.862487	-3.601382
115	1	0	-1.187994	5.654909	4.640621	139	1	0	-9.788401	-2.156397	-4.039255
116	1	0	-3.209434	4.848879	5.838720	140	1	0	-9.056480	-3.420716	-5.039142
117	1	0	1.674790	7.983967	-2.620173	141	1	0	-7.626337	-5.425121	-4.714572
118	1	0	4.143707	4.783535	-4.976945	142	1	0	-6.829028	-6.279080	-3.383533
119	1	0	4.172394	5.250566	-3.265799	143	1	0	-8.544063	-5.851534	-3.273879
120	1	0	3.181446	3.876665	-3.789770						
121	1	0	2.091615	5.155561	-6.389682	The total electroni	ic energy	was calculated to	be -4276.927	8389 Hartree.	

Table S7. Optimized structure of 11 (B3LYP/6-31G(d))

Standard orientation:

Center	enter Atomic Atom		Coord	rdinates (Angstroms)				
Number	Number	Туре	Х	Y	Z			
1	6	0	6.225220	-0.558649	0.300923			
2	6	0	6.238082	-1.331397	-0.928017			
3	6	0	5.880715	-2.700696	-0.604487			
4	6	0	5.640027	-2.775345	0.824426			
5	6	0	5.868419	-1.456146	1.388064			
6	6	0	5.772086	-0.756139	-2.113176			
7	6	0	4.946953	-1.518983	-3.026837			
8	6	0	4.606065	-2.830870	-2.719032			
9	6	0	5.073761	-3.428351	-1.483484			
10	6	0	3.986528	-4.231409	-0.966894			
11	6	0	3.737085	-4.278663	0.398442			
12	6	0	4.588120	-3.556995	1.313598			

6	0	3.734647	-3.061840	2.373718
6	0	3.963971	-1.818690	2.926022
6	0	5.054530	-0.999218	2.425036
6	0	4.576752	0.361234	2.415207
6	0	4.887504	1.214883	1.361926
6	0	5.735901	0.752819	0.288624
6	0	5.219342	1.330233	-0.936635
6	0	5.249362	0.594903	-2.108486
6	0	3.866218	2.076048	0.794978
6	0	4.050122	2.136193	-0.615032
6	0	3.951570	-0.633051	-3.603320
6	0	4.125756	0.664011	-3.014551
6	0	3.235988	0.366012	2.937049
6	0	2.830479	-0.982209	3.255619
6	0	2.369973	-3.469428	2.125632
6	0	2.375636	-4.218884	0.898082
6	0	2.876234	-4.145398	-1.886649
6	0	3.256562	-3.298936	-2.980227
6	0	2.300707	-2.488760	-3.647143
6	0	2.664384	-1.102817	-3.974398
6	0	3.011033	1.508969	-2.748563
6	0	2.931546	2.239683	-1.477203
6	0	2.572030	2.144607	1.343370
6	0	2.293184	1.279375	2.463793
6	0	1.231036	-2.750176	2.570211
6	0	1.470363	-1.409615	3.201378
6	0	1.538768	-4.165042	-1.415054
6	0	1.281274	-4.155858	0.020773
6	0	0.933979	-2.771719	-3.366922
6	0	0.570392	-3.582488	-2.254726
6	0	1.804876	1.145863	-3.380231
6	0	1.631063	-0.129431	-3.998970
6	0	1.638217	2.558601	-0.898975
6	0	1.468073	2.554173	0.526546
6	0	0.060531	-3.610813	0.546296
6	0	0.011866	-3.092778	1.871404
6	0	0.527211	-0.303532	3.222217
6	0	0.954075	0.948123	2.722729
6	0	-0.116101	1.795257	2.232987

52	6	0	0.115449	2.565855	1.112880	98	6	0	2.198061	6.603833	2.335778
53	6	0	0.426041	2.311623	-1.679197	99	6	0	-3.136728	-3.153192	3.471537
54	6	0	0.534337	1.587754	-2.863007	100	6	0	-4.092219	-3.479863	4.444454
55	6	0	0.239066	-0.483819	-3.836138	101	6	0	-3.555071	-2.772291	2.176046
56	6	0	-0.107818	-1.780267	-3.517529	102	6	0	-4.902668	-2.764787	1.818612
57	6	0	-0.683194	-3.102045	-1.724554	103	6	0	-5.845062	-3.105584	2.786491
58	6	0	-0.985742	-3.156306	-0.367888	104	6	0	-5.440291	-3.453310	4.113351
59	6	0	-0.877236	-0.043481	3.663554	105	6	0	-7.310949	-3.100079	2.422171
60	6	0	-1.330442	-2.882336	2.368236	106	6	0	-6.477579	-3.799586	5.156133
61	6	0	-1.137389	-2.009680	-2.530906	107	8	0	-1.565323	-0.617153	4.473632
62	6	0	-2.062851	-2.317231	0.111823	108	1	0	-4.201638	3.660407	-1.738526
63	6	0	-1.283952	1.357584	3.063487	109	1	0	-4.282045	2.336946	0.928926
64	6	0	-0.869982	2.356962	-1.044253	110	1	0	-1.498165	4.772253	-2.021174
65	6	0	-0.454098	0.592383	-3.180609	111	1	0	-1.056928	7.227242	-2.235898
66	6	0	-1.847556	1.445022	-1.395983	112	1	0	0.020276	8.434256	-0.353363
67	6	0	-1.537470	0.388833	-2.323470	113	1	0	-2.525975	3.819162	1.657405
68	6	0	-1.884067	-0.976155	-1.944945	114	1	0	-6.029686	3.861061	-3.443119
69	6	0	-3.308083	-0.115138	-0.059664	115	1	0	-7.113620	1.800082	-4.300694
70	6	0	-2.500160	-1.217965	-0.655516	116	1	0	-5.752155	-2.673030	-4.519917
71	6	0	-3.178912	1.321384	-0.691277	117	1	0	-4.530549	-1.842586	-3.531027
72	6	0	-4.690681	2.781937	-2.146067	118	1	0	-4.979387	-1.192732	-5.118296
73	6	0	-0.653064	4.692676	-0.028851	119	1	0	-8.029611	-1.650174	-4.853387
74	6	0	-3.325686	2.333423	0.417135	120	1	0	-7.299545	-0.169613	-5.480568
75	6	0	-1.031143	5.329690	-1.215788	121	1	0	-8.461919	-0.093111	-4.138156
76	6	0	-0.783078	6.693346	-1.329473	122	1	0	-7.396113	-2.597262	-2.609180
77	6	0	-0.178035	7.372372	-0.271525	123	1	0	-7.839398	-1.058552	-1.844084
78	6	0	-2.354814	3.149991	0.821489	124	1	0	-6.226327	-1.742738	-1.576272
79	7	0	-0.082834	5.343268	0.986294	125	1	0	0.417617	7.449358	4.249388
80	6	0	0.163170	6.663061	0.886610	126	1	0	-0.257446	5.992193	3.485152
81	6	0	-0.969886	3.202220	0.221726	127	1	0	-1.032183	7.567429	3.234336
82	6	0	-4.318575	1.500636	-1.723090	128	1	0	1.539100	9.214800	2.839503
83	6	0	-5.707779	2.885610	-3.087542	129	1	0	0.120535	9.352033	1.795237
84	6	0	-6.316721	1.726980	-3.570777	130	1	0	1.721304	9.031052	1.092114
85	6	0	-5.887274	0.481773	-3.097712	131	1	0	2.678676	6.995652	3.240085
86	7	0	-4.897342	0.392360	-2.187767	132	1	0	2.873739	6.779414	1.489900
87	8	0	-3.997642	-0.251541	0.931401	133	1	0	2.068033	5.524173	2.449256
88	7	0	-2.370449	-2.561325	1.464515	134	1	0	-3.764034	-3.758552	5.441197
89	8	0	-2.296167	1.932268	3.385123	135	1	0	-5.219624	-2.488583	0.820330
90	7	0	-1.762236	-3.211073	3.561166	136	1	0	-7.773354	-4.083859	2.576607
91	6	0	0.834415	7.297955	2.112813	137	1	0	-7.455388	-2.823028	1.373687
92	6	0	-6.483902	-0.856239	-3.557649	138	1	0	-7.877218	-2.386999	3.035476
93	6	0	-5.364896	-1.691642	-4.221038	139	1	0	-7.094595	-4.655893	4.853245
94	6	0	-7.633162	-0.670707	-4.564149	140	1	0	-7.166040	-2.964015	5.338504
95	6	0	-7.018536	-1.609861	-2.318111	141	1	0	-6.003201	-4.051486	6.109134
96	6	0	-0.066604	7.059550	3.346153						
97	6	0	1.062362	8.809707	1.940104	The total electron	nic energy v	was calculated to	o be -4275.674	43344 Hartree.	

6. References

(1) (*a*) R. Zhang, T. Futagoishi, M. Murata, A. Wakamiya and Y. Murata, *J. Am. Chem. Soc.*, 2014, **136**, 8193–8196; (*b*) R. Zhang, M. Murata, A. Wakamiya and Y. Murata, *Sci. Adv.*, 2017, **3**, e1602833.

(2) R. Zhang, M. Murata, T. Aharen, A. Wakamiya, T. Shimoaka, T. Hasegawa and Y. Murata, *Nat. Chem.*, 2016, **8**, 435–441.

(3) G. M. Sheldrick, SHELX-97; University of Göttingen: Göttingen, Germany, 1997.