Ligand Free Pd-Catalyzed Double Heck-Reaction of N -(oBromoaryl) Acrylamides with α-F/CF 3_{3}-Acrylates

Table of Contents

S. No.	Content	Page No.
1.	General Information	S3
2.	Synthesis of Starting Materials 2.1 General procedure for the synthesis of $\mathbf{1 a - 1 y}$ 2.2 General procedure to prepare $\mathbf{1 r}$	S4
3.	General Procedure for Optimization	S7
4.	General Procedure for Reaction setup 4.1 Double Heck-type Cyclization of Methyl 2-fluoroacrylate 4.2 Double Heck-type Cyclization of Methyl 2(trifluoromethyl)acrylate	S9
5.	Unsuccessful Substrates	S10
6.	Characterization of Products	S10
7.	Optimization of Chiral Ligands for Enantioselective Reaction	S21
8.	Synthetic Applications	S24
9.	Mechanistic Investigations 9.1 Control experiments 9.2 Quantification of Elements	S28
10.	X-Ray Structural Analysis	S31
11.	References	S35
12.	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra	S36

1. General Information:

Experimental: All the inert condition reactions are performed in nitrogen atmosphere using Glove box and Schlenk techniques. Catalytic reactions were performed in commercially available 7 mL screw cap vials fitted with PTFE/silicone septa purchased from Sigma-Aldrich and 1.5 mL screw cap vials (HPLC) purchased from Shimadzu.

Chromatography: Analytical thin layer chromatography (TLC) was performed on Merck and GLR precoated silica gel $60 \mathrm{~F}_{254}$ plates, using UV light as the visualization agent. Chromatographic purification of products was accomplished by Column chromatography on Finar silica gel (100200 mesh). The solvents were removed under reduced pressure using rotary evaporator to obtain the desired compounds.

Characterization: The compounds were characterized using ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and ESI-HRMS. NMR spectra were recorded at Bruker Ascend 500 MHz for ${ }^{1} \mathrm{H}, 126 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$ and 471 MHz for ${ }^{19} \mathrm{~F}$ NMR and MestReNova was used for data assessment. The chemical shift (δ) for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR are given in ppm relative to internal standard/residual signals of the solvents (for ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CHCl}_{3} @ 7.260 \mathrm{ppm}\right)$ for ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CHCl}_{3} @ 77.00 \mathrm{ppm}\right)$ and tetramethylsilane @ 0 ppm). Coupling constants are given in Hertz. The following abbreviations are followed to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublets; ddd, doublet of doublets of doublets; dddd, doublet of doublets of doublets of doublets; td, triplet of doublet; and dt, doublet of triplet; qd, quartet of doublets; bs, broad singlet; bd, broad doublet; bt, broad triplet. High-resolution mass spectra (HRMS) were obtained using Waters Xevo-G2XQTOF instruments with the electrospray ionization (ESI) method. The Gas Chromatography-Mass spectrometry (GC-MS) analysis was performed using Agilent 5977B GC/MSD spectrometer. Single crystal X-ray diffractions were recorded using Bruker AXS Smart Apex CCD diffractometer. HR-TEM Images were recorded on a Technai $\mathrm{G}^{2} 20$ (FEI) performing at 200 kV (accelerating voltage). X-ray photoelectron spectroscopy (XPS) measurement was done using AXIS SUPRA, XPS by Kratos Analytical Ltd., equipped with aluminium monochromator with aluminium source (AI Ka radiation hv $=1486.7 \mathrm{eV}$). Energy dispersive X-ray spectroscopy (EDX) was performed on JSM-IT300HR, JEOL instrument. Enantiomeric excesses were determined with a SHIMADZU Pseries HPLC system using chiral columns (DAICEL) by comparing the samples with the corresponding racemic samples.

Materials: Chemicals like amines, carboxylic acids, methyl 2-fluoroacrylate, methyl 2(trifluoromethyl)acrylate and DMAP were purchased from BLD Pharma, Spectrochem, GLR, TCI,

Sigma-Aldrich, SRL chemical and used without further purification. Pd-catalysts were purchased from Sigma-Aldrich and Spectrochem. Oxalyl chloride was purchased from Spectrochem and distilled under N_{2}. Dry DMF and DMA were purchased from Wako Pure Chemical Industries and used inside glove box without further drying. DCM, hexane, and ethyl acetate were purchased from Rankem and Finar (25 litre drums) and used after distillation for column chromatography. Dioxane was purchased from SRL. DCM and dioxane were dried by stirring over CaH_{2} overnight and distilling under nitrogen atmosphere.

2. Synthesis of Starting Materials:

N-(2-bromoaryl)- N-substituted acrylamides (1a-1y) were prepared according to the previous reports. ${ }^{1,2}$ All the characterization data of the starting materials are found consistent with the reported literature.

2.1. The synthesis of N-(2-bromoaryl)- N-substituted acrylamides (1a-1y):

General procedure-1 (GP-1):

Scheme S1. Synthesis of N-(2-bromoaryl)- N-substituted acrylamides.
Step 1: A two-necked round bottom flask equipped with a magnetic stir bar was charged with acrylic acid (1.2 equiv) and dry DCM (0.5 M) was added under nitrogen atmosphere. The flask was then cooled to $0^{\circ} \mathrm{C}$ using an ice bath and 2-4 drops of dry DMF were added. Afterwards, freshly distilled oxalyl chloride (1.3 equiv) was added dropwise to the solution. Then, the solution was allowed to attain room temperature slowly and stirred for $5-6 \mathrm{~h}$. The acyl chloride was used for the next step without further purification.

Step 2: In a separate two-necked round-bottom flask equipped with a magnetic stir bar, bromoaniline (1.0 equiv), triethylamine (1.5 equiv) and dry DCM (0.5 M) were added and stirred for 1 h . Then, freshly prepared acryloyl chloride (Step 1) was added dropwise for 10-15 min at 0 ${ }^{\circ} \mathrm{C}$. The resultant mixture was allowed to warm up to room temperature and stirred overnight until the aniline was consumed completely (monitored by TLC). The reaction mixture was washed with water and extracted with DCM (3 times). The organic layer was washed with 1 N HCl solution, 1 N

NaOH solution, and brine respectively. The final organic solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in a rotary evaporator. The residue acrylamide was used for the next step without further purification.

Step 3: A suspension of NaH (60% dispersion in mineral oil, 1.5 equiv) was added to the solution of acrylamide (Step 2) in dry THF (0.5 M) at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred at room temperature for 30 min , the reaction was cooled to $0^{\circ} \mathrm{C}$, and corresponding alkyl or aryl halide (1.2 equiv) was added dropwise under nitrogen atmosphere. The mixture was then stirred at room temperature overnight, then quenched with saturated aqueous NaHCO_{3} solution, and extracted with DCM (3 times). The combined organic extracts were washed with water and brine respectively. The final organic solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in a rotary evaporator. The residue was purified by silica column chromatography (100-200 mesh) using a mixture of hexane and ethyl acetate as the eluent to afford the desired acrylamides (1a-1y).

Figure S1. N -(2-bromoaryl)- N -substituted acrylamides.

N -(2-bromophenyl)-N-tosylmethacrylamide (1d) ${ }^{1}$

Scheme S2. Synthesis of 1d.
The compound 1d was prepared according to the literature precedent. ${ }^{1}$ The crude mixture (step 2) was purified by column chromatography on silica gel (Hexane:Ethyl acetate $=9.0: 1.0, \mathrm{R}_{\mathrm{f}}=$ 0.25) to afford the desired product 1 d as a white solid (M. pt. $=92-94^{\circ} \mathrm{C}$).

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{dd}, \mathrm{J}=8.0,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ (td, $J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ (bs, 1H), 5.18 (bd, J $=1.2,1 \mathrm{H}$), 2.43 (s, 3H), 1.77 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.8, 145.0, 138.8, 136.4, 135.7, 133.9, 133.2, 130.8, 129.8, 129.1, 128.0, 124.9, 122.7, 21.6, 19.5; HRMS (ESI-TOF) $\boldsymbol{m} / \mathbf{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNO}_{3} \mathrm{SNa}: 415.9926$, found 415.9932 .
2.2 General Procedure for Synthesis of \mathbf{N}-(2-bromophenyl)-2-(((tert-butyldimethylsilyl)oxy)methyl)-N-methylacrylamide (1r) (GP-2):

Scheme S3. Synthesis of 1r.
The compound 1 r was prepared according to the literature precedent. ${ }^{2}$ The final reaction mixture (step 3) was purified by column chromatography on silica gel (Hexane:Ethyl acetate $=9.0: 1.0, R_{f}$ $=0.25)$ to afford the desired product $1 r$ as a colorless liquid.

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 2 \mathrm{H})$, 7.15 (t, J = $7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.24 (s, 1H), 5.02 (s, 1H), $4.40(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}$, 1H), 4.20 (d, J = $14.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.23 (s, 3H), 0.86 (s, 9H), 0.01 (s, 6H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.7, 143.4, 143.2, 133.6, 130.3, 129.1, 128.4, 122.6, 116.5, 63.3, 36.4, 25.8, 18.2, -5.6; HRMS (ESI-TOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{BrNO}_{2} \mathrm{Si}: 384.0989$, found 384.0978.

3. General Procedure for Optimization Reactions:

Scheme S4. Optimization reactions of double Heck reaction of 1a with methyl 2-fluoroacrylate.

General procedure-3 (GP-3): In a 7.0 mL reaction vial equipped with a magnetic bead, N -(2-bromophenyl)- N-methyl acrylamide (1a) ($0.1 \mathrm{mmol}, 1.0$ equiv), Pd-catalyst (x equiv.), additive (silver and non-silver salts) (2.0 equiv) were added, followed by addition of methyl 2-fluoroacrylate (2a) (2.0 equiv), solvent (0.2 M) and one $4 \AA$ molecular sieve under N_{2} atmosphere. Then, the reaction was kept on stirring at desired temperature. It was observed that decreasing the vial size and concentrating the reaction mixture increased the conversion. The addition of molecular sieves diminished the side product 5 formation. After completion of the reaction (monitored by TLC), the crude reaction mixture was filtered through a celite pad, dried on sodium sulfate followed by high vacuum. Afterwards, fluorobenzene ($9.4 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) was added to the dried reaction mixture as internal standard and crude ${ }^{19} \mathrm{~F}$ NMR was recorded.

Table S1: Initial optimization of reaction. ${ }^{\text {a }}$

S. No.	Ligand	Additive	Solvent	Product 3a (\%)	Z:E
$\mathbf{1}$	XPhos	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	1,4-dioxane	58^{b}	$17: 1$
$\mathbf{2}$	SPhos	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	1,4-dioxane	13^{b}	$20: 1$
$\mathbf{3}$	Brettphos	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	1,4-dioxane	56^{b}	$20: 1$
$\mathbf{4}$	PPh_{3}	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	1,4-dioxane	39^{b}	$20: 1$
$\mathbf{5}$	-	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	1,4-dioxane	41^{c}	$15: 1$

$\mathbf{6}$	-	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	1,4-dioxane	$64^{c, d}$	$15: 1$
$\mathbf{7}$	-	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	1,4-dioxane	$78^{c, d, e}$	$15: 1$

Conditions: ${ }^{a} \mathbf{1 a}(0.1 \mathrm{mmol})$, 2a (0.2 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(10 \mathrm{~mol} \%\right.$), ligand ($20 \mathrm{~mol} \%$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(2$ equiv), dioxane (0.2 M), $75^{\circ} \mathrm{C}$, 30 h , under nitrogen. ${ }^{b}$ crude ${ }^{19} \mathrm{~F}$ NMR yield using fluorobenzene $(9.4 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ as internal standard. ${ }^{c} 90^{\circ} \mathrm{C}, 15 \mathrm{~h}$, isolated yields. ${ }^{d}$ all the starting materials were added in open air and run the reaction. ${ }^{e} 1.5 \mathrm{~mL}$ vial.

7 mL reaction vial
1.5 mL reaction vial

General TLC

Table S2: Optimization of reaction conditions. ${ }^{a}$

entry	additive	solvent	yield (\%)
1	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	1,4-dioxane	$41^{\text {c,d,e }}$
2	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	1,4-dioxane	$64^{\text {c,d }}$
3	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	1,4-dioxane	$78^{\text {c }}$
4	AgOAc	1,4-dioxane	$87^{\text {c }}$
5	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	1,4-dioxane	$80^{\text {c }}$
6	AgOTf	1,4-dioxane	30^{f}
7	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	1,4-dioxane	6
8	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	1,4-dioxane	<5
9	$\mathrm{K}_{3} \mathrm{PO}_{4}$	1,4-dioxane	20
10	AgOAc	DMF	17
11	AgOAc	DMA	16
12	AgOAc	MeCN	<5
13	AgOAc	toluene	<5
14	AgOAc	1,4-dioxane	56^{9}
15	AgOAc	1,4-dioxane	$37^{\text {h.f }}$
16	-	1,4-dioxane	NR
17	AgOAc	1,4-dioxane	$\mathrm{NR}^{\text {i }}$
18	AgOAc	1,4-dioxane	$50^{\text {j, c }}$
19	AgOAc	1,4-dioxane	$57^{k}, 68^{\prime}$

${ }^{a}$ Reaction condition: 1a (0.1 mmol), 2a (0.2 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%$), additive (2.0 equiv), solvent (0.5 mL), $4 \AA \mathrm{MS}, 9{ }^{\circ} \mathrm{C}$, 15 h , vial size 1.5 mL . ${ }^{b}$ Crude ${ }^{1} \mathrm{H}$ NMR yield using nitromethane as internal standard. ${ }^{〔}$ Isolated yield, $Z / E(\sim 15 / 1)$. ${ }^{\complement}$ Vial size 7.0 mL . ${ }^{e}$ Under N_{2} gas. ${ }^{f}$ Crude ${ }^{19} \mathrm{~F}$ NMR
yield using fluorobenzene as internal standard, Z/E (>15/1). ${ }^{9} \mathrm{Pd}(\mathrm{TFA})_{2}(10 \mathrm{~mol} \%) .{ }^{h} \mathrm{Pd}_{2}(\mathrm{dba})_{3}(5$ $\mathrm{mol} \%)$. 'In absence of $\mathrm{Pd}(\mathrm{OAc})_{2} .{ }^{\mathrm{j}} \mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%) .{ }^{\mathrm{k}} 70^{\circ} \mathrm{C}, 24 \mathrm{~h}, \mathrm{Z} / E(7 / 1) .{ }^{18} 0^{\circ} \mathrm{C}, 24 \mathrm{~h}, \mathrm{Z} / E$ (7/1).

4. General Procedure for Reaction Setup:

4.1. Double Heck-type Cyclization of Methyl 2-fluoroacrylate

Scheme S5. Scope study of double-Heck cyclization reaction of 1 with methyl 2-fluoroacrylate.
General procedure-4 (GP-4): In a 1.5 mL vial equipped with a magnetic bead, was added acrylamide substrate (1) (0.1 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{AgOAc}(33 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $4 \AA$ Å molecular sieve (1 no .). Next, methyl-2-fluoroacrylate (2a) ($19 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and dry dioxane (0.2 M) were added to the reaction vial in open atmosphere. Then the reaction vial was sealed and stirred in a pre-heated oil bath at $90^{\circ} \mathrm{C}$ for 15 h . The crude reaction mixture was then purified by silica gel column chromatography. E / Z ratio was assigned based on the ${ }^{1} \mathrm{H}$ NMR.

4.2. Double Heck-type Cyclization of Methyl 2-(trifluoromethyl)acrylate

Scheme S6. Double-Heck cyclization reaction of 1 with Methyl 2-(trifluoromethyl)acrylate.
General procedure-5 (GP-5): In a 1.5 mL reaction vial equipped with a magnetic bead, was added acrylamide substrate (1) (0.2 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{AgOAc}(67 \mathrm{mg}, 0.4$ mmol) and $4 \AA$ molecular sieve (1 no.$)$. Next, methyl 2-(trifluoromethyl)acrylate (2b) ($51 \mu \mathrm{~L}, 0.4$ mmol) and dry dioxane (0.2 M) were added to the reaction vial in open atmosphere. Then the reaction vial was sealed and stirred in a pre-heated oil bath at $90^{\circ} \mathrm{C}$ for 15 h . Them, the crude reaction mixture was purified by silica gel column chromatography. E / Z ratio was assigned based on the ${ }^{1} \mathrm{H}$ NMR.

5. Unsuccessful substrates ${ }^{\text {a }}$

Figure S2. ${ }^{\mathbf{1}} \mathbf{1}$ (0.1 mmol), 2a (0.2 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($10 \mathrm{~mol} \%$), AgOAc (2.0 equiv), 1,4-dioxane $(0.5 \mathrm{~mL}), 4 \AA \mathrm{MS}, 90^{\circ} \mathrm{C}$, open air, 15 h , vial size 1.5 mL . ${ }^{b}$ obtained from reaction of $\mathbf{1 v}$.

6. Characterization of Products:

Methyl (Z)-4-(1,3-dimethyl-2-oxoindolin-3-yl)-2-fluorobut-2enoate (3a)

Following GP-4, the reaction of $\mathbf{1 a}(25 \mathrm{mg}, 0.1 \mathrm{mmol})$ with $\mathbf{2 a}(21 \mathrm{mg}$, $19 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) in 1,4-dioxane (0.2 M) afforded 3a ($24 \mathrm{mg}, 87 \%, \mathrm{Z}: E$ $=15: 1$) as yellow oil; $\mathrm{R}_{\mathrm{f}}=0.27$ (20% EtOAc in hexane). Reaction at 1.0 mmol scale in a 7 mL screw cap reaction vial afforded 3a in 66% yield (182 mg). Reaction of 1a' (N-(2 -chlorophenyl)- N methylmethacrylamide) ($42 \mathrm{mg}, 0.2 \mathrm{mmol}$) with $\mathbf{2 a}$ ($42 \mathrm{mg}, 37 \mu \mathrm{l}, 0.4 \mathrm{mmol}$) gave $\mathbf{3 a}$ in 29% yield (16 mg) while 1a" (N-(2-iodophenyl)- N-methylmethacrylamide) ($30 \mathrm{mg}, 0.1 \mathrm{mmol}$) with $\mathbf{2 a}$ (21 mg , $19 \mu \mathrm{l}, 0.2 \mathrm{mmol}$) gave $\mathbf{3 a}$ in 68% yield (19 mg).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.86 (d, J = 7.8 Hz, 1H), 5.93 (dt, J = 31.9, $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (s, 3H), 3.23 (s, 3H), 2.75-2.68 (m, 2H), 1.42 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.4,160.7$ (d, J = 35.8 Hz), 149.0 (d, J = 259.4 Hz), 142.8, 132.8, 128.2, 122.8, 122.7, $115.0(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}), 108.2,52.4,47.3(\mathrm{~d}, J=1.7$
$\mathrm{Hz}), 32.5(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}), 26.2,22.8 ;{ }^{19}{ }^{9}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-119.1$ (E -minor), -127.2 (Z-major); HRMS (ESI-TOF) m/z: [M+H] ${ }^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{FNO}_{3}: 278.1187$, found 278.1190.

Methyl (Z)-4-(1-ethyl-3-methyl-2-oxoindolin-3-yl)-2-fluorobut-2-enoate (3b)

Following GP-4, the reaction of $\mathbf{1 b}(27 \mathrm{mg}, 0.1 \mathrm{mmol})$ with $\mathbf{2 a}(21$ $\mathrm{mg}, 19 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) in 1,4-dioxane (0.2 M) afforded $\mathbf{3 b}$ (19 mg , $66 \%, Z: E=17: 1)$ as colorless oil; $R_{f}=0.25(20 \% E t O A c$ in hexane $)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dt}, J=31.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.66$ (m, 2H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 2.79-2.64(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.9,160.7(\mathrm{~d}, J=39.1 \mathrm{~Hz}), 148.9(\mathrm{~d}, J=259.2 \mathrm{~Hz}), 141.9,133.0,128.2,122.9$, $122.5,115.0(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 108.3,52.4,47.3(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 34.6,32.7(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 22.7$, 12.6; ${ }^{19}$ F\{1H\} NMR (471 MHz, CDCl_{3}) δ-119.2 (E-minor), -127.2 (Z-major); HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{FNO}_{3}$: 292.1343, found 292.1350.

Methyl (Z)-4-(1-benzyl-3-methyl-2-oxoindolin-3-yl)-2-fluorobut-2-enoate (3c)

Following GP-4, the reaction of $\mathbf{1 c}(33 \mathrm{mg}, 0.1 \mathrm{mmol})$ with $\mathbf{2 a}(21 \mathrm{mg}$, $19 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) in 1,4-dioxane (0.2 M) afforded 3c ($20 \mathrm{mg}, 56 \%$, $Z: E=13: 1$) as yellow oil; $R_{f}=0.35$ (20\% EtOAc in hexane).
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dt}, J=31.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{ddd}, J=38.2,14.5,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.48$ ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.4,160.7$ ($\mathrm{d}, \mathrm{J}=36.0 \mathrm{~Hz}$), 149.0 ($\mathrm{d}, \mathrm{J}=259.3 \mathrm{~Hz}$), $142.0,135.8,132.6,128.8,128.2,127.6,127.1,122.8,122.7,114.9$ (d, $J=10.7 \mathrm{~Hz}), 109.3,52.4$, $47.5(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 43.5,32.6(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}), 23.3 ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-118.8(E-$ minor), -126.8 (Z-major); HRMS (ESI-TOF) $m / z:[M+H]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{FNO}_{3}$: 354.1500, found 354.1501 .

Methyl (Z)-2-fluoro-4-(3-methyl-2-oxo-1-tosylindolin-3-yl)but-2-enoate (3d)

Following GP-4, the reaction of $\mathbf{1 d}(79 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}(42 \mathrm{mg}$, $37 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) in 1,4-dioxane (0.2 M) afforded 3d ($35 \mathrm{mg}, 42 \%, \mathrm{Z}: E$ $=94: 1$) as yellow oil; $R_{f}=0.19$ (15% EtOAc in hexane).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.90(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.23-7.14$ (m, 2H), 5.63 (dt, $J=31.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (s, 3H), 2.62 (dddd, $J=16.3,14.6,8.0$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.42(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.7,160.3$ (d, J=35.9 Hz), 149.2 (d, J = 260.6 Hz), 145.7, 138.2, 135.1, 131.5, 129.7, 129.0, 127.8, 125.2, 123.0, 113.9, 113.4 (d, $J=10.7 \mathrm{~Hz}$), 52.4, 47.9 (d, $J=2.0 \mathrm{~Hz}$), $33.0(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 23.5,21.7 ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CDCl ${ }_{3}$) δ-117.4 (E-minor), -125.9 (Z-major); HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{FNO}_{5} \mathrm{SNa}$: 440.0938, found 440.0943 .

Methyl (Z)-2-fluoro-4-(5-methoxy-1,3-dimethyl-2-oxoindolin-3-yl)but-2-enoate (3e)

Following GP-4, the reaction of $\mathbf{1 e}(28 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}$ (42 $\mathrm{mg}, 37 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) in 1,4-dioxane (0.2 M) afforded $\mathbf{3 e}(41 \mathrm{mg}$, $66 \%, Z: E=11: 1$) as a yellow solid; melting point $63-65^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=$ 0.20 (20% EtOAc in hexane).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.82-6.77$ (m, 2H), 6.76-6.72 (m, $1 \mathrm{H}), 5.90(\mathrm{dt}, J=31.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.63(\mathrm{~m}, 2 \mathrm{H})$, 1.40 (s, 3H); ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.0,160.8(\mathrm{~d}, \mathrm{~J}=35.7 \mathrm{~Hz}), 156.2,149.0(\mathrm{~d}, \mathrm{~J}$ $=259.0 \mathrm{~Hz}$), 136.4, 134.2, 115.0 (d, $J=10.8 \mathrm{~Hz}$), 112.4, 110.3, 108.5, 55.8, 52.4, 47.8 (d, J= 1.7 $\mathrm{Hz}), 32.5(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}), 26.3,23.0 ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-119.1$ (E -minor), -127.1 (Z-major); HRMS (ESI-TOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{FNO}_{4}: 308.1293$, found 308.1296.

Methyl (Z)-2-fluoro-4-(1,3,5-trimethyl-2-oxoindolin-3-yl)but-2-enoate (3f)

Following GP-4, the reaction of $\mathbf{1 f}(27 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}(42 \mathrm{mg}, 37 \mu \mathrm{~L}, 0.4 \mathrm{mmol})$ in $1,4-$ dioxane (0.2 M) afforded $3 \mathrm{f}(35 \mathrm{mg}, 60 \%, Z: E=17: 1)$ as yellow oil; $\mathrm{R}_{\mathrm{f}}=0.30(20 \% \mathrm{EtOAc}$ in hexane).

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H})$, 6.73 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dt}, J=32.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, 3.20 (s, 3H), 2.70 (dddd, $J=34.5,14.8,7.9,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.34 (s, 3H), 1.39 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.3,160.8$ (d, $J=$ 35.8 Hz), 149.0 ($\mathrm{d}, \mathrm{J}=259.0 \mathrm{~Hz}$), 140.5, 132.9, 132.3, 128.5, 123.5, $115.2(\mathrm{~d}, ~ J=10.7 \mathrm{~Hz}), 107.9,52.4,47.4(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 32.6(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 26.3,23.0$, 21.1; ${ }^{19}$ F\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CDCI3) $\delta-119.3$ (E -minor), -127.3 (Z-major); HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{FNO}_{3}$: 292.1343, found 292.1346.

Methyl (Z)-4-(1,3-dimethyl-2-oxo-5-(trifluoromethyl)indolin-3-yl)-2-fluorobut-2-enoate (3g)

Following GP-4, the reaction of $\mathbf{1 g}(32 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}$ (42 $\mathrm{mg}, 37 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) in 1,4-dioxane (0.2 M) afforded $3 \mathrm{~g}(52 \mathrm{mg}$, $76 \%, Z: E=>20: 1$) as yellow oil; $R_{f}=0.13$ (20\% EtOAc in hexane).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56$ (d, $\left.J=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.42(\mathrm{~s}, 1 \mathrm{H})$, $6.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dt}, J=31.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, 3.24 (s, 3H), 2.72 (dddd, $J=41.6,14.7,8.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.43 (s, 3 H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , CDCl_{3}) $\delta 179.2,160.6(\mathrm{~d}, \mathrm{~J}=35.5 \mathrm{~Hz}), 149.3(\mathrm{~d}, \mathrm{~J}=260.9 \mathrm{~Hz}), 145.9,133.4,126.2(\mathrm{q}, \mathrm{J}=3.9$ $\mathrm{Hz}), 125.0(\mathrm{q}, J=32.6 \mathrm{~Hz}), 124.3(\mathrm{q}, J=271.7 \mathrm{~Hz}), 119.7(\mathrm{q}, J=3.4 \mathrm{~Hz}), 114.0(\mathrm{~d}, J=10.8 \mathrm{~Hz})$, $108.0,52.4,47.3(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 32.4(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 26.4,22.7 ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ-61.5, -118.1 (E-minor), -126.4 (Z-major). HRMS (ESI-TOF) m/z: [M+H] calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{4} \mathrm{NO}_{3}$: 346.1061 , found 346.1074 .

Methyl-(Z)-4-(1,3-dimethyl-2-oxo-5-(trifluoromethoxy)indolin-3-yl)-2-fluorobut-2-enoate (3h)

Following GP-4, the reaction of $\mathbf{1 h}(34 \mathrm{mg}, 0.1 \mathrm{mmol})$ with $\mathbf{2 a}(21$ $\mathrm{mg}, 19 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) in 1,4-dioxane (0.2 M) afforded $3 \mathrm{~h}(27 \mathrm{mg}$, $74 \%, Z: E=17: 1)$ as yellow oil; $R_{f}=0.16$ (20\% EtOAc in hexane).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H})$, 6.83 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.91 (dt, $J=31.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.78-2.64(\mathrm{~m}$, 2 H), $1.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.0,160.6(\mathrm{~d}, \mathrm{~J}=35.5 \mathrm{~Hz}), 149.3(\mathrm{~d}, \mathrm{~J}=$ $260.8 \mathrm{~Hz}), 144.8,141.5,134.3,121.4,120.5(\mathrm{q}, J=256.6 \mathrm{~Hz}), 116.8,114.1(\mathrm{~d}, J=10.8 \mathrm{~Hz})$, $108.6,52.4,47.7(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 32.4(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 26.4,22.7 ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ-58.4, -118.3 (E-minor), -126.6 (Z-major); HRMS (ESI-TOF) m/z: [M+Na] calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{4} \mathrm{NNaO}_{4}: 384.0829$, found 384.0829 .

Methyl (R,Z)-4-(5-cyano-1,3-dimethyl-2-oxoindolin-3-yl)-2-fluorobut-2-enoate (3i)

Following GP-4, the reaction of $\mathbf{1 i}(28 \mathrm{mg}, 0.1 \mathrm{mmol})$ with $\mathbf{2 a}(21 \mathrm{mg}$, $19 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) in 1,4-dioxane (0.2 M) afforded $3 \mathbf{i}(22 \mathrm{mg}, 74 \%$, $Z: E=19: 1)$ as a yellow solid; melting point $90-92{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.36(25 \%$ EtOAc in hexane).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H})$, 6.92 (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.86 (dt, $J=31.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.78-2.66(\mathrm{~m}$, 2 H), 1.43 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.9,160.5(\mathrm{~d}, \mathrm{~J}=35.3 \mathrm{~Hz}), 149.5(\mathrm{~d}, \mathrm{~J}=$
$259.3 \mathrm{~Hz}), 146.8,133.8,133.7,126.1,119.0,113.5(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}), 108.7,106.0,52.5,47.2$ (d, $J=1.9 \mathrm{~Hz}$), $32.2(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 26.5,22.7 ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-117.7$ (E-minor), -125.8 (Z-major); HRMS (ESI-TOF) \mathbf{m} / \mathbf{z} : $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FN}_{2} \mathrm{O}_{3}$: 303.1139, found 303.1145 .

Methyl (Z)-4-(5-chloro-1,3-dimethyl-2-oxoindolin-3-yl)-2-fluorobut-2-enoate (3j)

Following GP-4, the reaction of $\mathbf{1 j}(29 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}(42 \mathrm{mg}$, $37 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) in 1,4-dioxane (0.2 M) afforded $3 \mathrm{j}(44 \mathrm{mg}, 70 \%, \mathrm{Z}: E$ $=13: 1$) as a white solid; melting point $66-68{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.19(15 \%$ EtOAc in hexane).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27$ (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.19 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dt}, J=31.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}$, 3 H), 2.72 (dddd, $J=40.0,14.7,7.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $1.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $178.8,160.7(\mathrm{~d}, \mathrm{~J}=35.4 \mathrm{~Hz}), 149.2(\mathrm{~d}, \mathrm{~J}=260.4 \mathrm{~Hz}), 141.5,134.5,128.3,128.2,123.3,114.3$ ($\mathrm{d}, J=10.8 \mathrm{~Hz}$), 109.2, $52.4,47.6(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 32.4(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 26.4,22.9 ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CDCl $_{3}$) δ-118.4 (E-minor), -126.5 (Z-major); HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{CIFNO}_{3}: 312.0797$, found 312.0808.

Methyl (Z)-2-fluoro-4-(5-fluoro-1,3-dimethyl-2-oxoindolin-3-yl)but-2-enoate (3k)

Following GP-4, the reaction of $\mathbf{1 k}(27 \mathrm{mg}, 0.1 \mathrm{mmol})$ with $\mathbf{2 a}$ (21 $\mathrm{mg}, 19 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) in 1,4-dioxane (0.2 M) afforded $\mathbf{3 k}$ (21 mg , $71 \%, Z: E=14: 1)$ as yellow oil; $R_{f}=0.13(20 \%$ EtOAc in hexane).
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.07-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.72(\mathrm{~m}, 1 \mathrm{H})$, 5.89 (dt, $J=31.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (s, 3H), 3.21 (s, 3H), 2.76-2.64 (m, 2H), 1.41 (s, 3H); ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.0,160.7(\mathrm{~d}, \mathrm{~J}=35.7 \mathrm{~Hz}), 159.4(\mathrm{~d}$, $J=241.2 \mathrm{~Hz}), 149.2(\mathrm{~d}, J=260.0 \mathrm{~Hz}), 138.8,134.4(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 114.5(\mathrm{~d}, J=23.5 \mathrm{~Hz}), 114.406$ (d, $J=10.7 \mathrm{~Hz}$), 111.0 (d, $J=24.8 \mathrm{~Hz}$), 108.7 (d, $J=8.0 \mathrm{~Hz}$), 52.4, 47.8 (d, $J=1.7 \mathrm{~Hz}$), 32.4 (d, $J=2.1 \mathrm{~Hz}$), 26.4, 22.9; ${ }^{19}$ F\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CDCl $_{3}$) δ-118.6 (E-minor), -120.1, -126.7 (Zmajor); HRMS (ESI-TOF) $\boldsymbol{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{NO}_{3}: 296.1093$, found 296.1101.

Methyl-(Z)-3-(3-fluoro-4-methoxy-4-oxobut-2-en-1-yl)-1,3-dimethyl-2-oxoindoline-5carboxylate (3I)

Following GP-4, the reaction of $1 \mathbf{1 I}(31 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}$ (42 $\mathrm{mg}, 37 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) in 1,4-dioxane (0.2 M) afforded $3 \mathrm{I}(41 \mathrm{mg}$, $61 \%, Z: E=17: 1$) as a white solid; melting point $99-101^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=$ 0.32 (25% EtOAc in hexane).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 8.03$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.87 (s, $1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dt}, J=31.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}$, $3 \mathrm{H}), 2.73$ (ddd, $J=21.1,13.9,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.6$, 166.7, 160.6 (d, $J=35.6 \mathrm{~Hz}$), $149.1(\mathrm{~d}, J=260.2 \mathrm{~Hz}), 147.0,132.7,131.0,124.7,123.9,114.2$ (d, $J=10.8 \mathrm{~Hz}$), 107.8, $52.4,52.0,47.2(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 32.4(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 26.4,22.8 ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathbf{4 7 1} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) $\delta-118.3$ (E-minor), -126.4 (Z-major); HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FNO}_{5} \mathrm{Na}: 358.1061$, found 358.1058 .

Methyl (Z)-2-fluoro-4-(6-methoxy-1,3-dimethyl-2-oxoindolin-3-yl)but-2-enoate (3m)

Following GP-4, the reaction of $\mathbf{1 m}(28 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}$ ($42 \mathrm{mg}, 37 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) in 1,4-dioxane (0.2 M) afforded 3 m (48 $\mathrm{mg}, 77 \%, Z: E=21: 1$) as a yellow solid; melting point $63-65^{\circ} \mathrm{C}$; $R_{f}=0.32$ (25% EtOAc in hexane).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.82-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.76-672(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{dt}, J=31.9,7.9 \mathrm{~Hz}$, 1H), 3.78 (s, 3H), 3.74 (s, 3H), 3.19 (s, 3H), 2.69 (qdd, J = 14.7, 7.9, $1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.39 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCI 3) $\delta 178.9,160.7(\mathrm{~d}, \mathrm{~J}=35.8 \mathrm{~Hz}), 156.1,148.9(\mathrm{~d}, \mathrm{~J}=259.1 \mathrm{~Hz})$, $136.3,134.1,114.9(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 112.3,110.2,108.5,55.7,52.3,47.7(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 32.5(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}$), 26.3, 22.9; ${ }^{19}$ F\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-119.1 (E-minor), -127.1 (Z-major); HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{FNO}_{4} \mathrm{Na}: 330.1112$, found 330.1115.

Methyl (Z)-2-fluoro-4-(1,3,6-trimethyl-2-oxoindolin-3-yl)but-2-enoate (3n)

Following GP-4, the reaction of $\mathbf{1 n}(27 \mathrm{mg}, 0.1 \mathrm{mmol})$ with $\mathbf{2 a}$ (21 $\mathrm{mg}, 19 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) in 1,4-dioxane (0.2 M) afforded 3 n (22 mg , $75 \%, Z: E=12: 1$) as yellow oil; $R_{f}=0.21$ (20\% EtOAc in hexane).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{dt}, J=32.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.64$ ($\mathrm{m}, 2 \mathrm{H}$), 2.38 ($\mathrm{s}, 3 \mathrm{H}$), $1.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.7,160.8(\mathrm{~d}, \mathrm{~J}=35.7$ $\mathrm{Hz}), 149.0(\mathrm{~d}, J=259.2 \mathrm{~Hz}), 142.9,138.4,129.8,123.2,122.4,115.2(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 109.2$, $52.4,47.1(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 32.6(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 26.2,23.0,21.7 ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
δ-119.3 (E-minor), -127.3 (Z-major); HRMS (ESI-TOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{FNO}_{3}$: 292.1343, found 292.1347.

Methyl (Z)-4-(6-chloro-1,3-dimethyl-2-oxoindolin-3-yl)-2-fluorobut-2-enoate (30)

Following GP-4, the reaction of $\mathbf{1 0}(29 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}$ (42 $\mathrm{mg}, 37 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) in 1,4-dioxane (0.2 M) afforded $30(35 \mathrm{mg}$, $55 \%, Z: E=15: 1$) as a yellow-white solid; melting point $66-68^{\circ} \mathrm{C}$; $R_{f}=0.24$ (20% EtOAc in hexane) .
${ }^{1} \mathrm{H}$ NMR (500 MHz, $\mathrm{CDCl}_{3} \delta 7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 5.86$ (dt, J = 31.7, $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75 (s, 3H), 3.19 (s, 3H), 2.68 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$) $\delta 179.2,160.6(\mathrm{~d}, J=35.8 \mathrm{~Hz}), 149.1(\mathrm{~d}, J=260.0 \mathrm{~Hz}), 144.1,134.0$, $131.0,123.6,122.5,114.4(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 109.0,52.4,47.1(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 32.3(\mathrm{~d}, J=1.8 \mathrm{~Hz})$, 26.3, 22.9; ${ }^{19}$ F\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-118.5 (E-minor), -126.7 (Z-major); HRMS (ESITOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{CIFNO}_{3}: 312.0797$, found 312.0806 .

Methyl (Z)-2-fluoro-4-(1,3,7-trimethyl-2-oxoindolin-3-yl)but-2-enoate (3p)

Following GP-4, the reaction of $\mathbf{1 p}(27 \mathrm{mg}, 0.1 \mathrm{mmol})$ with $\mathbf{2 a}$ (21 $\mathrm{mg}, 19 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) in 1,4-dioxane (0.2 M) afforded $3 \mathrm{p}(20 \mathrm{mg}$, $69 \%, Z: E=22: 1$) as a yellow oil; $R_{f}=0.33$ (20\% EtOAc in hexane).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 7.07-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 1 \mathrm{H})$, 5.92 (dt, $J=31.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{ddd}, J=34.2,14.8,8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.58(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 180.1,160.8(\mathrm{~d}, \mathrm{~J}=35.6 \mathrm{~Hz}), 148.9$ (d, $J=258.9 \mathrm{~Hz}$), 140.6, 133.5, 131.9, 122.6, 120.6, 119.8, 115.2 (d, J=10.6 Hz), $52.4,46.6$ (d, $J=1.7 \mathrm{~Hz}$), $32.7(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 29.6,23.3,19.0 ;{ }^{19}{ }^{\mathrm{F}}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-119.3(E-$ minor), -127.3 (Z-major); HRMS (ESI-TOF) $\boldsymbol{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{FNO}_{3}: 292.1343$, found 292.1346.

Methyl (Z)-2-fluoro-4-(7-fluoro-1,3-dimethyl-2-oxoindolin-3-yl)but-2-enoate (3q)

Following GP-4, the reaction of $\mathbf{1 q}(54 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}(42 \mathrm{mg}$, $37 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) in 1,4-dioxane (0.2 M) afforded 3 q ($27 \mathrm{mg}, 46 \%, \mathrm{Z}: E$ $=16: 1$) as yellow oil; $R_{f}=0.22$ (20% EtOAc in hexane).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 7.03-6.94$ (m, 3H), $5.90(\mathrm{dt}, J=31.7,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.77-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126$

MHz, CDCl $_{3}$) $\delta 178.9,160.7(\mathrm{~d}, \mathrm{~J}=35.8 \mathrm{~Hz}), 149.1(\mathrm{~d}, \mathrm{~J}=259.8 \mathrm{~Hz})$, 147.7 (d, $J=243.9 \mathrm{~Hz}), 135.7(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 129.5(\mathrm{~d}, J=8.1 \mathrm{~Hz})$, 123.4 (d, $J=6.4 \mathrm{~Hz}), 118.5(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 116.2(\mathrm{~d}, J=19.2 \mathrm{~Hz})$, $114.5(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 52.4,47.7(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 32.6(\mathrm{~d}, J=2.2 \mathrm{~Hz})$, 28.7 (d, $J=5.7 \mathrm{~Hz}$), 23.1; ${ }^{19}{ }^{9}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathbf{4 7 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta-118.7(E-$ minor), -126.8 (Z-major), -136.3 (major), -136.4 (minor); HRMS (ESI-TOF) $\boldsymbol{m} / \mathbf{z}$: [M+Na] ${ }^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{Na}$: 318.0912, found 318.0912.

Methyl (Z)-4-(3-(((tert-butyldimethylsilyl)oxy)methyl)-1-methyl-2-oxoindolin-3-yl)-2-fluorobut-2-enoate (3r)

Following GP-4, the reaction of $\mathbf{1 r}(54 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}(42 \mathrm{mg}$, $37 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) in 1,4-dioxane (0.2 M) afforded $3 \mathrm{r}(40 \mathrm{mg}, 49 \%, \mathrm{Z}: E$ $=>20: 1$) as green oil; $\mathrm{R}_{\mathrm{f}}=0.30$ (15% EtOAc in hexane).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dt}, J=31.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.70$ $(\mathrm{m}, 4 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.74(\mathrm{~m}, 2 \mathrm{H}), 0.75(\mathrm{~s}, 9 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H}),-0.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) $\delta 177.1,160.8(\mathrm{~d}, J=35.7 \mathrm{~Hz}), 148.9(\mathrm{~d}, \mathrm{~J}=258.8 \mathrm{~Hz}) .143 .9,130.2,128.3$, $123.9,122.5,115.0(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 107.9,67.3,53.8(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 52.3,27.5(\mathrm{~d}, J=2.6 \mathrm{~Hz})$, 26.2, 25.5, 18.0, -5.6, -5.8; ${ }^{19}$ F\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-127.2 (Z); HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{FNO}_{4} \mathrm{SiNa}$ 430.1820, found 430.1835.

Methyl (Z)-4-(1,3-dimethylindolin-3-yl)-2-fluorobut-2-enoate (3s)

Following GP-4, the reaction of $\mathbf{1 s}(76 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 a}(42 \mathrm{mg}, 37 \mu \mathrm{~L}, 0.4 \mathrm{mmol})$ in $1,4-$ dioxane (0.2 M) afforded $3 \mathrm{~s}(12 \mathrm{mg}, 15 \%, Z: E=>20: 1)$ as yellow oil; $\mathrm{R}_{\mathrm{f}}=0.20(15 \%$ EtOAc in hexane). We couldn't get pure compound (3s) after several attempts.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 3 \mathrm{H})$, 7.04-6.99 (m, 2H), 5.91 (dt, J = 32.0, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (s, 3H), 3.75 (d, J = $10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.56 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 160.7$ (d, $J=35.9 \mathrm{~Hz}), 149.3(\mathrm{~d}, J=258.9 \mathrm{~Hz}), 144.2,141.0,137.6,133.8,129.7,128.5,127.2$, $123.8,122.8,115.5(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}), 114.5,61.2,52.5,43.4(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 35.0,25.8,21.5$; ${ }^{19} \mathrm{~F}\{1 \mathrm{H}\}$ NMR (470 MHz, CDCI ${ }_{3}$): δ-127.4 (Z); HRMS (ESI-TOF) m / \mathbf{z} : $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{FNO}_{4} \mathrm{SNa}$: 426.1146, found 426.1154.

Methyl (E)-2-fluoro-4-(5-methoxy-1,3-dimethyl-2-oxoindolin-3-yl)but-2-enoate (E-4a) and methyl (Z)-2-fluoro-4-(5-methoxy-1,3-dimethyl-2-oxoindolin-3-yl)but-2-enoate (Z-4a):

Following GP-5, the reaction of $\mathbf{1 a}(51 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ with $\mathbf{2 b}(56 \mathrm{mg}, 38 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$ in $1,4-$ dioxane (0.2 M) afforded $4 \mathrm{a}(38 \mathrm{mg}, 58 \%, E: Z=$ 2.6:1) as yellow oil; $\mathrm{R}_{\mathrm{f}}=0.56(20 \% \mathrm{EtOAc}$ in hexane).

Pure E-(4a); $13 \mathrm{mg}(20 \%) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{td}, \mathrm{J}=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{td}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (s, 3H), 3.22 ($\mathrm{s}, 3 \mathrm{H}$), 3.20-3.06 (m, 2H), $1.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ($\mathrm{E}-4 \mathrm{a}$) δ 179.2, 162.4, $145.0(\mathrm{q}, J=5.7 \mathrm{~Hz}), 142.9,132.4,128.5,125.5(\mathrm{q}, J=30.8 \mathrm{~Hz}), 122.8,121.7(\mathrm{q}$, $J=272.9 \mathrm{~Hz}$), 108.3, $52.2,47.4,36.8,26.2,22.8$ (one C peak merged with other peaks); ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CDCl ${ }_{3}$) (E-4a) δ-64.3; HRMS (ESI-TOF) \mathbf{m} / \mathbf{z} : $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{3}$: 328.1155, found 328.1166.

Mixture of E+Z-(4a, 1.4:1 by ${ }^{1} \mathrm{H}$ NMR); $25.1 \mathrm{mg}(38 \%) ;{ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) $\delta 7.35-7.27$ ($\mathrm{m}, 1.8 \mathrm{H}$), 7.18 (d, $J=7.2 \mathrm{~Hz}, 1.7 \mathrm{H}), 7.08$ (q, J=7.2 Hz, 1.7H), 6.98 (t, J=7.3 Hz, $0.7 \mathrm{H}, \mathrm{Z}$), 6.87 (t, J = 7.5 Hz, 1.7H), $6.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, E), 3.79(\mathrm{~s}, 3 \mathrm{H}, E), 3.75(\mathrm{~s}, 2.3 \mathrm{H}, \mathrm{Z}), 3.24(\mathrm{~s}, 2.2 \mathrm{H}$, Z), $3.22(\mathrm{~s}, 3 \mathrm{H}, E), 3.20-3.07(\mathrm{~m}, 2 \mathrm{H}, E), 3.02-2.90(\mathrm{~m}, 1.5 \mathrm{H}, \mathrm{Z}), 1.44(\mathrm{~s}, 5.1 \mathrm{H}) ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.5(\mathrm{Z}),-64.3(E)$.

Methyl (E)-4-(5-methoxy-1,3-dimethyl-2-oxoindolin-3-yl)-2-(trifluoromethyl)but-2-enoate (E-4b) and methyl (Z)-4-(5-methoxy-1,3-dimethyl-2-oxoindolin-3-yl)-2-(trifluoromethyl)but-2-enoate (Z-4b):

Following GP-5, the reaction of $\mathbf{1 e}(57 \mathrm{mg}, 0.2$ mmol) with 2b ($62 \mathrm{mg}, 51 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) in 1,4dioxane (0.2 M) afforded 4b (33 mg, 46\%, E:Z $=3: 1$) as yellow oil; $R_{f}=0.47(20 \%$ EtOAc in hexane).

Pure E-(4b); $15 \mathrm{mg}(21 \%) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (E-4b) $\delta 6.85-6.72(\mathrm{~m}, 3 \mathrm{H}), 6.55(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (s, 6H), 3.19 ($\mathrm{s}, 3 \mathrm{H}$), 3.16-3.06 (m, 2H), 1.42 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) ($\mathrm{E}-4 \mathrm{~b}$) $\delta 178.8,162.4,156.2,145.0(\mathrm{q}, J=5.4 \mathrm{~Hz}), 136.4,133.7,125.5(\mathrm{q}, J=30.4 \mathrm{~Hz})$, 121.6 ($q, J=272.9 \mathrm{~Hz}$), 112.6, 110.5, 108.6, $55.8,52.2,47.9,36.8,26.3,22.8 ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471
$\left.\mathbf{M H z}, \mathrm{CDCl}_{3}\right)(\mathrm{E}-4 \mathbf{b}) \delta-64.2(E)$; HRMS (ESI-TOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{4}: 358.1261$, found 358.1265 .

Mixture of E+Z-(4b, 1.3:1 by ${ }^{1} \mathrm{H}$ NMR); $18 \mathrm{mg}(25 \%)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.94$ (t, $\mathrm{J}=$ $7.3 \mathrm{~Hz}, 0.72 \mathrm{H}, \mathrm{Z}), 6.85-6.73(\mathrm{~m}, 5.3 \mathrm{H}), 6.55(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, E), 3.79(\mathrm{~s}, 8.2 \mathrm{H}), 3.74(\mathrm{~s}, 2.2 \mathrm{H})$, 3.22 (s, 2.1H, Z), 3.19 (s, 3H, E), 3.16-3.06 (m, 2H, E), 3.03-2.89 (m, 1.5H, Z), 1.42 (s, 5.2H); ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CDCl_{3}) (E-4b+Z-4b) $\delta-58.5(Z),-64.2(E)$.

Methyl (E)-4-(5-cyano-1,3-dimethyl-2-oxoindolin-3-yl)-2-(trifluoromethyl)but-2-enoate (E $4 c$) and methyl (Z)-4-(5-cyano-1,3-dimethyl-2-oxoindolin-3-yl)-2-(trifluoromethyl)but-2enoate (Z-4c):

Following GP-5, the reaction of $\mathbf{1 i}(56 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ with $\mathbf{2 b}(46 \mathrm{mg}, 38 \mu \mathrm{~L}, 0.40 \mathrm{mmol})$ in 1,4dioxane (0.2 M) afforded $4 \mathrm{c}(33 \mathrm{mg}, 47 \%, E: Z=$ $2: 1$) as yellow oil; $R_{f}=0.34$ (20% EtOAc in hexane).

E-(4c)- ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.10(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.8,162.2,146.7,143.6(\mathrm{q}, ~ J=5.7 \mathrm{~Hz}), 133.8,133.5,126.33,126.27$ ($q, J=31.3 \mathrm{~Hz}$), 121.4 (q, $J=273.1 \mathrm{~Hz}$), 118.9, 108.7, 106.0, $52.4,47.4,36.3,26.5,22.6 ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CDCl $_{3}$) $\delta-64.3(E)$; HRMS (ESI-TOF) \mathbf{m} / \mathbf{z} : $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{4}$: 353.1108 , found 353.1118 .

Methyl (E)-1,3-dimethyl-2-oxo-3-(4,4,4-trifluoro-3-(methoxycarbonyl)but-2-en-1-yl)indoline-5-carboxylate (E-4d) and methyl (Z)-1,3-dimethyl-2-oxo-3-(4,4,4-trifluoro-3-(methoxycarbonyl)but-2-en-1-yl)indoline-5-carboxylate (Z-4d):

Following GP-5, the reaction of $11(62 \mathrm{mg}$, 0.2 mmol) with 2b ($62 \mathrm{mg}, 51 \mu \mathrm{~L}, 0.4$ mmol) in 1,4-dioxane (0.2 M) afforded 4 d ($40 \mathrm{mg}, 52 \%, E: Z=3.7: 1$) as a white solid; melting point $90-92{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.52(20 \%$ EtOAc in hexane).

Pure E-(4d); $23 \mathrm{mg}(30 \%)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05$ (d, J = $\left.7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.85(\mathrm{~s}, 1 \mathrm{H})$, 6.90 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.53 (t, J=7.0 Hz, 1H), 3.91 (s, 3H), 3.79 (s, 3H), 3.25 (s, 3H), 3.15 (ddd, $J=21.7,14.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.4,166.6,162.2$,
147.0, $144.0(\mathrm{q}, J=5.7 \mathrm{~Hz}), 132.4,131.2,126.0(\mathrm{q}, J=30.7 \mathrm{~Hz}), 124.9,124.1,121.5(\mathrm{q}, J=273.1$ $\mathrm{Hz}), 107.8,52.1,52.0,47.4,36.6,26.4,22.7 ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.3$; HRMS (ESI-TOF) $\boldsymbol{m} / \mathbf{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{Na}: 408.1029$, found 408.1038.

Mixture of $\operatorname{E+Z}-\left(4 \mathrm{~d}, 1: 1\right.$ by ${ }^{1} \mathrm{H}$ NMR); 17 mg (22\%); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18-8.03$ (m, $2 \mathrm{H}), 7.86(\mathrm{~s}, 1.9 \mathrm{H}), 6.97-6.87(\mathrm{~m}, 3 \mathrm{H}), 6.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, E), 3.91(\mathrm{~s}, 6 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}, E)$, 3.75 (s, 3H, Z), 3.27 (s, 3H, Z), 3.25 (s, 3H, E), 3.23-3.09 (m, 2H, E), 3.00 (dddd, J = 54.6, 16.6, $7.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Z}), 1.46(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\mathrm{E}-4 \mathrm{~d}+\mathrm{Z}-4 \mathrm{~d}) \delta-58.6(Z),-64.3$ (E).

Methyl (E)-2-(trifluoromethyl)-4-(1,3,6-trimethyl-2-oxoindolin-3-yl)but-2-enoate ($E-4 e$) and methyl (Z)-2-(trifluoromethyl)-4-(1,3,6-trimethyl-2-oxoindolin-3-yl)but-2-enoate (Z-4e):

Following GP-5, the reaction of 1m (54 $\mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathbf{2 b}(62 \mathrm{mg}, 51 \mu \mathrm{~L}$, 0.4 mmol) in 1,4-dioxane (0.2 M) afforded $4 \mathrm{e}(37 \mathrm{mg}, 55 \%, E: Z=5: 1)$ as yellow oil; $R_{f}=0.65(20 \%$ EtOAc in hexane).

Pure E-(4e); $19 \mathrm{mg}(36 \%) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.11$ (ddd, J=33.9, 15.9, $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$) $\delta 179.5,162.4,145.2(\mathrm{q}$, $J=5.3 \mathrm{~Hz}$), 143.0, 138.7, 129.5, 125.4 (q, $J=31.1 \mathrm{~Hz}$), 123.3, 122.6, 121.7 (q, $J=273.0 \mathrm{~Hz}$), 109.2, 52.1, 47.2, 36.9, 26.2, 22.9, 21.8; ${ }^{19}$ F\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CDCl $_{3}$) δ-64.2 (E); HRMS (ESITOF) $m / z:[M+H]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{3}: 342.1304$, found 342.1308.

Mixture of $E+Z-\left(4 e, 2: 1\right.$ by ${ }^{1} \mathrm{H}$ NMR); $18 \mathrm{mg}(26 \%) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08-7.02(\mathrm{~m}$, 1.5 H), $6.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 0.5 \mathrm{H}, Z), 6.92-6.86(\mathrm{~m}, 1.5 \mathrm{H}), 6.72-6.76(\mathrm{~m}, 1.5 \mathrm{H}), 6.56(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}, E), 3.80(\mathrm{~s}, 3 \mathrm{H}, E), 3.75(\mathrm{~s}, 1.5 \mathrm{H}, Z), 3.22(\mathrm{~s}, 1.4 \mathrm{H}, \mathrm{Z}), 3.20(\mathrm{~s}, 3 \mathrm{H}, E), 3.19-3.04(\mathrm{~m}, 2 \mathrm{H}, E)$, 3.01-2.88 (m, 1.1H, Z), 2.39 (s, 4.6H), 1.41 (s, 4.2H); ${ }^{19}$ F\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ($\mathrm{E}-4 \mathrm{e}+\mathrm{Z}-$ 4e) $\delta-58.6(Z),-64.2(E)$.

Dimethyl (2Z,4Z)-2,5-difluorohexa-2,4-dienedioate (6): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.02-6.94$
 (m, 1H), 6.94-6.87 (m, 1H), 3.88 (s, 6H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) $\delta 160.4(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 160.1(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 150.6$ (d, $J=$ $6.8 \mathrm{~Hz}), 148.4(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 108.5(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 108.4(\mathrm{~d}, J=3.6$

Hz), 52.9; ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CDCl_{3}) $\delta-118.4$; HRMS (ESI-TOF) $\mathrm{m} / \mathbf{z}:[\mathrm{M}-\mathrm{F}]^{+}$calcd. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{FO}_{4}$: 187.0401, found 187.0407; GCMS-EI (\mathbf{m} / \mathbf{z}, relative intensity): 206.1 ($\mathrm{M}^{+}, 30$), 175.1 (15), 147.1 (100), 132.0 (7), 119.0 (9), 104.0 (9).

Figure S3 GC-MS spectra of compound 6.

7. Optimization of chiral ligands for enantioselective reaction ${ }^{a}$

In a 1.5 mL reaction vial equipped with a magnetic bead, N-(2-halophenyl)- N-methyl acrylamide (1a) ($0.1 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($10 \mathrm{~mol} \%$), ligand ($20 \mathrm{~mol} \%$), additive (0.2 mmol) were added, followed by addition of methyl 2-fluoroacrylate (2a) (2.0 equiv), solvent (0.2 M) and one $4 \AA$ molecular sieve under N_{2} atmosphere. Then, the reaction was kept on stirring at $90{ }^{\circ} \mathrm{C}$ temperature. After completion of the reaction (monitored by TLC), the crude reaction mixture was filtered through a celite pad using DCM, and then dried on sodium sulfate followed by high vacuum. Crude ${ }^{1} \mathrm{H}$ NMR yields were reported against nitromethane as internal standard.

Scheme S7: Enantioselective double Heck cyclization of 1a with 2a.
Table S3: Ligand screening. ${ }^{\text {a }}$

S. No.	1a (X)	Ligand	Additive	Yield (\%)	ee (\%)
1	Br	R-BINAP (L1)	AgOAc	~15	6
2	I	R-BINAP (L1)	AgOAc	~19	-
3	1	R-BINAP (L1)	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	11	-
$4^{\text {b }}$	1	R-BINAP (L1)	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	36	11
5	I	${ }^{\text {t Bu-PhosFerrox (L2) }}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	36	19
$6^{\text {c }}$	I	${ }^{\text {t Bu-PhosFerrox (L2) }}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	<5	10
$7^{\text {d }}$	I	${ }^{\text {t Bu-PhosFerrox (L2) }}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	35	15
8	I	L3	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	<5	20
9	I	L4	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	<5	50
10	I	L5	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	48	14
11	1	L6	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	38	7
12	1	L7	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	-	-

${ }^{\text {a }} 1 \mathbf{a}$ (0.025 mmol), 2a (0.05 mmol$), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{L}(20 \mathrm{~mol} \%)$, additive (2.0 equiv), solvent (0.5 mL) under nitrogen, $90^{\circ} \mathrm{C}$, 24 h , vial size 1.5 mL , crude ${ }^{1} \mathrm{H}$-NMR yield against nitromethane. ${ }^{b} \mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, $\mathrm{L}(20 \mathrm{~mol} \%)$, additive (2.0 equiv), solvent $(0.5 \mathrm{~mL})$ under nitrogen, $90^{\circ} \mathrm{C}, 24 \mathrm{~h}$, vial size 1.5 mL , isolated yield. ${ }^{\circ} 1 \mathrm{a}$ (0.05 mmol), $70^{\circ} \mathrm{C}, 24$ h. ${ }^{d} \mathbf{1 a}(0.05 \mathrm{mmol}), 8{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Enantiomeric excess analysis by HPLC:

The enantiomeric purity was established by HPLC analysis using a Chiralcel ${ }^{\circledR}$ OD-H column (4.6 mml .D. X 250 mmL), particle size $5 \mu \mathrm{~m}, 15^{\circ} \mathrm{C}$, n-Hexane/i-Propanol $=95 / 5$ as eluent, $254 \mathrm{~nm}, 1$ $\mathrm{mL} / \mathrm{min}$. For racemic product 3a, the mixture of $E-Z$ product (column purified) was kept for analysis, which gave E-isomer at $t R=10.165,11.360$ and Z-isomer at $\mathrm{tR}=14.347,15.1232$.

8. Applications:

8.1 Thiation reaction using Lawesson's reagent: ${ }^{3}$

Scheme S8: Thiation of 3a using Lawesson's reagent.
Compound 3a ($28 \mathrm{mg}, 0.1 \mathrm{mmol}$) and Lawesson's reagent ($202 \mathrm{mg}, 0.5 \mathrm{mmol}$) were taken in a 7 ml reaction vial equipped with a magnetic stir bar. Then, dry THF (1.5 mL) was added, vial was sealed and kept for stirring at $66^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction (monitored by TLC), the reaction mixture was concentrated and purified by silica gel column chromatography (Hexane: $\mathrm{EtOH}=9.0: 1.0, \mathrm{R}_{\mathrm{f}}=0.30$) to afford 7 ($28 \mathrm{mg}, 94 \%$) as green oil.

Methyl (Z)-4-(1,3-dimethyl-2-thioxoindolin-3-yl)-2-fluorobut-2-enoate (7):

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dt}, J=32.07 .2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}$, $3 \mathrm{H}), 3.66$ (s, 3H), 2.94 (dd, $J=13.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (ddd, $J=14.4$, 7.0, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 208.9, 160.7 (d, $J=35.8 \mathrm{~Hz}), 148.8(\mathrm{~d}, J=259.6 \mathrm{~Hz}), 144.3,137.1,128.4,124.4,123.1,115.1$ (d, $J=10.8 \mathrm{~Hz}$), 109.6, $58.0(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 52.3,35.7(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 31.5,27.2 ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CDCl $_{3}$) $\delta-119.3(E),-126.7(Z)$; HRMS (ESI-TOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{FNO}_{2} \mathrm{~S}$: 294.0959, found 294.0970.

6.2 Bromination using NBS: ${ }^{3}$

$3 \mathbf{a}(E+Z)$

8

Scheme S9: Bromination of 3a using NBS

Compound 3a ($28 \mathrm{mg}, 0.1 \mathrm{mmol}$) and N -Bromosuccinimide ($21 \mathrm{mg}, 0.12 \mathrm{mmol}$) were taken in a 7 ml reaction vial equipped with a magnetic stir bar. Then, dry THF (1.5 mL) was added to the reaction mixture, vial was sealed and kept for stirring at $66^{\circ} \mathrm{C}$ for 12 h . The TLC showed the spot on similar R_{f} as compound 3a. Then, the solvent was dried and recorded crude ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR, which indicated the product formation. After that, the reaction mixture was purified on silica gel column chromatography (Hexane:Ethyl acetate $=8.5: 1.5, \mathrm{R}_{\mathrm{f}}=0.25$) to afford the desired brominated product 8 ($27 \mathrm{mg}, 77 \%$,) as yellow solid; melting point $71-73^{\circ} \mathrm{C}$.

Methyl (Z)-4-(5-bromo-1,3-dimethyl-2-oxoindolin-3-yl)-2-fluorobut-2-enoate (8):

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ (dd, $J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dt}, J=31.6,7.9 \mathrm{~Hz}$, 1H), 3.77 (s, 3H), 3.20 (s, 3H), 2.70 (dddd, J = 46.2, 14.8, 7.9, 2.0 $\mathrm{Hz}, 2 \mathrm{H}$), 1.40 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 178.7, 160.7 (d, $J=35.6 \mathrm{~Hz}$), 149.2 ($\mathrm{d}, J=260.4 \mathrm{~Hz}$), 142.0, 134.9, 131.2, 126.0, 115.5, 114.3 (d, $J=10.7 \mathrm{~Hz}$), 109.7, 52.5, 47.6, 32.4 (d, $J=2.2 \mathrm{~Hz}$), 26.4, 22.9; ${ }^{19}$ F\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CDCl $_{3}$) δ-126.5 (Z); HRMS (ESI-TOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FNO}_{3} \mathrm{Br}$: 356.0292, found 356.0293 .

8.3 Hydrolysis of Ester: ${ }^{4}$

Scheme S10: Hydrolysis of 3a in alkaline medium.
Compound 3 a ($28 \mathrm{mg}, 0.1 \mathrm{mmol}$) and $\mathrm{KOH}(\sim 9 \mathrm{mg}, 0.15 \mathrm{mmol})$ were taken in a 7 mL reaction vial equipped with a magnetic stir bar. Then, $\mathrm{MeOH}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ were added sequentially, the vial was sealed and kept for stirring at $70{ }^{\circ} \mathrm{C}$ for 18 h . After cooling to room temperature, the reaction mixture was acidified with 1 mL of 3 N HCl and concentrated, followed by water addition and extraction with EtOAc. The final organic solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in a rotary evaporator to afford the desired acid 9 ($25 \mathrm{mg}, 97 \%$, $E / Z=1 / 11$ by ${ }^{1} \mathrm{H}$ NMR) as grey sticky compound.

4-(1,3-dimethyl-2-oxoindolin-3-yl)-2-fluorobut-2-enoic acid (9):

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 7.29(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, 1 H), 7.21 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (d, $J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.01 (dt, $J=31.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (s, 3H), 2.79-2.66 (m, 2H), 1.43 (s, 3H); ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.8,163.6$ (d, J $=36.5 \mathrm{~Hz}), 148.7(\mathrm{~d}, J=258.6 \mathrm{~Hz}), 142.6,132.8,128.4,123.1,122.7,116.5(\mathrm{~d}, J=10.5 \mathrm{~Hz})$, 108.4, 47.6 (d, J=1.4 Hz), 32.6, 26.4, 22.6; ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.7(E),-127.3$ (Z); HRMS (ESI-TOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{FNO}_{3}$: 264.1030, found 264.1029.

8.4 Reduction of Alkene:

Scheme S11: Reduction of 3b and 4b using activated palladium on charcoal.

The substituted oxindole ($\mathbf{3 b} \mathbf{b} \mathbf{4 b}$) (0.1 mmol) was taken in a Schlenk flask, equipped with magnetic stir bar. Then, palladium on activated charcoal (0.05 mmol) was introduced in the flask, followed by addition of 3 mL dry THF. The reaction mixture was stirred overnight at room temperature $\left(33^{\circ} \mathrm{C}\right)$ under H_{2} gas pressure using a rubber balloon. Then, the crude reaction mixture was washed with water and extracted with DCM, followed by purification on silica gel column chromatography. The diastereomeric ratio (dr) was analyzed by ${ }^{19} \mathrm{~F}$ NMR.

Methyl 4-(1-ethyl-3-methyl-2-oxoindolin-3-yl)-2-fluorobutanoate (10): The product 10 was obtained in 15 h with 86% yield (25 mg) as colorless liquid (Hexane:Ethyl acetate $=85: 15, \mathrm{R}_{\mathrm{f}}=$ $0.18), \mathrm{dr}=1.0: 1.0$.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.23$ (m, 1H), 7.17 (t, J = 7.5 $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ (ddd, $J=49.0,8.6,3.7 \mathrm{~Hz}, 0.5 \mathrm{H}$), 4.72 (ddd, $J=48.7,6.8,4.7 \mathrm{~Hz}$, 0.5 H), 3.85-368 (m, 2H), 3.75 (s, 1.5H), 3.71 (s, 1.5H), 2.12-1.98 (m, 1H), 1.98-1.85 (m, 1H), 1.70-1.44 (m, 2H), 1.37 (s, 1.5H), 1.36 (s, 1.5H), 1.25 (td, J = 7.2, 1.3 Hz, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) $\delta 179.5,179.4,169.9$ (d,
$J=3.1 \mathrm{~Hz}), 169.8(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}), 142.22$, 142.21, 133.34,133.28, 127.981, 127.977, 122.71, 122.69, 122.54, 122.50, 108.255, 108.246, 89.6 (d, $J=184.9 \mathrm{~Hz}$), 88.3 (d, $J=185.0 \mathrm{~Hz}), 52.3$, 52.2, 47.6, 47.4, 34.6 (2C), 33.1 (d, $J=3.0 \mathrm{~Hz}$), 32.4 (d, $J=3.4 \mathrm{~Hz}$), 27.6 (d, $J=10.9 \mathrm{~Hz}$), 27.4 (d, $J=10.9 \mathrm{~Hz}$), 23.9, 23.7, 12.7 (2C); ${ }^{19}$ F\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-192.2,-192.7$; HRMS (ESI-TOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{FNO}_{3} \mathrm{Na}: 316.1319$, found 316.1328 .

Methyl 4-(5-methoxy-1,3-dimethyl-2-oxoindolin-3-yl)-2-(trifluoromethyl)butanoate (11): Following the above procedure, 4b ($26 \mathrm{mg}, 0.073 \mathrm{mmol}$) with $\mathrm{Pd} / \mathrm{C}(6 \mathrm{mg}, 0.056 \mathrm{mmol})$ in THF $(3 . \mathrm{mL})$ at $33^{\circ} \mathrm{C}$ for 48 h afforded $11(20 \mathrm{mg}, 76 \%)$ as colorless liquid, (Hexane:Ethyl acetate $=$ $\left.85: 15, R_{f}=0.28\right), d r=1.5: 1.0$.

${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta 6.85-6.72$ ($\mathrm{m}, 3 \mathrm{H}$), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.76$ (s, 1.5 H$), 3.74(\mathrm{~s}, 1.5 \mathrm{H}), 3.196(\mathrm{~s}, 1.5 \mathrm{H}), 3.192(\mathrm{~s}, 1.5 \mathrm{H}), 3.07-$ $2.88(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.54(\mathrm{~m}$, $1 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.343(\mathrm{~s}, 1.5 \mathrm{H}), 1.338(\mathrm{~s}, 1.5 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) $\delta 179.4,179.3,167.51,167.48,156.29$, 156.26, 136.73, 136.71, 134.4, 134.2, 124.4 (q, $J=280.3 \mathrm{~Hz}$), 124.3 (q, $J=280.3 \mathrm{~Hz}), 112.1$, 112.0, 110.31, 110.28, 108.5 (2C), 55.8 (2C), 52.69, 52.66, 50.1 (q, $J=27.7 \mathrm{~Hz}$), 50.0 (q, J=27.8 $\mathrm{Hz}), 48.3,48.2,35.0,34.9,26.3(2 \mathrm{C}), 24.0,23.8,21.4(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 21.2(\mathrm{~d}, J=1.9 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CDCI 3) δ-67.8, -68.1 ; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{Na}$: 382.1237, found 382.1242.

9. Mechanistic Investigation:

To gain insight into the mechanism, a few control experiments were performed (Scheme 12). In a 1.5 mL vial equipped with a magnetic bead, was added acrylamide substrate (1a) (0.1 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol}), \mathrm{AgOAc}(0.2 \mathrm{mmol})$ and $4 \AA$ molecular sieve (1 no.). Next, fluoroacrylate ($\mathbf{2 a}$) (0.2 mmol) and dry dioxane (0.2 M) were added to the reaction vial in the open atmosphere. Then the reaction vial was sealed and stirred in a pre-heated oil bath at $90^{\circ} \mathrm{C}$ for 15 h . After that, the reaction mixture was cooled to room temperature and dried on high vacuum. Then, in the dried reaction mixture, nitromethane (0.1 mmol) as an internal standard was added accordingly, followed by addition of CDCl_{3} solvent. The mixture was analyzed by crude ${ }^{1} \mathrm{H}$ NMR in which the NMR yield was calculated by integrating the peak of product against the peak at 4.33 ppm corresponding to 3 protons of nitromethane.

9.1. Control Experiments:

Scheme S12: Control experiments.

Table S4: List of control experiments. ${ }^{\text {a }}$

S. No.	Variation from standard conditions	1a (\%)	3a (\%)	5a (\%)	6 (\%)
$1{ }^{\text {b }}$	-	-	87	8	10
2	No AgOAc	>95	-	-	-
3	No Pd(OAc) 2 , No AgOAc	>95	-	-	-
4	No 2a	20	-	40	-
5	No 2a, No AgOAc	80	-	<5	-
$6^{\text {b,c }}$	$100 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, No AgOAc	40	19	<5	<5
$7^{\text {b,d }}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ instead of $\mathrm{Pd}(\mathrm{OAc})_{2}$, No AgOAc	49	14	10	<5
$8^{\text {b,d }}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ instead of $\mathrm{Pd}(\mathrm{OAc})_{2}$ with AgOAc	-	37	13	11
$10^{\text {b,e,f }}$	NaOAc instead of AgOAc	-	48	35	-
11^{9}	NaOAc instead of AgOAc	-	12	60	-

${ }^{\mathrm{a}} \mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, additive (2.0 equiv), solvent (0.5 mL) open air, $90{ }^{\circ} \mathrm{C}, 15 \mathrm{~h}$, vial size $1.5 \mathrm{~mL}, 4 \AA \mathrm{MS}$, Crude ${ }^{1} \mathrm{H}$-NMR yield against nitromethane. ${ }^{\text {b }}$ Isolated yield. ${ }^{c} \mathbf{1 a}(0.2 \mathrm{mmol}), \mathbf{2 a}(0.4 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}\left(1.0\right.$ equiv), solvent $(1.0 \mathrm{~mL}), 9{ }^{\circ} \mathrm{C}, 15 \mathrm{~h}$, open air. ${ }^{d} \mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.2 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$, additive (2.0 equiv), solvent $(0.5 \mathrm{~mL})$, $90^{\circ} \mathrm{C}, 36 \mathrm{~h}$, open air. ${ }^{e}$ under nitrogen. ${ }^{f} \mathbf{1 a}(0.10 \mathrm{mmol})$, 2a (0.20 mmol$), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, $\mathrm{NaOAc}\left(2.0\right.$ equiv), NMP solvent (0.5 mL), $100{ }^{\circ} \mathrm{C}, 15 \mathrm{~h} .{ }^{9} \mathbf{1 a}$ (0.05 mmol), 2a (0.10 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{NaOAc}\left(2.0\right.$ equiv), NMP solvent $(0.5 \mathrm{~mL}), 100^{\circ} \mathrm{C}, 15 \mathrm{~h}$, open air, crude ${ }^{1} \mathrm{H}-$ NMR yield against nitromethane.
9.2. Quantification of elements: In a 1.5 mL reaction vial equipped with a magnetic bead, was added acrylamide substrate (1a) (0.1 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol}), \mathrm{AgOAc}(0.2 \mathrm{mmol})$ and $4 \AA$ molecular sieve (1 no .). Then, fluoroacrylate (2a) (0.2 mmol) and dry dioxane (0.2 M) were added
to the reaction vial. The vial was sealed with screw cap and stirred at $90^{\circ} \mathrm{C}$ in an oil bath for 15 hours. After completion of the reaction (monitored by TLC), crude reaction mixture was filtered, and the solid components were washed with DCM and dried under vacuum.

9.2.1. Energy Dispersive X-ray Spectroscopy (EDS) Elemental Mapping:

The quantification of elements in the reaction mixture was determined by EDAX APEX. The atomic and mass concentrations of each element in the reaction mixture are shown in Figure S4.
a)

b)

Element Weight\% Atomic \% Error \%

$\mathbf{C ~ K}$	11.2	48.7	10.6
\mathbf{O} K	2.2	7.1	12.9
Br L	14.5	9.5	6.6
$\mathbf{P d ~ L}$	5.4	2.6	6.1
$\mathbf{A g ~ L}$	66.6	32.2	3.3

Figure S4 a) Sum Spectra; b) eZAF Quant Result - Analysis Uncertainity: 9.34\%.
Results of mapping studies portray the coexistence of $\mathrm{Ag}, \mathrm{Br}, \mathrm{Pd}, \mathrm{C}$, and O elements. The distribution of all the elements is homogeneous; however, the mapping distribution of shell elements, Ag and Br , displays a larger region compared to the core elements, Pd and O .

9.2.2. Electronic States and Chemical Composition Confirmation:

The surface electronic states and chemical compositions were obtained from XPS analysis, shown in Figure S 5 , where the presence of $\operatorname{Pd}(0)$ and $\operatorname{Pd}(I I)$ is confirmed. The high-resolution XPS spectra shows the Pd 3d core level spectrum with two spin-orbit doublet peaks ($J=3 / 2$ and $5 / 2$) at $335.1\left(\mathrm{Pd}_{3} \mathrm{~d}_{5 / 2}\right), 336.2 \mathrm{eV}\left(\operatorname{Pd} 3 \mathrm{~d}_{5 / 2}\right)$ and at $340.1 \mathrm{eV}\left(\operatorname{Pd} 3 \mathrm{~d}_{3 / 2}\right), 341.7 \mathrm{eV}\left(\mathrm{Pd} 3 \mathrm{~d}_{3 / 2}\right)$ with a peak separation of around 5.3 eV , which is in accordance with the literature, clarifying the existence of Pd in the 0 and +2 oxidation state as Pd metal and $\mathrm{PdO}_{x} .{ }^{5}$

Figure S5. Deconvoluted data.

9.2.3. High-Resolution TEM (HRTEM): ${ }^{6}$

To achieve a detailed understanding of the morphology and confirm the existence of Pd nanoparticles, HRTEM studies were performed. Samples were prepared by ultrasonicating the resultant samples in ethanol and subsequently casting a drop of the sample onto an entirely carbon-coated 400-mesh copper grid. Images were recorded on a Technai G 20 (FEI) performing at 200 kV (accelerating voltage). As shown in Figure S6, palladium nanoparticles with average size of about 7.6 nm were observed.

Figure S6 Characterization of Pd nanoparticles. a) HRTEM micrograph of Pd-nanoparticles; b) size distribution.

10. X-ray structural analysis:

To obtain crystals, a saturated solution of the compounds in ethyl acetate were kept at room temperature. Colorless crystals were observed after 3-4 days. A suitable crystal was selected and visualised on a Bruker APEX-II CCD diffractometer. The crystal was kept at 301.00 K during data collection. Using Olex2, the structure was solved with the olex2.solve structure solution program using Charge Flipping and refined with the olex2.refine refinement package using Gauss-Newton minimisation. The crystal structure was drawn on diamond-3 software.

Crystal Structure of compound 6:

Figure S7: Crystal Structure of compound 6.
Table S5: Crystal data and structure refinement for 6:

Empirical formula	$\mathbf{C}_{8} \mathbf{H}_{8} \mathbf{F}_{2} \mathbf{O}_{4}$
CCDC	$\mathbf{2 2 3 3 3 6 6}$
Formula weight	206.14
Temperature $/ \mathrm{K}$	301.00
Crystal system	triclinic
Space group	$\mathrm{P}-1$
a / \AA	$5.6570(4)$
b / \AA	$6.5148(4)$
c / \AA	$6.5836(5)$
$\mathrm{\alpha} /{ }^{\circ}$	$102.961(2)$
$\beta /{ }^{\circ}$	$109.449(2)$
$\mathrm{Y} /{ }^{\circ}$	$96.622(2)$
${\text { Volume } / \AA^{3}}^{\mathrm{Z}}$	$218.14(3)$
$\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1
μ / mm^{-1}	1.569
$\mathrm{~F}(000)$	0.151
Crystal size $/ \mathrm{mm}^{3}$	106.0
Radiation	$0.22 \times 0.15 \times 0.08$
2Θ range for data collection $/{ }^{\circ}$	$\mathrm{Mo} \mathrm{Ka}(\lambda=0.71073)$
	6.56 to 52.88

Index ranges	$-7 \leq \mathrm{h} \leq 7,-8 \leq \mathrm{k} \leq 8,-8 \leq \mathrm{I} \leq 8$
Reflections collected	5448
Independent reflections	$898\left[\mathrm{R}_{\text {int }}=0.0383, \mathrm{R}_{\text {sigma }}=0.0243\right]$
Data/restraints/parameters	$898 / 0 / 65$
Goodness-of-fit on F^{2}	1.125
Final R indexes [l>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0324, \mathrm{wR}_{2}=0.0868$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0349, \mathrm{wR}_{2}=0.0897$
Largest diff. peak/hole/ e \AA^{-3}	$0.18 /-0.14$

Crystal Structure of compound 3k:

Figure S8: Crystal Structure of compound $\mathbf{3 k}$.
Table S6: Crystal data and structure refinement for 3 k :

Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{NO}_{3}$
CCDC	2226735
Formula weight	295.288
Temperature/K	301.00
Crystal system	triclinic
Space group	P-1
a/Å	8.5433(8)
b/Å	9.0498(8)
c/Å	10.3568(10)
$\alpha /{ }^{\circ}$	69.658(3)
$\beta /{ }^{\circ}$	71.553(3)
$\mathrm{V}^{\prime 0}$	84.163(3)
Volume/ $/ \AA^{3}$	712.19(12)
Z	2
$\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.377
μ / mm^{-1}	0.113
$\mathrm{F}(000)$	308.3
Crystal size/mm ${ }^{3}$	$0.42 \times 0.23 \times 0.17$
Radiation	Mo Ka ($\lambda=0.71073$)

$2 \Theta{\text { range for data collection } /{ }^{\circ}}$ 4.4 to 50.96	
Index ranges	$-10 \leq \mathrm{h} \leq 10,-10 \leq \mathrm{k} \leq 10,-12 \leq \mathrm{I} \leq 12$
Reflections collected	20812
Independent reflections	$2631\left[\mathrm{R}_{\text {int }}=0.0482, \mathrm{R}_{\text {sigma }}=0.0264\right]$
Data/restraints/parameters	$2631 / 0 / 193$
Goodness-of-fit on F^{2}	1.046
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0798, \mathrm{wR}_{2}=0.2622$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0888, \mathrm{wR}_{2}=0.2684$
Largest diff. peak/hole/ e \AA^{-3}	$0.38 /-0.33$

Crystal Structure of compound 4d:

Figure S9: Crystal Structure of compound 4d.
Table S7: Crystal data and structure refinement for 4d:

Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{5}$
CCDC	2243622
Formula weight	385.342
Temperature/K	299.00
Crystal system	triclinic
Space group	P-1
a/A	8.6797(10)
b/Å	9.5445(13)
c/Å	12.4267(16)
$\alpha{ }^{\circ}$	72.122(4)
$\beta{ }^{\circ}$	89.575(4)
V°	84.163(3)
Volume/ $/{ }^{3}$	926.8(2)
Z	2
$\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.381
μ / mm^{-1}	0.120
F(000)	400.4
Crystal size/mm ${ }^{3}$	$0.41 \times 0.23 \times 0.12$
Radiation	Mo Ka ($\lambda=0.71073$)

$2 \Theta{\text { range for data collection } /{ }^{\circ}}^{4.5 \text { to } 51.38}$	
Index ranges	$-10 \leq \mathrm{h} \leq 10,-10 \leq \mathrm{k} \leq 11,0 \leq \mathrm{I} \leq 15$
Reflections collected	3501
Independent reflections	$3497\left[\mathrm{R}_{\text {int }}=0.0000, \mathrm{R}_{\text {sigma }}=0.0356\right]$
Data/restraints/parameters	$3497 / 0 / 248$
Goodness-of-fit on F^{2}	1.045
Final R indexes [l>=2 $(\mathrm{I})]$	$\mathrm{R}_{1}=0.1037, \mathrm{wR}_{2}=0.2923$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1212, \mathrm{wR}_{2}=0.3057$
Largest diff. peak/hole/ e \AA^{-3}	$0.52 /-0.35$

Crystal Structure of compound 8:

Figure S10: Crystal Structure of compound 8.
Table S8: Crystal data and structure refinement for 8:

Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrFNO}_{3}$
CCDC	2249830
Formula weight	356.18
Temperature/K	298.00
Crystal system	monoclinic
Space group	P2/ $/ \mathrm{c}$
a/Å	16.012(5)
b/Å	11.607(4)
c/Å	8.318(2)
$\alpha{ }^{\circ}$	90
$\beta /{ }^{\circ}$	93.053(10)
V^{\prime}	90
Volume/ $/{ }^{3}$	1543.7(8)
Z	4
$\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.533
μ / mm^{-1}	2.682
F(000)	720.0
Crystal size/mm ${ }^{3}$	$0.54 \times 0.36 \times 0.22$
Radiation	Mo Ka ($\lambda=0.71073$)

2Θ range for data collection $/{ }^{\circ}$	4.34 to 50.86
Index ranges	$-19 \leq \mathrm{h} \leq 19,-13 \leq \mathrm{k} \leq 13,-10 \leq \mathrm{I} \leq 19$
Reflections collected	43441
Independent reflections	$2848\left[\mathrm{R}_{\text {int }}=0.0693, \mathrm{R}_{\text {sigma }}=0.0315\right]$
Data/restraints/parameters	$2848 / 0 / 193$
Goodness-of-fit on F^{2}	1.066
Final R indexes [l>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0369, \mathrm{wR}_{2}=0.0953$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0489, \mathrm{wR}_{2}=0.1056$
Largest diff. peak/hole/e \AA^{-3}	$0.74 /-0.85$

11. References:

1. (a) K. Wang, Z. Ding, Z. Zhou and W. Kong, J. Am. Chem. Soc., 2018, 140, 12364-12368; (b) M. Zhang, F. Zhou, X. Xuchen, L. Zhou, G. Deng, Y. Liang and Y. Yang, Org. Chem. Front., 2021, 8, 5687-5692; (c) D. Shukla and S. A. Babu, Adv. Synth. Catal., 2019, 361, 2075-2093.
2. (a) Q. Dai, J. Yu, Y. Jiang, S. Guo, H. Yang and J. Cheng, Chem. Commun., 2014, 50, 3865-3867; (b) P. Patschinski, C. Zhang and H. Zipse, J. Org. Chem., 2014, 79, 8348-8357; (c)
Q. Dai, J. Yu, Y. Jiang, S. Guo, H. Yang and J. Cheng, Chem. Comm., 2014, 50, 3865-3867; (d)
K. Rousee, J. P. Bouillon, S. Couve-Bonnaire, and X. Pannecoucke, Org. Lett., 2016, 18, 540543.
3. H. Lv, X. Xu, J. Li, X. Huang, G. Fang and L. Zheng, Angew. Chem. Int. Ed., 2022, 61, e20220640.
4. Q. Bouazzaoui, K. Rousée, J. K. Mulengi, X. Pannecoucke, J. P. Bouillon and S. C. Bonnaire, Eur. J. Org. Chem., 2018, 3705-3715.
5. (a) S. Khanchandani, S. Kumar and A. K. Ganguli, ACS Sustainable Chem. Eng., 2016, 4, 1487-1499; (b) NIST standard reference database 20, Version 4.1; NIST X-ray Photoelectron Spectroscopy Database.
6. J. Gomez-Bolivar, I. P. Mikheenko, L. E. Macaskie and M. L. Merroun, Nanomaterials, 2019, 9, 857.
7. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ NMR spectra of starting materials and products:

$$
{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \text { NMR }\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
$$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

--117.38
--125.93

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1		I		1	1	1			,	1	1			T		
0	-10	-20	-30	-40	-50	-60	-70	-80	-90	$\begin{gathered} -100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	-110	-120	-130	-140	-150	-160	-170	-180	-190

-

ion

$$
\begin{aligned}
& \text { 욱 국 앙 }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

৷

$$
\left.{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \text { NMR (126 MHz, } \mathrm{CDCl}_{3}\right)
$$

$$
\begin{array}{ll}
\stackrel{\infty}{\infty} & \stackrel{N}{n} \\
\underset{i}{\sim} & \stackrel{1}{7} \\
i & i
\end{array}
$$

$$
\left.{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \text { NMR (471 MHz, } \mathrm{CDCl}_{3}\right)
$$

$$
{ }^{1} \mathrm{H} \text { NMR (} 500 \mathrm{MHz}, \mathrm{CDCl}_{3} \text {) }
$$

- -127.15
${ }^{19}$ F\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3})

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(i人)

																$\underset{\underset{\sim}{7}}{\underset{\sim}{4}}$				
1			1	7.5	7.0			5				1					1	1		1
9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\begin{gathered} 4.5 \\ \mathrm{ppm}) \end{gathered}$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.!

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CDCl_{3})

เで七9－
tS． $8 \mathrm{~S}-\mathrm{C}$

NN№ on oñ 	$\operatorname{mon}_{\infty}^{\infty} \dot{N}_{N}^{\infty}{ }_{j}^{\infty} \infty$
	ற
＋｜	$\xrightarrow{\text { conlmen }}$

${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

N

${ }^{19}{ }^{\text {F }}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$
\begin{aligned}
& \stackrel{y}{n} \\
& \underbrace{\wedge}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{7}{i}
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

