Supplementary Information

Chemical resolution of spiroindanones and synthesis of chiroptical polymers with circularly polarized luminescence

Jiping Du, Hui Li, Tanping Wu, Menglei Wang, Rui Cheng, Di Wu, * Yudong Yang and Jingbo Lan*
Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China

Table of content

I. General Remarks 1
II. Synthesis and Characterization 2
III. X-ray crystallographic analyses 17
IV. GPC and BET results 19
V. Photophysical Properties 21
VI. Electrochemical Measurements. 23
VII. Chiroptical Properties 24
VIII. Computational Geometry Data 25
IX. References 27
X. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra 28

I. General Remarks

All reagents were obtained from commercial suppliers and used without further purification unless otherwise stated.

NMR spectra were recorded on an Agilent 400-MR DD2 spectrometer. The ${ }^{1} \mathrm{H}$ NMR (400 MHz) chemical shifts were measured relative to CDCl_{3} or DMSO- d_{6} as the internal reference (DMSO$\left.d_{6}: \delta=2.50 \mathrm{ppm} ; \mathrm{CDCl}_{3}: \delta=7.26 \mathrm{ppm}\right)$. The ${ }^{13} \mathrm{C}$ NMR (100 MHz) chemical shifts were given using CDCl_{3} or DMSO- d_{6} as the internal standard (DMSO- $d_{6}: \delta=39.52 \mathrm{ppm} ; \mathrm{CDCl}_{3}: \delta=77.16$ ppm). High-resolution mass spectra (HRMS) were obtained with a Shimadzu LCMS-ITTOF (ESI). The molecular weights of the polymers were tested by gel permeation chromatography (GPC) on Shimadzu LC-20AD with Shodex GPC KF-805L using polystyrene as standard and THF eluent at $40^{\circ} \mathrm{C}$. Nitrogen adsorption/desorption isotherms of the materials were measured using a ASAP 2460 surface area and porosimetry analyzer, at 77 K . Enantiomeric excess was analyzed by Shimadzu LC-20AT with CHIRALCEL OD-H $5 \mu \mathrm{~m} 4.6 \times 250 \mathrm{~mm}$ using hexane and Isopropyl alcohol $\left(\mathrm{V}_{\text {Hexane }} / \mathrm{V}_{i \text {-PrOH }}=96 / 4,1 \mathrm{~mL} / \mathrm{min}\right)$ as the eluent at $30^{\circ} \mathrm{C}$. X-Ray single-crystal diffraction data were collected on a Bruker APEX-II CCD diffractometer. Absorption spectra were obtained on a HITACHI U-2910 spectrometer. Fluorescence spectra were collected on a Horiba Jobin YvonEdison Fluoromax-4 fluorescence spectrometer with a calibrated integrating sphere system. Phosphorescent spectra in solution at 77 K were collected on a HITACHI F-7100 fluorescence spectrophotometer. Transient PL decay spectra were procured with Horiba Single Photon Counting Controller: FluoroHub and Horiba TBX Picosecond Photon Detection. Cyclic voltammogram were performed on LK2005A with a solution of tetrabutylammonium hexafluorophosphate $\left(\mathrm{Bu}_{4} \mathrm{NPF}_{6}, 0.1 \mathrm{M}\right)$ in DCM as electrolyte and ferrocene/ferrocenium $\left(\mathrm{Fc}^{2} / \mathrm{Fc}^{+}\right)$as standard. Threeelectrode system $\left(\mathrm{Ag} / \mathrm{Ag}^{+}\right.$, platinum wire, and glassy carbon electrode as reference, counter, and work electrode, respectively) was used in the CV measurement. Circular dichroism (CD) spectra were collected on JASCO J-1500 spectropolarimeter. Circularly polarized luminescence (CPL) spectra were recorded on OLIS CPL Solo.

II. Synthesis and Characterization

1. Synthesis of R / S - 7 from benzaldehyde and acetone

Scheme S1. Synthetic procedures of $R / S-7$

Synthesis of 2

A 100 mL flask equipped with a magnetic stir bar was charged with benzaldehyde (50 mmol) and $\mathrm{KOH}(11.2 \mathrm{~g}, 75 \mathrm{mmol})$ dissolved in EtOH $(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution of acetone $(1.9 \mathrm{~mL}, 25$ $\mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{~mL})$ was added dropwise to the resulting mixture. Then the mixture was stirred at room temperature for 2 h . The precipitation was filtered and washed with water and cold EtOH to give 2 as pale-yellow powder in 91% yield (5.3 g) after dried under vacuum. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.75(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.09(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 2 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=188.9,143.4,134.8,130.5,128.9,128.4,125.4$ ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}, 235.1117$; found 235.1114.

Synthesis of $\mathbf{3}$
A 100 mL flask equipped with a magnetic stir bar was charged with $\mathrm{Pd} / \mathrm{C}(200 \mathrm{mg}, 5 \mathrm{wt} \%), \mathbf{2}$ (936 $\mathrm{mg}, 4 \mathrm{mmol}$) and EtOAc (30 mL). The mixture was stirred at room temperature for 12 h with an atmosphere of H_{2} maintained by an inflated balloon. The mixture was filtered by diatomite and the filtrate was evaporated to give $\mathbf{3}$ as a colorless liquid in 96% yield (920 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 6 \mathrm{H}), 2.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.72(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.2,141.0,128.5,128.3,126.1,44.5$, 29.7. ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}, 239.1430$; found 239.1432.

Synthesis of $R / S-4$
A 100 mL flask equipped with water segregator and reflux condenser was charged with $\mathbf{3}(2.4 \mathrm{~g}$, $10 \mathrm{mmol}), \mathrm{H}_{3} \mathrm{PW}_{12} \mathrm{O}_{40}(1.5 \mathrm{mmol})$ and toluene $(40 \mathrm{~mL})$. Then the mixture was refluxed until no water was separated. The mixture was filtered after cooled to room temperature. Then the filtrate was concentrated and purified on column chromatography on silica gel (PE as eluent) to give the product $R / S-4$ as a colorless liquid in 75% yield $(1.65 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.28-$ $7.11(\mathrm{~m}, 6 \mathrm{H}), 6.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.33-2.14(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=150.4,143.7,126.7,126.6,124.3,123.4,60.7,40.5,30.9 \mathrm{ppm}$. HRMS (ESI^{+}): calcd for $\mathrm{C}_{17} \mathrm{H}_{16}[\mathrm{M}+\mathrm{H}]^{+}, 221.1325$; found 221.1327.

Synthesis of $R / S-5$

A 50 mL flask equipped with a magnetic stir bar was charged with $R / S-4$ (0.5 mmol .), oxidant (2 g) (The oxidant was prepared by grinding equal amounts of potassium permanganate and copper sulfate pentahydrate in a mortar) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, which was stirred at room temperature for 24 h . Then the mixture was filtered by diatomite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then the filtrate was concentrated and purified on column chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=3 / 1 \mathrm{v} / \mathrm{v}$) to give R / S 5 as a white solid in 67% yield (83 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.13\left(\mathrm{dd}, J_{1}=30.4, J_{2}=\right.$ $18.8,4 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=\delta 204.2,159.8,136.1,135.6,128.5,124.4,123.5$, 53.0, 47.9 ppm . HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 249.0910$; found 249.0911.

Synthesis of $R / S-7$

A 25 mL Schlenk tube equipped with a magnetic stir bar was charged with $R / S-5(0.24 \mathrm{mmol}$, 60 mg), DMFDMA (N, N-Dimethylformamide dimethyl acetal) ($180 \mu \mathrm{~L}, 1.2 \mathrm{mmol}, 5$ equiv.) and toluene (2 mL). The mixture was stirred at $120^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, solvent was removed by rotary evaporator and $R / S-7$ was obtained by column chromatography on silica gel $(\mathrm{EA} / \mathrm{MeOH}=10 / 1, \mathrm{v} / \mathrm{v})$ in 80% yield $(69 \mathrm{mg}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.79(\mathrm{t}$, $J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~s}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR
(100 MHz, CDCl_{3}): $\delta=193.1,156.3,148.3,136.9,133.1,127.4,123.7,123.0,112.1,55.0,43.4$ ppm. HRMS (ESI^{+}): calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 359.1754$; found 359.1754 .

2. Chemical resolution of $R / S-5$ and $R / S-7$

(1) Chemical resolution of R / S - 5 with S-BINOL

Table S1. Chemical resolution of $R / S-5$ with S-BINOL ${ }^{a}$

Entry	Solvent	$\begin{gathered} \text { Conc. } \\ \left(\mathrm{mol} \mathrm{~L}^{-1}\right) \end{gathered}$	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Ratio $(R / S-5 \text { : }$ S-BINOL)	Precipitation S-5	Mother liquid $R-5$
					ee (\%)	ee (\%)
1	toluene	0.2	25	$1.0: 0.60$	--	--
2	toluene	0.2	0	$1.0: 0.60$	--	--
3	toluene	0.2	-15	$1.0: 0.60$	--	--
4	toluene	0.2	-25	$1.0: 0.60$	--	--
5	DCM	0.2	25	1.0 : 0.60	no precipitation	--
6	$\begin{gathered} \text { toluene : DCM } \\ \quad(1: 1) \end{gathered}$	0.2	25	$1.0: 0.60$	--	--
7	toluene	0.1	25	$1.0: 0.60$	--	--

[^0]
(2) Chemical resolution of R / S - 7 with dibenzoyl-L-tartaric acid

Table S2. Chemical resolution of $R / S-7$ with dibenzoyl- L-tartaric acid ${ }^{a}$

Entry	solvent	$\begin{gathered} \text { Conc. } \\ \left(\mathrm{mol} \mathrm{~L}^{-1}\right) \end{gathered}$	Ratio (R/S-7 : Dibenzoyl- L-tartaric acid)	Precipitation $R-7$	Mother liquid S-7
				ee (\%)	ee (\%)
1	MeOH	0.2	$1.0: 0.50$	no precipitation	--
2	EtOAc	0.2	$1.0: 0.50$	no precipitation	--
3	MeCN	0.2	$1.0: 0.50$	--	--
4	Toluene	0.2	$1.0: 0.50$	--	--
5	Toluene : DCM (1: 1)	0.2	$1.0: 0.50$	--	--
6	$\mathrm{MeOH}: \operatorname{MeCN}(1: 1)$	0.2	$1.0: 0.50$	no precipitation	--
7	$\mathrm{MeOH}: \mathrm{DCM}(1: 1)$	0.2	$1.0: 0.50$	no precipitation	--
8	MeOH : Acetone (1:1)	0.2	$1.0: 0.50$	no precipitation	--

${ }^{a}$ Reaction condition: $R / S-7$ (1 mmol), dibenzoyl- L-tartaric acid (0.5 mmol), solvent (5 mL), stirred at room temperature for 2 h .
(3) Chemical resolution of $\boldsymbol{R} / \boldsymbol{S}$-5 with 1,2 -diphenylethane-1,2-diol

Scheme $\boldsymbol{S} \mathbf{2}$. Chemical resolution of R / S-5 with 1,2-diphenylethane-1,2-diol

General procedure for the synthesis of $(R, R, R-6)$ and $(S, S, S-6)$

A 100 mL flask equipped with water segregator and reflux condenser was charged with R / S-5 (1.24 $\mathrm{g}, 5 \mathrm{mmol}$), pyridinium para-toluenesulfonate ($251 \mathrm{mg}, 1 \mathrm{mmol}$), ($1 R, 2 R$)-1,2-diphenylethane-1,2-diol ($2.14 \mathrm{~g}, 10 \mathrm{mmol}$) and Benzene (25 mL). Then the mixture was refluxed and dehydrated for 24 h . After cooling to temperature, solvent was removed by rotary evaporator and a white solid was obtained by column chromatography on silica gel (PE/EA=10/1, v/v), which was recrystallized with hexane twice to give the product.

($R, R, R-6$) was synthesized from $R / S-5$ in 40% yield (888 mg) using ($1 R, 2 R$)-1,2-diphenylethane1,2 -diol as the chiral resolution agent. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=7.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.2,1 \mathrm{H}), 7.47-7.30(\mathrm{~m}, 13 \mathrm{H}), 6.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-2.83(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=204.7,160.6,149.6,142.0,137.1,136.3,136.1,131.5,129.0,128.9,127.7,127.3,125.8,124.2$,
123.5, 122.9, 116.2, 85.9, 85.4. 54.3, 53.3, 50.9 ppm . HRMS (ESI^{+}): calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$, 467.1618; found 467.1626.

$(S, S, S)-6$
($S, S, S-6$) was synthesized from $R / S-5$ in 38% yield (844 mg) using ($1 S, 2 S$)-1,2-diphenylethane-1,2-diol as the chiral resolution agent. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=6.8,1 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 13 \mathrm{H}), 6.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.25$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-2.83(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=204.7,160.5,149.6,142.0,137.1,136.3,136.1,131.5,128.9,128.8,127.7,127.3,125.8,124.1$, 123.5, 122.9, 116.2, 85.9, 85.4, 54.3, 53.3, 50.9 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$, 467.1618; found 467.1618.

General procedure for the synthesis of $\boldsymbol{R}-5$ and $S-5$

$(R, R, R)-\mathbf{6}$ was added to the solution of $\mathrm{HCl}(2.5 \mathrm{M})$ in methanol and stirred for 6 h . The solution was poured into water after hydrolysis was complete. The mixture was extracted with water/dichloromethane and the organic phase was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=3 / 1, \mathrm{v} / \mathrm{v})$ to give the product as a white solid.

$R-5$ was synthesized from $(R, R, R)-6(1 \mathrm{mmol})$ in 95% yield (235 mg). The enantiomeric excess (e.e.) of $R-\mathbf{5}$ was 99.70% which was detected by HPLC. Absolute configuration was determined
by X-ray single crystal data (Flack parameter $=0.01) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.82(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{dd}$, $\left.J_{1}=30.4, J_{2}=18.8,4 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=204.1,159.8,136.1,135.6,128.5$, 124.4, 123.5, 53.0, 47.9 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 249.0910$; found 249.0910 .

$S-5$ was synthesized from $(S, S, S)-6(1 \mathrm{mmol})$ in 95% yield (234 mg). The enantiomeric excess (e.e.) of $S-5$ was 99.66% which was detected by HPLC. Absolute configuration was determined by X-ray single crystal data (Flack parameter $=0.04) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.82(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{dd}$, $\left.J_{1}=30.0, J_{2}=19.2,4 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=204.1,159.8,136.1,135.6,128.5$, 124.4, 123.5, 53.0, 47.9 ppm . HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 249.0910$; found 249.0906.

3. Synthesis of R / S-, R - and $S-8$ from R / S-, R - and $S-5$

Scheme S3. Synthetic procedures of $R / S-, R$ - and $S-\mathbf{8}$

General procedure for the synthesis of R / S-, R - and S-8

A 25 mL Schlenk tube equipped with a magnetic stir bar was charged with $R / S-5(0.24 \mathrm{mmol}$, 60mg), DMFDMA (N, N-Dimethylformamide dimethyl acetal) ($180 \mu \mathrm{~L}, 1.2 \mathrm{mmol}, 5$ equiv.) and toluene (2 mL). The mixture was stirred at $120^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, the crude product of $R / S-7$ was obtained by removing the solvent under reduced pressure without purification. Subsequently, 4-Bromobenzamidine hydrochloride ($188 \mathrm{mg}, 0.8 \mathrm{mmol}$) and sodium methoxide ($44 \mathrm{mg}, 0.8 \mathrm{mmol}$) were added into the 25 mLSchlenk tube filled with the crude product of $R / S-7$. And methanol (2 mL) was added. Then the mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, the mixture was extracted with water/dichloromethane and the organic phase was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4} . R / S-\mathbf{8}$ was obtained by column chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=10 / 1, \mathrm{v} / \mathrm{v}$).

$R / S-\mathbf{8}$ was synthesized from $R / S-5(0.24 \mathrm{mmol})$ in 76% yield (115 mg) of two steps. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=168.8,164.3,151.8,148.5,138.8,136.6,135.5,132.6,131.9,130.0,129.3$, 125.7, 124.1, 122.9, 59.4 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{33} \mathrm{H}_{18}{ }^{79} \mathrm{Br}^{79} \mathrm{BrN}_{4}[\mathrm{M}+\mathrm{H}]^{+}$628.9971, found 628.9974; calcd for $\mathrm{C}_{33} \mathrm{H}_{18}{ }^{81} \mathrm{Br}^{79} \mathrm{BrN}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 630.9951$; found 630.9950, calcd for $\mathrm{C}_{33} \mathrm{H}_{18}{ }^{81} \mathrm{Br}^{81} \mathrm{BrN}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 632.9930$; found 632.9934 .

$R-\mathbf{8}$ was synthesized from $R-5(0.24 \mathrm{mmol})$ in 78% yield (118 mg) of two steps. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=168.7,164.2,151.7,148.5,138.7,136.5,135.4,132.6,131.8,129.9,129.3$, 125.7, 124.0, 122.9, 59.4 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{33} \mathrm{H}_{18}{ }^{79} \mathrm{Br}^{79} \mathrm{BrN}_{4}[\mathrm{M}+\mathrm{H}]^{+} 628.9971$, found 628.9969; calcd for $\mathrm{C}_{33} \mathrm{H}_{18}{ }^{81} \mathrm{Br}^{79} \mathrm{BrN}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 630.9951$; found 630.9952, calcd for $\mathrm{C}_{33} \mathrm{H}_{18}{ }^{81} \mathrm{Br}^{81} \mathrm{BrN}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 632.9930$; found 632.9929 .

$S-8$ was synthesized from $S-5(0.24 \mathrm{mmol})$ in 72% yield $(108 \mathrm{mg})$ of two steps. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.7,164.3,151.7,148.5,138.8,136.6,135.5,132.6,131.8,130.0,129.3$, 125.7, 124.1, 122.9, 59.4 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{33} \mathrm{H}_{18}{ }^{79} \mathrm{Br}^{79} \mathrm{BrN}_{4}[\mathrm{M}+\mathrm{H}]^{+}$628.9971, found 628.9971; calcd for $\mathrm{C}_{33} \mathrm{H}_{18}{ }^{81} \mathrm{Br}^{79} \mathrm{BrN}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 630.9951$; found 630.9954 , calcd for $\mathrm{C}_{33} \mathrm{H}_{18}{ }^{81} \mathrm{Br}^{81} \mathrm{BrN}_{4}[\mathrm{M}+\mathrm{H}]^{+}$, 632.9930; found 632.9935.

4. Optimization of Buchwald-Hartwig amination and polymerization reaction conditions

(1) Optimization of Buchwald-Hartwig amination reaction conditions of $R / S-8$ with 9,9-

dimethyl-9,10-dihydroacridine

Table S3. Optimization of Buchwald-Hartwig amination reaction conditions ${ }^{a}$

${ }^{a}$ Reaction conditions: $R / S-8$ (0.05 mmol), 9,9-Dimethyl-10(9H)-acridinyl (0.11 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($10 \mathrm{~mol} \%$), Phosphine ligand ($20 \mathrm{~mol} \%$), t-BuONa (3 equiv.), toluene (2 mL) with N_{2} atmosphere at $150{ }^{\circ} \mathrm{C}$ in oil bath for $24 \mathrm{~h} .{ }^{b} \mathrm{NMR}$ yield (The NMR yields determined by the characteristic proton signal of $R / S-10$ at 1.73 ppm relative to the internal standard signal of $\mathrm{CH}_{2} \mathrm{Br}_{2}$ at 4.93 ppm .). ${ }^{c}$ Isolated yield (The residue was purified by column chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=20 / 1$, v / v) to give the isolated yield of $R / S-10)$.

A 25 mL Schlenk tube equipped with a magnetic stir bar was charged with $R / S-8(0.05 \mathrm{mmol}), 9,9-$ Dimethyl-10(9H)-acridinyl (0.11 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%$), phosphine ligand ($20 \mathrm{~mol} \%$), t BuONa (3 equiv.) and toluene (2 mL), which was stirred at $150^{\circ} \mathrm{C}$ under N_{2} atmosphere for 24 h . Then the mixture was filtered by diatomite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated and purified on column chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=20 / 1 \mathrm{v} / \mathrm{v}$) to give R / S - $\mathbf{1 0}$ as a white solid in 88% yield (39 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$), 8.42 (d, J $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.32(\mathrm{~s}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 6 \mathrm{H})$, 7.02-6.92 (m, 10H), $6.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.73(\mathrm{~s}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=168.9,164.6,151.9,148.6,143.7,140.7,138.8,137.6,135.5,132.7,131.6,131.1,130.1,129.4$, 126.4, 125.3, 124.1, 123.0, 120.7, 114.1, 59.4, 36.0, 31.3 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{63} \mathrm{H}_{46} \mathrm{~N}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+}, 887.3857$; found 887.3855 .

(2) Synthesis of $10 H, 10^{\prime} H-9,9^{\prime}$-spirobi[acridine]

Scheme S4. Synthetic procedures of $10 H, 10^{\prime} H-9,9$ '-spirobi[acridine]
Synthesis of 2-bromo- N-phenylaniline
A 250 mL flask equipped with a magnetic stir bar was charged with 2-bromoaniline ($3.39 \mathrm{~mL}, 30$ mmol), iodobenzene ($3.69 \mathrm{~mL}, 33 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(336 \mathrm{mg}, 2 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, XantPhos (1.74 $\mathrm{g}, 3 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(20 \mathrm{~g}, 50 \mathrm{mmol}, 1.6$ equiv.) and dry and air-free dioxane (120 mL) under an N_{2} atmosphere. Then the mixture was allowed to stir for 24 h at $110^{\circ} \mathrm{C}$ in an oil bath. After cooling to room temperature, the mixture was filtrated by diatomite. The filtrate was concentrated and the residue was purified by column chromatography on silica gel ($\mathrm{PE} / \mathrm{DCM}=$ $4 / 1, \mathrm{v} / \mathrm{v}$) to give the desired product (6.9 g , yield $=94 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.53$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 141.6, 141.4, 132.9, 129.5, 128.1, 122.7, 120.9, 120.3, 115.8, 112.2 ppm . HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{12} \mathrm{H}_{10}{ }^{79} \mathrm{BrN}[\mathrm{M}+\mathrm{Na}]^{+}, 269.9889$; found 269.9886; calcd for $\mathrm{C}_{12} \mathrm{H}_{10}{ }^{81} \mathrm{BrN}[\mathrm{M}+\mathrm{Na}]^{+}, 271.9868$; found 271.9866 .

A 100 mL flask equipped with a magnetic stir bar was charged with 2-bromo- N-phenylaniline ($2.48 \mathrm{~g}, 10 \mathrm{mmol}$), $\mathrm{Boc}_{2} \mathrm{O}$ ($20 \mathrm{mmol}, 2$ equiv.), 4-dimethylaminopyridine (DMAP) ($10 \mathrm{mmol}, 1$ equiv.) and THF (50 mL), which was refluxed for 24 h . Then the mixture was extracted with water/dichloromethane and the organic phase was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated and purified by column chromatography on silica gel (PE) to give the product as a white solid (3.1 g , yield $=90 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 152.9, 141.8, 141.6, 133.4, 130.7, 128.7, 128.5, 128.4, 125.1, 124.3, 81.4, 28.1 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{17} \mathrm{H}_{18}{ }^{79} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}, 370.0413$; found 370.0407; calcd for $\mathrm{C}_{17} \mathrm{H}_{18}{ }^{81} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 372.0393; found 372.0388 .

Synthesis of 10-((2-methoxyethoxy)methyl)acridin-9(10H)-one
A 150 mL flask equipped with a magnetic stir bar was charged with $9(10 H)$-Acridone $(5.85 \mathrm{~g}, 30$ $\mathrm{mmol})$ dissolved in DMF $(100 \mathrm{~mL})$. To the solution was added $\mathrm{NaH}(1.6 \mathrm{~g}, 40 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. Then 2-methoxyethoxymethyl chloride (6.3 mL) was added dropwise after the mixture was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 12 h . Then the mixture was extracted with water/dichloromethane and the organic phase was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated and purified by column chromatography on silica gel (PE/EA $=10 / 1, \mathrm{v} / \mathrm{v})$ to give the product as a white solid (5 g , yield $=59 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=8.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{t}, J=$ $4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.5$, 142.4, 133.9, 127.6, 122.4, 122.1, 115.3, 72.2, 67.3, 59.2 ppm . HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 284.1281$; found 284.1281.

Synthesis of $10 H, 10^{\prime} H-9,9^{\prime}$-spirobi[acridine]
A 100 mL flask equipped with a magnetic stir bar was charged with t-butyl (2bromophenyl)(phenyl)carbamate ($2.8 \mathrm{~g}, 8 \mathrm{mmol}$) dissolved in THF $(60 \mathrm{~mL})$. Then $n-\mathrm{BuLi}(3.6$ $\mathrm{mL}, 9 \mathrm{mmol}$) was added dropwise into the solution at $-78^{\circ} \mathrm{C}$ and stirred for 2 h . Then a solution
of 10-((2-methoxyethoxy)methyl)acridin-9(10H)-one ($2.3 \mathrm{~g}, 8.1 \mathrm{mmol}$) in THF (25 mL) was added dropwise into the mixture at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 2 h and slowly rose to room temperature. To the solution was added $\mathrm{HCl}(15 \mathrm{~mL}, 1 \mathrm{~mol} / \mathrm{L})$. The resulting mixture was stirred for 12 h . Then the mixture was extracted with water/dichloromethane and the organic phase was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated and purified by column chromatography on silica gel ($\mathrm{PE} / \mathrm{DCM}=1 / 1, \mathrm{v} / \mathrm{v}$) to give $10 H, 10^{\prime} H-9,9^{\prime}$-spirobi[acridine] as a yellow solid (1.2 g , yield $=42 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.02(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.96$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.70\left(\mathrm{dd}, J_{l}=14.0, J_{2}=7.6,8 \mathrm{H}\right), 6.21(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta=135.7,132.3,130.6,126.9,120.8,113.1,47.1 \mathrm{ppm}$. $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 369.1362$; found 369.1356.
(3) Optimization of polymerization conditions of $R / S-8$ with $10 H, 10^{\prime} H-9,9^{\prime}$-spirobi[acridine]

Table S4. Optimization of polymerization reaction conditions ${ }^{a}$

${ }^{a}$ Reaction conditions: $R / S-8(0.1 \mathrm{mmol}), 10 H, 10^{\prime} H-9,9^{\prime}$-spirobi[acridine] (0.1 mmol), [Pd] (10 $\mathrm{mol} \%$), ligand ($20 \mathrm{~mol} \%$), t - $\mathrm{BuONa}\left(0.3 \mathrm{mmol}\right.$), toluene (2 mL), N_{2} atmosphere.

Scheme S5. Synthetic procedures of $R / S-, R$ - and $S-\mathbf{9}$

General procedure for the synthesis of R / S-, R - and S-9

a 25 mL Schlenk tube equipped with a magnetic stir bar was charged with $R / \mathrm{S}-8(62 \mathrm{mg}, 0.1 \mathrm{mmol})$, $10 H, 10^{\prime} H-9,9$ '-spirobi[acridine] ($35 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv.), $\mathrm{Pd}(\mathrm{OAc}) 2$ ($2 \mathrm{mg}, 10 \mathrm{~mol} \%, 0.01$ mmol), RuPhos ($9 \mathrm{mg}, 20 \mathrm{~mol} \%, 0.02 \mathrm{mmol}$), t-BuONa ($30 \mathrm{mg}, 0.3 \mathrm{mmol}, 3$ equiv.) and toluene (2 mL), which was stirred at $150{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere for 48 h . After cooling to room temperature, the mixture was poured into methanol, and the precipitate was filtrated and washed with excess methanol. The solid was purified by Soxhlet extraction with acetone/methanol for 12 h and dichloromethane overnight successively. Then the extracting solution of dichloromethane was concentrated to an appropriate volume, precipitated by methanol. The precipitate was filtrated and dried under vacuum to give the product.

$R / S-9$ was synthesized from $R / S-8$ and $10 H, 10^{\prime} H-9,9^{\prime}$-spirobi[acridine] in 70% yield. The average molecular weight detected by GPC showed $\mathrm{M}_{\mathrm{n}}=12543, \mathrm{M}_{\mathrm{w}}=24256, \mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}=1.93$.

$R-9$ was synthesized from $R-8$ and $10 H, 10^{\prime} H-9,9^{\prime}$-spirobi[acridine] in 78% yield. The average molecular weight detected by GPC showed $\mathrm{M}_{\mathrm{n}}=12665, \mathrm{M}_{\mathrm{w}}=25063, \mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}=1.97$.

$S-9$ was synthesized from $S-8$ and $10 H, 10^{\prime} H-9,9^{\prime}$-spirobi[acridine] in 70% yield. The average molecular weight detected by GPC showed $\mathrm{M}_{\mathrm{n}}=12347, \mathrm{M}_{\mathrm{w}}=25646, \mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}=2.07$.

III. X-ray crystallographic analyses

$R-5$

$S-5$

Fig. S1. Ellipsoid plot diagram of crystal structures of $R-\mathbf{5}$ and $S-5$

Table S5. Crystal data and structure refinement for $R-5$

Parameter	$R-5$
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2}$

Formula weight	248.27
Temperature/K	287.0
Crystal system	monoclinic
Space group	C 2
a / \AA	$17.755(7)$
b / \AA	$5.479(2)$
c / \AA	$6.556(3)$
a $/{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$103.98(2)$
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	$618.9(5)$
Z	2
ρ calcg/cm ${ }^{3}$	1.332
μ / mm^{-1}	0.693
$\mathrm{~F}(000)$	260.0
Crystal size/mm ${ }^{3}$	$0.32 \times 0.13 \times 0.07$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2 Θ range for data collection/ ${ }^{\circ}$	10.268 to 134.064
Index ranges	$-20 \leq \mathrm{h} \leq 18,-6 \leq \mathrm{k} \leq 6,-7 \leq 1 \leq 7$
Reflections collected	2945
Independent reflections	$1062\left[\mathrm{R}_{\text {int }}=0.0444, \mathrm{R}_{\text {sigma }}=0.0434\right]$
Data/restraints/parameters	$1062 / 1 / 87$
Goodness-of-fit on F^{2}	1.123
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0378, \mathrm{wR}_{2}=0.0943$
Final R indexes [all data $]$	$\mathrm{R}_{1}=0.0389, \mathrm{wR}_{2}=0.0951$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.21 /-0.14$
Flack parameter	$0.01(17)$

Table S6. Crystal data and structure refinement for $S-5$

Parameter	$S-\mathbf{5}$
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2}$
Formula weight	248.27

Temperature/K	150.0
Crystal system	monoclinic
Space group	C 2
a / \AA	$17.6508(8)$
b / \AA	$5.4506(2)$
c / \AA	$6.5314(3)$
$\mathrm{a} /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$103.9500(10)$
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	$609.84(5)$
Z	2
ρ calcg/cm ${ }^{3}$	1.352
μ / mm^{-1}	0.703
$\mathrm{~F}(000)$	260.0
Crystal size/mm ${ }^{3}$	$0.39 \times 0.22 \times 0.13$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	10.328 to 143.826
Index ranges	$-20 \leq \mathrm{h} \leq 21,-6 \leq \mathrm{k} \leq 6,-8 \leq 1 \leq 8$
Reflections collected	5405
Independent reflections	$1159\left[\mathrm{R}_{\text {int }}=0.0257, \mathrm{R}_{\text {sigma }}=0.0220\right]$
Data/restraints $/$ parameters	$1159 / 1 / 87$
Goodness-of-fit on F^{2}	1.106
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0257, \mathrm{wR} \mathrm{R}_{2}=0.0657$
Final R indexes [all data $]$	$\mathrm{R}_{1}=0.0257, \mathrm{wR} \mathrm{R}_{2}=0.0658$
Largest diff. peak/hole $/ \mathrm{e} \AA \AA^{-3}$	$0.15 /-0.14$
Flack parameter	$0.04(6)$

IV. GPC and BET results

Table S7. Molecular weights of $R / S-, R$ - and $S-\mathbf{9}$

	$\mathrm{M}_{\mathrm{n}}\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	$\mathrm{M}_{\mathrm{w}}\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$
$S \mathbf{- 9}$	12347	25646	2.07
$R-\mathbf{9}$	12665	25063	1.97
$R / S-\mathbf{9}$	12543	24256	1.93

Fig. S2. GPC results of (a) S-9, (b) $R-\mathbf{9}$, and (c) $R / S-9$ (Shodex GPC KF-805L, eluent: THF, temperature: $40^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}$)

Fig. S3. N_{2} adsorption/desorption isotherms of $R-9$ at 77 K , where the inset shows the pore size distribution.

V. Photophysical Properties

Fig. S4. (a) Normalized fluorescence spectra of $R-9$ in different solvents ($20 \mathrm{mg} \mathrm{L}{ }^{-1}$). (b) Normalized fluorescence and phosphorescence spectra of $R-9$ in THF solution (77 K).
(a)

(c)

(d)

Fig. S5. (a) Repeat units of $R-9$. (b) HOMO and LUMO distributions of repeat units of $R-9$. (c) Calculated S1 and T1 energy levels. (d) Calculated LUMO and HOMO energy levels.

Fig. S6. Temperature-dependent transient photoluminescence spectra of $R-\mathbf{9}$ in neat film under high vacuum (1 mm Hg).

Table S8. Summary of the physical properties of R-9

	$\lambda_{\text {abs }}{ }^{\text {[a] }}$	$\lambda_{\text {em }}{ }^{[b]}$	$\tau_{\mathrm{P}}{ }^{(\mathrm{c})}$	$\tau_{\mathrm{D}}{ }^{[\mathrm{c}]}$	Φ	$E_{\mathrm{S} 1} / E_{\mathrm{T} 1}{ }^{\text {[e] }}$
	(nm)	(nm)	(ns)	($\mu \mathrm{s}$)	(\%)	(eV)
$R-9$	262, 291, 369	482	40	126	$20^{[\mathrm{ax}} / 19.4{ }^{[\mathrm{d}]}$	2.93/2.69

[a] Measured in THF ($20 \mathrm{mg} \mathrm{L}^{-1}$) at 298 K . [b] Measured in THF ($20 \mathrm{mg} \mathrm{L}^{-1}$) at 298 K and attributed to the $\mathrm{S}_{1}-\mathrm{S}_{0}$ transition. [c] τ_{P} (prompt lifetime) and τ_{D} (delayed lifetime) determined from the transient decay spectrum at 298 K. [d] Measured in a neat film at 298 K. [f] Energy of S_{1} and T_{1} determined from the fluorescence and phosphorescence spectra at 77 K .

VI. Electrochemical Measurements

Fig. S7. (a) Cyclic voltammetry characteristic curve of $R-9$ in dry and degassed DCM ($0.8 \mathrm{mg} \mathrm{mL}^{-}$ ${ }^{1}$). (b) Cyclic voltammetry characteristic curve of ferrocene in dry and degassed DCM $(0.19 \mathrm{mg}$ mL^{-1}). (c) UV-vis absorption spectrum of $R-9$ in THF ($20 \mathrm{mg} \mathrm{L}^{-1}$).

Table S9. Electrochemical properties of R-9

	$\boldsymbol{E}_{\text {номо }}{ }^{[\text {a] }}$	$\boldsymbol{E g}^{[\mathrm{bb]}}$	$\boldsymbol{E}_{\text {Lомо }^{[\mathrm{c}]}}$
$R-\mathbf{9}$	-5.43 eV	2.95 eV	-2.48 eV

[a] Measured in dry dichloromethane solution, where $E_{\text {номо }}=-4.8-\left(E_{\mathrm{ox}}-E_{\mathrm{Fc}}\right)$. [b] Calculated from the UV-vis absorption spectrum. $[\mathrm{c}] E_{\mathrm{LUMO}}=E_{\mathrm{HOMO}}+E_{\mathrm{g}}$.

VII. Chiroptical Properties

Table S10. Summary of the chiroptical properties of R - and $S-9$

	$\begin{gathered} \mathrm{CD}^{[\mathrm{a]}} \\ \lambda \\ (\mathrm{nm}) \end{gathered}$	$\begin{gathered} \varepsilon^{[\mathrm{a}]} \\ \left(\mathrm{cm}^{2} \mathrm{~g}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta \varepsilon^{[\mathrm{a}]} \\ \left(\mathrm{cm}^{2} \mathrm{~g}^{-1}\right) \end{gathered}$	CPL ${ }^{\left[{ }^{[a]}\right.}$		
				$\begin{gathered} g_{\text {abs }} \\ \left(10^{-3}\right) \end{gathered}$	$\begin{gathered} \lambda \\ (\mathrm{nm}) \end{gathered}$	$\begin{aligned} & g_{\text {lum }} \\ & \left(10^{-3}\right) \end{aligned}$
R-9	270	55996	360	6.4	451	-2.4
S-9	270	77417	-472	-6.1	451	2.4

[a] Measured in THF ($20 \mathrm{mg} \mathrm{L}^{-1}$) at 298 K .

Fig. S8. (a) UV-vis absorption, (b) Circular dichroism (CD), (c) $g_{\text {abs }}$ spectra of R - and S - 5 in THF $\left(10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ at 298 K ; (d) UV-vis absorption, (e) Circular dichroism (CD), (f) $g_{\text {abs }}$ spectra of R and $S-8$ in THF $\left(10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ at 298 K .

VIII. Computational Geometry Data

Geometrically optimized Cartesian coordinates of $R-\mathbf{9}$

C	-6.52879400	-0.13719300	-0.28082500
C	-7.54922400	-0.03555300	0.67989500
C	-7.41297000	-1.13795800	1.63734200
C	-6.30373800	-1.91386400	1.25830500
C	-5.63152300	-1.33510400	0.00356800
C	-4.16503600	-0.95869900	0.22065300
C	-3.33134300	-1.63695400	-0.69082800
C	-4.15825600	-2.48942600	-1.54715300
C	-5.50272400	-2.32787700	-1.16055300
C	-3.80453400	-3.34564400	-2.59026800
C	-4.81773900	-4.04509400	-3.24648100
C	-6.15620800	-3.88695800	-2.86356500
C	-6.50867600	-3.02709000	-1.81796200
N	-3.69063700	-0.12429600	1.13219800
C	-2.35796300	0.03858300	1.11381200
C	-1.51002300	-0.60881100	0.19296500
N	-2.01248700	-1.47291300	-0.71726600
C	-6.52125400	0.82972300	-1.27152900
N	-7.44071400	1.80379700	-1.29824600
C	-8.37682100	1.81659500	-0.33014900
N	-8.47409400	0.91975500	0.67548800
C	-8.17945100	-1.46890100	2.75407900
C	-7.81978500	-2.59626700	3.49322900
C	-6.71609500	-3.37260000	3.11620300
C	-5.94917300	-3.03795800	1.99497500
C	-9.38646500	2.90424500	-0.37324900
C	-0.04121300	-0.39940200	0.18783500
C	0.79435700	-1.35879800	-0.40844500
C	2.17575500	-1.19220300	-0.42068200
C	2.75572800	-0.05883600	0.15878500
C	1.93331300	0.90852100	0.74453200
C	0.55056200	0.74084300	0.75712500
N	4.18003000	0.11133900	0.14449500
C	4.78202300	0.79139600	-0.93338200
C	6.17944400	0.95669300	-0.99232500
C	7.13186500	0.39452400	0.07903900
C	6.34434300	-0.24537600	1.23386700
C	4.94195600	-0.37347700	1.22481000
C	7.99037600	1.55228500	0.63433500
C	9.36557200	1.66055700	0.36011600
N	10.00286700	0.69897100	-0.41427300
C	9.39348500	-0.48679200	-0.80633400
C	8.02022400	-0.68737000	-0.57739900
C	7.05595000	-0.74382700	2.33246100
C	6.42706100	-1.35923900	3.40835800
C	5.03673800	-1.48445200	3.39082600
C	4.30278300	-0.99896300	2.31636800

C	3.98328100	1.31750900	-1.96967800
C	4.55611200	1.99283500	-3.03987800
C	5.93971400	2.16309800	-3.10473700
C	6.72672500	1.64394400	-2.08306100
C	-9.34543500	3.87300100	-1.38872700
C	-10.29337000	4.89273300	-1.42775400
C	-11.29436900	4.96025700	-0.45558000
C	-11.34131000	3.99999600	0.55795100
C	-10.39497700	2.97870200	0.60064000
C	10.15873000	-1.48173300	-1.44022700
C	9.56880700	-2.67011200	-1.85002400
C	8.20527800	-2.88447100	-1.62917500
C	7.45424000	-1.89621000	-0.99854200
C	7.39351000	2.55568000	1.40672300
C	8.11727900	3.63713800	1.90120000
C	9.48415400	3.72946300	1.62232100
C	10.10372900	2.74890100	0.85909300
H	-2.76312900	-3.45592300	-2.87741200
H	-4.56857600	-4.71780900	-4.06241200
H	-6.93239000	-4.43916600	-3.38623700
H	-7.54915600	-2.91063400	-1.52729600
H	-1.95094100	0.69534700	1.87695100
H	-5.77811700	0.84230200	-2.06811700
H	-9.03210100	-0.85651700	3.03129300
H	-8.39946500	-2.87667300	4.36828900
H	-6.45133000	-4.24839800	3.70245300
H	-5.09666900	-3.64850100	1.70961700
H	0.34212700	-2.23414600	-0.86106200
H	2.81695100	-1.93957800	-0.87859200
H	2.38394100	1.79547000	1.17958800
H	-0.06705700	1.52040300	1.19198800
H	11.00560800	0.76481900	-0.51154500
H	8.13745600	-0.64024800	2.33067200
H	7.01022300	-1.73539900	4.24366200
H	4.51536300	-1.96134700	4.21668500
H	3.22463200	-1.10259600	2.31846200
H	2.90769600	1.19567800	-1.93275100
H	3.91399300	2.38705400	-3.82312300
H	6.39801900	2.68995600	-3.93646500
H	7.80484800	1.77022000	-2.12480600
H	-8.56404800	3.81101300	-2.13774500
H	-10.25126500	5.63715200	-2.21853000
H	-12.03339700	5.75671500	-0.48731700
H	6.39489400	-2.06123200	-0.82195000
H	-12.11729600	4.04732100	1.31750500
H	-10.42150100	2.22868400	1.38305700
	11.22059700	-1.30915600	-1.60549600
H	10.17382000	-3.42918600	-2.33864900
H	7.73368800	-3.81043300	-1.94466000
H	2.47798900	1.62353900	
H			

$\begin{array}{lllll}\mathrm{H} & 7.62236100 & 4.39896300 & 2.49613900\end{array}$
$\begin{array}{lllll}\mathrm{H} & 10.06836600 & 4.56400100 & 2.00080000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 11.16775700 & 2.81323300 & 0.63930400\end{array}$

IX. References

1 L. L. Franco, M. V. Almeida1, L. F. R. Silva, P. P. R. Vieira, A. M. Pohlit and M. S. Valle, Chem Biol Drug De., 2012, 79, 790-797.

2 K. Lan, Z. Shan and S. Fan, Tetrahedron Letters, 2006, 47, 4343-4345.
3 A. Shaabani, P. Mirzaei, S. Naderia and D. G. Lee, Tetrahedron, 2004, 60, 11415-11420.
4 Z. Chen, X. Xie, W. Chen, N. Luo, X. Li, F. Yu. and J. Huang, Org. Biomol. Chem., 2022, 20, 8037-8041

5 E. A. Mash and D. S. Torok, J. Org. Chem., 1989, 54, 681-683.
6 M. Ooishi, M. Seino, R. Imachi, T. Ishida and T. Nogami, Tetrahedron Letters, 2002, 43, 55215524.

X. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}\left(\mathrm{CDCl}_{3}\right)$

```
PROTON_01
```


 \sim

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}\left(\mathrm{CDCl}_{3}\right)$
PROTON_01

$\underbrace{\circ}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}\left(\mathrm{CDCl}_{3}\right)$
CARBON_01
N
N
N
i

毞

${ }^{1} \mathrm{H}$ NMR spectrum of $R / S-4\left(\mathrm{CDCl}_{3}\right)$

PROTON_01

Nom

${ }^{13} \mathrm{C}$ NMR spectrum of $R / S-4\left(\mathrm{CDCl}_{3}\right)$
CARBON_01

	18		16															
190	180	170	160	150	140	130	120	110	100 f 1	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR spectrum of $R / S-5\left(\mathrm{CDCl}_{3}\right)$

PROTON _01

 $\underbrace{\text { Non }}$

$\stackrel{\circ}{9}$

${ }^{13} \mathrm{C}$ NMR spectrum of $R / S-5\left(\mathrm{CDCl}_{3}\right)$
CARBON _01

[^1]${ }^{1} \mathrm{H}$ NMR spectrum of $R-5\left(\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $R-5\left(\mathrm{CDCl}_{3}\right)$
CARBON_01 -

${ }^{1} \mathrm{H}$ NMR spectrum of $S-5\left(\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $S-5\left(\mathrm{CDCl}_{3}\right)$
CARBON_01 -

気帚

${ }^{1} \mathrm{H}$ NMR spectrum of $(R, R, R)-6$ (DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR spectrum of $(R, R, R)-6$ (DMSO- $\left.d_{6}\right)$ CARBON_01

${ }^{1} \mathrm{H}$ NMR spectrum of $(S, S, S)-6\left(\right.$ DMSO- $\left.d_{6}\right)$
PROTON 01

${ }^{13} \mathrm{C}$ NMR spectrum of $(S, \mathrm{~S}, \mathrm{~S})-6$ (DMSO- d_{6})
CARBON_01

${ }^{1} \mathrm{H}$ NMR spectrum of $R / S-7\left(\mathrm{CDCl}_{3}\right)$

PROTON_01 -

※iction
$\stackrel{5}{i}$
气in

${ }^{13} \mathrm{C}$ NMR spectrum of $R / S-7\left(\mathrm{CDCl}_{3}\right)$
CARBON_01 -

${ }^{1} \mathrm{H}$ NMR spectrum of $R / S-8\left(\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $R / S-8\left(\mathrm{CDCl}_{3}\right)$
CARBON_01

${ }^{1} \mathrm{H}$ NMR spectrum of $R-\mathbf{8}\left(\mathrm{CDCl}_{3}\right)$
PROTON_01

${ }^{13} \mathrm{C}$ NMR spectrum of $R-\mathbf{8}\left(\mathrm{CDCl}_{3}\right)$
CARBON_01

${ }^{1} \mathrm{H}$ NMR spectrum of $S-\mathbf{8}\left(\mathrm{CDCl}_{3}\right)$
PROTON_01

${ }^{13} \mathrm{C}$ NMR spectrum of $S-8\left(\mathrm{CDCl}_{3}\right)$
CARBON_01

${ }^{1} \mathrm{H}$ NMR spectrum of $R / S-10\left(\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $R / S-10\left(\mathrm{CDCl}_{3}\right)$
CARBON_01 -

${ }^{1} \mathrm{H}$ NMR spectrum of 2-bromo- N -phenylaniline $\left(\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0 H}, \mathbf{1 0} \boldsymbol{H}-\mathbf{9}, \mathbf{9}^{\prime}$-spirobi[acridine] $\left(\mathrm{CDCl}_{3}\right)$
CARBON_01

${ }^{1} \mathrm{H}$ NMR spectrum of \boldsymbol{t}-butyl (2-bromophenyl)(phenyl)carbamate $\left(\mathrm{CDCl}_{3}\right)$
PROTON_01

${ }^{13} \mathrm{C}$ NMR spectrum of \boldsymbol{t}-butyl (2-bromophenyl)(phenyl)carbamate $\left(\mathrm{CDCl}_{3}\right)$
CARBON_01

\% \%		-
$\stackrel{1}{T}$		$\bar{\square}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 - ((2 - m e t h o x y e t h o x y) m e t h y l) a c r i d i n - 9 (1 0 H) - o n e ~}\left(\mathrm{CDCl}_{3}\right)$
PROTON_01

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0}$-((2-methoxyethoxy)methyl)acridin-9(10H)-one (CDCl_{3}) CARBON_01

				1	18	170					1													
230	220	210	200	190	180	170	160	150	140	130	120	$\stackrel{110}{\mathrm{fl}(\mathrm{ppn})}$	100	90	80	70	60	50	40	30	20	10	0	-10

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 H}, \mathbf{1 0} \mathbf{H} \boldsymbol{H - 9}, \mathbf{9}^{\mathbf{\prime}}$-spirobi[acridine] $\left(\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0 H}, \mathbf{1 0} \boldsymbol{H}-\mathbf{9}, \mathbf{9}^{\prime}$-spirobi[acridine] $\left(\mathrm{CDCl}_{3}\right)$
CARBON 01

${ }^{1} \mathrm{H}$ NMR spectrum of $R / S-9\left(\mathrm{CDCl}_{3}\right)$
PROTON_01

[^0]: ${ }^{a}$ Reaction condition: $R / S-5(1 \mathrm{mmol}), S$-BINOL (0.6 mmol), solvent $(5 \mathrm{~mL})$, stirred for 2 h .

[^1]:

