Electronic Supplementary Material (ESI) for Chemical Communications.

This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information (ESI)

for

From dots to tubes – the reversed scenario as bottom-up external-catalyst-free synthesis of *N*-doped carbon nanotubes

Anna Kolanowska,^{a,b,*} Dariusz Łukowiec^c, Maciej Krzywiecki^d, Joanna Bok-Badura^e and Sławomir Boncel^{a,f,*}

Silesian University of Technology, Gliwice, Poland *E-mail: <u>anna.kolanowska@polsl.pl</u>, <u>slawomir.boncel@polsl.pl</u>

^a *NanoCarbon Group*, Faculty of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.

^b Biotechnology Centre, Silesian University of Technology, Bolesława Krzywoustego 8, 44-100 Gliwice, Poland.

^c Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland.

^d Institute of Physics–CSE, Silesian University of Technology, Stanisława Konarskiego 22B, 44-100 Gliwice, Poland.

^e Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland.

^f Centre for Organic and Nanohybrid Electronics (CONE), Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland

CNT product	CNT properties	Procedure/ conditions /substrates	Temperature (°C)	Time (min)	Carrier gas/dopant	Carbon source	Ref.
N-doped SWCNTs (3.6 at.%)	d=1.29-1.65 nm	CVD	900	1-20	Ar/H₂/NH₃ 1000/100/50 sccm	CH4, 100 sccm	1
MWCNTs	d=50-100 nm l=0.6-1.6 μm	Microwave- induced pyrolysis	500	30	N_2 100 sccm	Gumwood	2
MWCNTs	d=50.3-66.1 nm	CVD, KOH-assisted	480	40	N ₂ 150 sccm	C ₂ H ₂ :CO ₂ (1:1) 80 sccm	3
SWCNTs	d=1-2 nm	CVD, nanosized diamond	850	30	Ar, H ₂ 50 sccm	Ethanol	4
MWCNTs	-	CVD, Ge NPs	750	20	Ar	C_2H_2	5
SWCNTs	d=0.6-2.5 nm	CVD, Ge nanocrystals	850-1000	20	H_2 300 sccm	CH4 1000 sccm	6
MWCNTs	d=15-50 nm	Plasma enhanced CVD	850	3-5	N_2	CH_4	7
MWCNTs	d=20-80 nm	CVD on carbon black	800	30	Ar 120 sccm	C ₂ H ₄ 40 sccm	8
MWCNTs	d=20-90 nm	CVD on graphite	850	30	He 36 sccm	C ₂ H ₄ 4 sccm	9
SWCNTs	d=1.2-1.6 nm	CVD on carbon- implanted SiGe	850	10	Ar, H ₂ 300 sccm	CH₄ 1000 sccm	10
SWCNTs	d=1.7nm	CVD, ZnO NPs	900	20	H_2 300 sccm	Ethanol	11
SWCNTs	d<2 nm	CVD, SiO2 or TiO2 NPs	900	10	H ₂ 800 or 200 sccm, Ar 200 sccm	CH₄ 200 sccm or ethanol	12
SWCNTs	d<2 nm	CVD, Te NPs	900	10	H₂ 200 sccm, Ar 800 sccm	Ethanol	13
SWCNTs	-	CVD, SiO ₂	900	20	H ₂ 500 sccm, Ar 100 sccm	CH ₄ 500 sccm	14
MWCNTs	-	CVD, CaSiO ₃ - coated graphite	1200-1400	60	Ar 50 sccm	Ethanol	15
MWCNTs	d<20 nm	CVD, bamboo charcoal	1200-1500	60	Ar 50 sccm	Ethanol	16
MWCNTs	d=20 nm l=0.4-9 μm	Microwave plasma enhanced CVD, amorphous carbon coated corning glass	600	5-30	H₂ 80 sccm	CH₄ 10 sccm	17
SWCNTs	d<2 nm	CVD, C ₆₀	950	15	Ar 1000 sccm	ethanol	18
MWCNTs	d=40-80 nm	CVD, carbon black	750-1000	30	Ar 90 sscm	C ₂ H ₂ , C ₂ H ₄ , cyclohexan e, ethanol 10 sccm	19
MWCNTs	d=13-16 nm	CVD, Si NPs	850	30	H ₂ 2000 sccm	ethanol	20
SWCNTs	-	CVD, Si/SiO ₂ wafers	900	20	H ₂ 500 sccm	CH ₄ 500 sccm	21
SWCNTs	d=0.8-1.8 nm	CVD, Al ₂ O ₃ ceramic NPs	800-850	30	Ar/H ₂ 300 sccm	Ethanol 50 sccm	22
MWCNTs	d=100 nm l=10 μm	Plasma assisted CVD	1727-5727	30	Ar 5000 sccm H ₂ 2000 sccm	Graphite rod	23
SWCNTs	d=1.0-1.8 nm	CVD, SiO ₂	850	30	Ar/H ₂ 70 sccm	Ethanol	24
SWCNTs	d=1.0-3.0 nm	CVD, diamond NPs and fullerenes	-	-	Ar	CH₄	25
SWCNTs	d=0.9 nm l=17-52 μm	CVD, (7,6) and (6,5) SWCNTs	900	15	H ₂ 300 sccm Ar 160 sccm	Ethanol or CH₄ 2000 sccm	26
SWCNTs	d=0.7-1.5 nm	CVD, (F-)fullerene	900	20	H ₂ , Ar	Ethanol	27, 28
SWCNTs	d=0.85 nm	CVD, fullerene caps	900	20	Ar, H ₂ 50 sccm	Ethanol	29
MWCNTs	d=50-100 nm l=0.6-1.8 μm	Microwave pyrolysis	600-1400	30	N ₂ 400 sccm	Cellulose	30

Table S1 Summary of the external-catalyst-free methods of the (N-)CNT synthesis.

d – diameter, I – length, NPs – nanoparticles

Synthesis of amino-acid-CDs

Citric acid (1.5 mmol) and amino-acid (aspartic acid Asp, cysteine Cys, glycine Gly, histidine His, lysine Lys, and phenylalanine Phe) (1.5 mmol) were dissolved in distilled water (10 mL). The solution was heated in a Teflon[®]-coated autoclave at 180 °C for 24 h in a laboratory dryer. The autoclave was allowed to cool down to room temperature, and the post-reaction mixture was centrifuged at 5,500 rpm for 15 min. The resulting supernatant was filtered through a 0.22 μ m-syringe filter (Minisart NY hydrophilic polyamide, 25 mm), and the filtrate was lyophilized (lyophilizer Martin Christ Alpha 2-4 LSCplus) to yield from yellow to dark-yellow solids.

Fig. S1 The effect of: CD size (*left*), and the C/N ratio (*right*) on yield of the CD-N-CNT synthesis.

a)

Fig. S2 A selection of bright- and dark-field TEM images of the as-synthesized: (a) His-, (b) Asp-, and (c) Phe-CD-*N*-CNTs.

Fig. S3 DLS data of the CD volume–size distribution in the aqueous suspension under neutral pH for Cys- (a), Lys- (b), His- (c), Gly- (d), Phe- (e), and Asp-CDs (f).

Fig. S4 As-synthesized amino-acid-CD-*N*-CNTs: TGA profiles under nitrogen (a) *versus* air atmosphere (b), and EDX analysis (at. %) (c).

Table S2 Raman peak intensity ratio I_D/I_G , main peak positions, and therefrom calculated L_a -values for amino acid-CD-*N*-CNTs.

	Cys-CD-	Lys-CD-	His-CD-	Gly-CD-	Phe-CD-	Asp-CD-
	N-CNTs	N-CNTs	N-CNTs	N-CNTs	N-CNTs	N-CNTs
I _D /I _G ratio	1.14	1.12	0.99	1.03	1.07	1.10
D-band position (cm ⁻¹)	1346	1347	1363	1362	1346	1351
G-band position (cm ⁻¹)	1574	1577	1566	1588	1582	1585
L _a (nm)	34	34	39	37	36	35

Fig. S5 XPS in the C 1s BE region for Cys- (a), Lys- (b), His- (c), Gly- (d), and Asp-CD-N-CNTs (e).

Fig. S6 XPS in the N 1s BE region for Cys- (a), Lys- (b), His- (c), Gly- (d), and Asp-CD-N-CNTs (e).

Fig. S7 XPS in the O 1s BE region for Cys- (a), Lys- (b), His- (c), Gly- (d), and Asp-CD-N-CNTs (e).

Table S3 Inorganic contaminants in the Phe-CD-*N*-CNTs sample determined using inductively coupled plasma atomic emission spectrometry (ICP-AES).

Sample	Al mg/l	Ca mg/l	Fe mg/l	K mg/l	Mg mg/l	Mn mg/l	Na mg/l	Pb mg/l	Zn mg/l	Co mg/l	Cu mg/l	Ni mg/l
Blank	1.06	4.25	1.14	0.66	0,60	<0.1	3.29	4.09	<0.1	<0.1	<0.1	<0.1
Phe- CD- <i>N</i> - CNTs	1.20	1.00	2.11	0.10	<0.1	<0.1	1.78	10.35	<0.1	<0.1	<0.1	<0.1
	Al mg/mg <i>N</i> -CNTs	Ca mg/mg <i>N</i> -CNTs	Fe mg/mg N-CNTs	K mg/mg <i>N</i> -CNTs	Mg mg/mg N- CNTs	Mn mg/mg <i>N</i> - CNTs	Na mg/mg <i>N</i> -CNTs	Pb mg/mg N-CNTs	Zn mg/mg <i>N</i> - CNTs	Co mg/mg <i>N</i> - CNTs	Cu mg/mg <i>N</i> - CNTs	Ni mg/mg <i>N</i> - CNTs
Phe- CD- <i>N</i> - CNTs	0.001197	0.001004	0.002111	9.54E-05	0.0001	0.0001	0.001785	0.01035	0.0001	0.0001	0.0001	0.0001

Preparation of the electroconductive CNT paints

Three types of CNTs: Nanocyl NC7000TM, in-house synthesized ultralong MWCNTs, and Phe-CD-*N*-CNTs were dispersed in water in the presence of SDS surfactant using ultrasonication (Bandelin Sonorex RK 106, 35 kHz, 480 W) for 15 min. Next, SX-150 (screen printing base) was added. The paints were mixed for 15 min (PARKSIDE® PFBS 160 B2, 10000 rpm) and were further applied on cotton textiles at different layer thickness (50, 100, 150, 200 and 250 μ m) – controlled by paint applicator Erichsen (type BIRD, model 284) – on the length of conductive path equal to 7 cm and 1.5 cm in width. Composition of the paints are listed below (Table S3). Surface electric resistances (Ω /sq) of the paths were measured using the voltage method in a custom-designed voltage measurement system.³¹

Table S4 Electroconductive CNT-based paints composition.

CNT type	CNT amount (g)	Water content (g)	SX-150 content (g)	SDS (g)	CNT content (%)	Textile weight (g)	Textile weight after coating (g)
Nanocyl NC7000 ™ MWCNTs	0.1022	1.013	0.9134	0.0010	10	0.5042	0.6247
In-house MWCNTs	0.1000	10.066	9.150	0.0010	1	0.5334	0.6048
Phe-CD-N-CNTs	0.1002	10.327	9.180	0.0011	1	0.4849	0.5946

Fig. S8 Effect of coating thickness on surface electrical resistivity of Phe-CD-*N*-CNTs (navy blue), in-house MWCNTs (purple) and Nanocyl NC7000[™] (turquoise) coatings on cotton.

References

- 1. D. Yu, Q. Zhang and L. Dai, J Am Chem Soc Comm, 2010, 132, 15127-15129.
- 2. K. Shi, J. Yan, E. Lester and T. Wu, Ind Eng Chem Res, 2014, 53, 15012-15019.
- 3. B.A. Tarboush, F.S. Mjalli, M.A. Alsaadi and M.M. Aljumaily, *Physica B Condens*, 2021, **621**, 413294.
- 4. D. Takagi, Y. Kobayashi and Y. Homma, J Am Chem Soc, 2009, **131**, 6922-6923.
- A. Capasso, E. Waclawik, J.M. Bell, S. Ruffell, A. Sgarlata, M. Scarselli, M. De Crescenzi and N. Motta, J Non Cryst Solids, 2010, 356, 1972-1975.
- 6. T. Uchino, G.N. Ayre, D.C. Smith, J.L. Hutchion, C.H. de Groot and P. Ashburn, *J Electrochem Soc*, 2009, **156**, K144-K148.
- 7. S. Kumar, I. Levchenko, K. Ostrikov and J.A. McLaughlin, Carbon, 2012, 50, 325-329.
- J.-H. Lin, C.-S. Chen, H.-L. Ma, C.-W. Chang, C.-Y. Hsu and H.-W. Chen, *Carbon*, 2008, 46, 1619-1623.
- 9. J.H. Lin, C.S. Chen, M.H. Rummeli, A. Bachmatiuk, Z.Y. Zeng, H.L. Ma, B. Buchner and H.W. Chen, *Chem Mater*, 2011, **23**, 1637-1639.
- 10. T. Uchino, K.N. Bourdakos, C.H. de Groot, P. Ashburn, M.E. Kiziroglou, G.D. Dilliway and D.C. Smith, *Appl Phys Lett*, 2005, **86**, 233110.
- 11. F. Gao, L. Zhang and S. Huang, Appl Surf Sci, 2010, 256, 2323-2326.
- 12. S. Huang, Q. Cai, J. Chen, Y. Qian and L. Zhang, J Am Chem Soc, 2009, 131, 2094-2095.
- 13. Y. Qian, S. Huang, Y. Bai, J. Chen, L. Zhang, W. Guang and S. Wang, *Chem Vap Deposition*, 2010, **16**, 136-142.
- 14. B. Liu, W. Ren, L. Gao, S. Li, S. Pei, C. Liu, C. Jiang and H.-M. Cheng, *J Am Chem Soc*, 2009, **131**, 2082-2083.
- 15. J. Zhu, J. Jia, F.-L. Kwong, D.H.L. Ng and P.A. Crozier, *Carbon*, 2012, **50**, 2666-2669.
- 16. J. Zhu, J. Jia, F.L. Kwong, D.H.L. Ng and S.C. Tjong, *Biomass Bioenergy*, 2012, **36**, 12-19.
- 17. J.K. Seo, H. Jung, J.-H. Lee, S.Y. Deok, J.J. Young and W.S. Choi, *Curr Appl Phys*, 2010, **10**, S447-S450.
- 18. Y. Sun, R. Kitaura, J. Zhang, Y. Miyata and H. Shinohara, Carbon, 2014, 68, 80-86.
- 19. Z.-Y. Zeng and J.-H. Lin, RSC Adv, 2014, 4, 40251-40258.
- 20. X. Xu, S. Huang, Y. Hu, J. Lu and Z. Yang, *Mater Chem Phys*, 2012, **133**, 95-102.
- 21. B. Liu, D.M. Tan, C.H. Sun, C.H. Liu, C. Liu, W.C. Ren, F. Li, W.J. Yu, L.C. Yin, L.L. Zhang, C.B. Jiang and H. M. Cheng, *J Am Chem Soc*, 2011, **133**, 197-199.
- 22. H. Liu, D. Takagi, H. Ohno, S. Chiashi, T. Chokan and Y. Homma, *Appl Phys Express*, 2008, 1, 014001.
- 23. A. Koshio, M. Yudasaka and S. Iijima, Chem Phys Lett, 2002, 356, 595-600.
- 24. H. Liu, D. Takagi, S. Chiashi and Y. Homma, *Carbon*, 2010, **48**, 114-122.
- 25. F. Rao, T. Li and Y. Wang, *Carbon*, 2009, **47**, 3580-3584.
- 26. J. Liu, C. Wang, X. Tu, B. Liu, L. Chen, M. Zheng and C. Zhou, Nat Commun, 2012, 3, 1199.
- 27. I. Ibrahim, Y. Zhang, A. Popov, L. Dunsch, B. Buchner, G. Cuniberti and M.H. Rummeli, *Nanoscale Res Lett*, 2013, **8**, 265.
- 28. I. Ibrahim, A. Bachmatiuk, M.H. Rummeli, U. Wolff, A. Popov, O. Boltalina, B. Buchner and G. Cuniberti, *Phys Status Solidi B*, 2011, **248**, 2467-2470.
- 29. X. Yu, J. Zhang, W. Choi, J.-Y. Choi, J.M. Kim, L. Gan and Z. Liu, Nano Lett, 2010, 10, 3343-3349.
- 30. J.E. Omoriyekomwan, A. Tahmasebi, J. Zhang and J. Yu, Nanomaterials, 2022, 12, 737.
- 31. A. Kolanowska, A.W. Kuziel, A.P. Herman, R.G. Jedrysiak, T. Gizewski and S. Boncel, *Prog Org Coat*, 2019, **130**, 260-269.