Supporting information

Ni doped Mo$_2$C/NCF composite for efficient electrocatalytic hydrogen evolution

Jie Yang1, Tariq Bashir1, Yanping Lin2, Lijun Gao1

1. College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China

2. School of Physics and Energy, Xuzhou University of Technology, Xuzhou 221018, China

* Corresponding author: gaolijun@suda.edu.cn (L. Gao)

Fig. S1 Thermo-gravimetric profile of dopamine-chelating ammonium molybdate.
Fig. S2 SEM images of the molybdenum carbide material at (a) 700°C and (b) 800°C
Fig. S3. Structural characterizations of molybdenum carbide, (a) SEM image of NCF, (b) TEM image, and (c) EDS elemental mapping of Mo$_2$C/NCF. (d) TEM image of Ni-Mo$_2$C/NCF.
Fig. S4. (a) Nitrogen adsorption-desorption isotherm of Ni-Mo$_2$C/NCF at 77 K, (b) XPS survey spectrum of Mo$_2$C/NCF showing the presence of Mo, N, C and Ni elements.
Fig. S5. CV curves of (a) Ni-Mo$_2$C/NCF and (b) Mo$_2$C/NCF under different scan rates from 20 to 160 mV/s in 1.0 M KOH.

Fig. S6. XRD of Mo-chelated polydopamine.
Fig. S7. Nyquist plots of Ni-Mo$_2$C/NCF and Mo$_2$C/NCF in 1.0M KOH at open circuit potential.
Conversion method of E_{RHE}

Based on the Nernst equation we can derive:

$$E_{RHE} = E_{test} + 0.059 \times pH + E_R,$$

where E_{test} is the original voltage applied during the test, E_R is the standard electrode potential of the reference electrode, the value of pH is about 13.6 in 1M KOH solution. In this work, the reference electrode was Hg/HgO, $E_R=0.098$V

$$E_{RHE} = E_{test} + 0.059 \times 13.6 + 0.098$$

$$= E_{test} + 0.9004$$

Calculation of ECSA

Based on the linear fitting of Fig. 3d insert, we can derive specific capacitance of Ni-Mo$_2$C/NCF as follows:

$$C = \frac{k}{2m} = \frac{21.6 mF/cm^2}{2 \times 0.28 mg/cm^2} = 38.6 F/g,$$

where C is the specific capacitance of Ni-Mo$_2$C/NCF, k is the fitting slope, m is the catalyst areal loading.

Then, we can calculate its ECSA of Ni-Mo$_2$C/NCF by assuming a standard value of 30 μ F/cm2 (it is commonly used for many oxide surfaces):

$$ECSA = \frac{C}{30 \ \mu \ F/cm} = 128.6 \ m^2/g$$