Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information

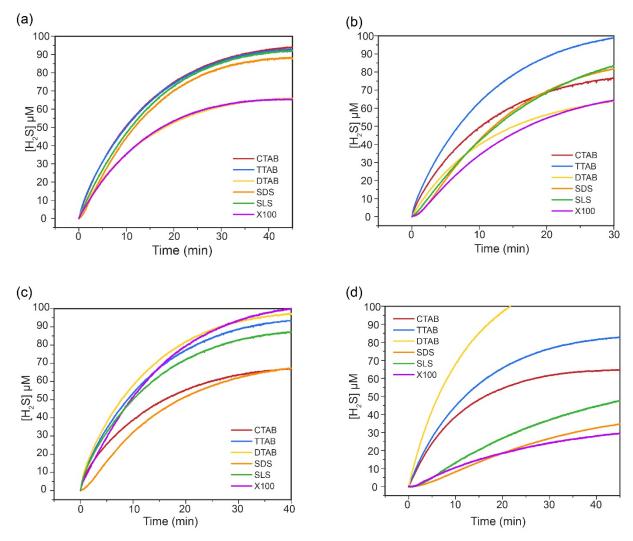
Solubilization of Elemental Sulfur By Surfactants Promotes Reduction to H2S by

Thiols

Arman C. Garcia and Michael D. Pluth*

Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1252. United States

*pluth@uoregon.edu


Experimental details

Materials and Methods. Chemicals were used as received from Sigma Aldrich, ThermoFisher Scientific, Acros Organics, and TCI. PBS Buffer solutions were made using 1 PBS Tablet (EMD Millipore) dissolved in 1.00 L of Millipore water to provide a pH=7.4 buffered solution with 10 mM phosphate, 140 mM NaCl, and 3 mM KCl. Buffered solutions were sparged with N_2 to remove dissolved oxygen and stored in an N_2 filled glovebox. UV-vis spectra were recorded on an Agilent Cary 60 UV-vis spectrometer equipped with a Quantum Northwest TC-1 temperature controller set at 25 \pm 0.005 °C. H_2 S measurements were performed using a SULF-500 Type 1 Unisense electrode (extended tip - 12 cm) connected to a Unisense H_2 S UniAmp.

Solubilization of S₈ **by Surfactants.** Scintillation vials containing a 10-20 mL solution of surfactant (100 mM) in pH 7.4 PBS buffer was stirred with excess S₈ (200 mg, 0.008 mmol) for 1 hour. After stirring, the heterogeneous mixture was filtered using 0.1 µm Whatman syringe filters to remove excess S₈. Solubilized S₈ was quantified by UV-vis spectroscopy by using the absorbance wavelength and extinction coefficient for S₈ (λ_{max} = 263 nm, ϵ = 6730 M⁻¹ or λ_{max} = 325 nm, ϵ = 1040 M⁻¹ for Triton-X100)

General Procedure for H₂S Calibration. NaSH (5.6 mg, 0.10 mmol) was degassed with N₂ for three 1-minute cycles and dissolved with 1 mL N₂ sparged PBS buffer to generate a 10 mM NaSH solution, which was then diluted to 1 mM. The Unisense SULF-500 electrode tip was placed in a 20 mL solution of PBS buffer and allowed to stabilize. With a stable signal, the tip was placed through a rubber septa cap in a 20 mL solution of N₂-degassed PBS buffer containing 100 mM surfactant containing 1 mM thiol (Cys, GSH, Hcy, or NAC) and allowed to stabilize prior to additions of 1 mM NaSH (5, 10, 20, 40, 60, 80, 100 μ L). Calibration curves were performed daily for all H₂S measurements.

General Procedure for H_2S Measurements. A Unisense electrode was connected to a Unisense H_2S UniAmp and allowed the electrode to stabilize. The electrode tip is then submerged into the desired solution until the response stabilized (<15 mV), which was typically less than 15 minutes. Once the electrode had stabilized, a solution of desired surfactant and solubilized S_8 was prepared was again allowed to stabilize. With a stable signal the desired thiol (50-1000 μ M) was injected and H_2S release was monitored. Each trial was repeated in triplicate.

Figure S1. H_2S release of (80 μ M) S^0 from thiol (1 mM, 12.5 equiv.) in each surfactant (100 mM) a) cysteine b) glutathione c) homocysteine and d) N-acetyl cysteine

Surfactant	Carbon Chain Length	[S ₈] Avg. mM + Std. Dev.		
CTAB	16	0.15 ± 0.0020		
TTAB	14	0.099 ± 0.0037		
DTAB	12	0.044 ± 0.0052		
SDS	12	0.065 ± 0.0050		
SLS	11	0.053 ± 0.0015		
Triton-X100	27-30	0.250 ± .032		

Table S1. Solubilized S_8 by surfactant (100 mM) in PBS Buffer (pH=7.4). UV-Vis spectra were baselined to stock solutions of respective surfactant and then S_8 was quantified. (S_8 measured at λ_{max} at 263 nm (at 295 nm for Triton-X100 due to absorbance overlap)).

	Thiol – Avg. H₂S Release + Std. Dev. (±)				
Surfactant	Cys	Нсу	GSH	NAC	
CTAB	78 ± 10	67 ± 1.8	78 ± 4.4	73 ± 2.2	
TTAB	92 ± 1.7	94 ± 3.0	101 ± 1.5	82 ± 2.1	
DTAB	66 ± 2.2	98 ± 4.9	73 ± 9.0	112 ± 5.5	
SDS	88 ± 2.7	69 ± 0.7	86 ± 9.6	42 ± 3.2	
SLS	92 ± 5.8	105 ± 3.4	91 ± 5.8	61 ± 2.9	
Triton -X100	65 ± 4.9	101 ± 1.1	68 ± 5.8	35 ± 2.9	

Table S2. H_2S release from surfactant/ S_8 + thiols

	k _{obs} (s⁻¹)				
Surfactant	Cys	Нсу	GSH	NAC	
CTAB	7.01 x 10 ⁻³	3.76 x 10 ⁻³	5.67 x 10 ⁻³	6.71 x 10 ⁻³	
TTAB	6.07 x 10 ⁻³	4.84 x 10 ⁻³	4.30 x 10 ⁻³	6.76 x 10 ⁻³	
DTAB	6.36 x 10 ⁻³	4.13 x 10 ⁻³	4.07 x 10 ⁻³	5.69 x 10 ⁻³	
SDS	8.51 x 10 ⁻³	4.70 x 10 ⁻³	4.10 x 10 ⁻³	8.37 x 10 ⁻³	
SLS	6.65 x 10 ⁻³	4.59 x 10 ⁻³	5.70 x 10 ⁻³	2.24 x 10 ⁻³	
Triton -X100	8.42 x 10 ⁻³	4.09 x 10 ⁻³	2.83 x 10 ⁻³	1.35 x 10 ⁻³	

Table S3. Rate of H_2S formation from surfactant (100 mM)/ S_8 (10 μ M S_8 , 80 μ M S^0) with added thiol (100 equiv.)